Ya.N. Kamalova a*, N.S. Karamova a**, P.V. Zelenikhin a***, E.Y. Abdul-Hafeez b****, O.N. Ilinskaya a*****

aKazan Federal University, Kazan, 420008 Russia

bAssiut University, Assiut, 71515 Egypt

E-mail: *yazgulen@mail.ru, **nskaramova@mail.ru, ***pasha_mic@mail.ru,

****natalialrudakova@mail.ru, *****ilinskaya_kfu@mail.ru

Received January 22, 2019

Full text PDF

DOI: 10.26907/2542-064X.2019.3.385-394

For citation: Kamalova Ya.N., Karamova N.S., Zelenikhin P.V., Abdul-Hafeez E.Y., Ilinskaya O.N. Plant materials as a potential source of antitumor agents. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2019, vol. 161, no. 3, pp. 385–394. doi: 10.26907/2542-064X.2019.3.385-394. (In Russian)

Abstract

Many medicinal plants are used around the world to create new medicinal products. The effectiveness of these products is associated with a complex synergistic interaction of various plant components. In this study, we investigated the extract cytotoxicity of the following five plant species belonging to the Agavaceae (Asparagaceae) family: Sansevieria cylindrical, S. trifasciata, Polianthes tuberosa, Yucca filamentosa, and Furcraea gigantea (var. watsoniana). The plant material was collected in different regions of Egypt. For each plant species, the half maximal inhibitory concentration (IC50) in relation to the human lung adenocarcinoma cell culture (A549) was determined with the help of the IC50 calculator. For the MTT test, we used aqueous solutions of the methanol extracts of S. cylindrical and S. trifasciata in the concentrations of 100, 200, 300, 500, 900, 1300, 1700, and 2000 ?g/mL, as well as P. tuberosa, Y. filamentosa, and F. gigantea in the concentrations of 10, 20, 50, 100, 300, 500, 1000, and 1500 μg/mL. We found that the extracts of S. trifasciata leaves and rhizomes cause no significant effect on the viability of A549 tumor cells in all the studied concentrations. The aqueous solutions of S. cylindrica leaves and rhizome methanol extracts of with increasing concentration reduced the survival of A549 tumor cells more than twice as compared with the control group. The lowest IC50 values were obtained for the extracts of P. tuberosa and F. gigantea leaves: 62.5 and 82 μg/mL, respectively. The results confirm anticarcinogenic potential of the extracts of P. tuberosa and F. gigantea leaves, which is important for development of new phytobiotechnologies aimed at the synthesis of effective medications based on the secondary metabolites of these plants.

Keywords: cancer, cytotoxicity, plant extracts, Agavaceae (Asparagaceae)

Acknowledgments. The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University and supported by the Russian Foundation for Basic Research (project no. 15-54-61024).

References

  1. Vorob'ev V.A., Lodova O.S. Production diversification of development of rural areas. Vestn. BSAA, 2005, vol. 2, pp. 8–10. (In Russian)
  2. Dias D.A., Urban S., Roessner U. A historical overview of natural products in drug discovery. Metabolites, 2012, vol. 2, no. 2, pp. 303–336. doi: 10.3390/metabo2020303.
  3. Van Wyka A.S., Prinsloo G. Medicinal plant harvesting, sustainability and cultivation in South Africa. Biol. Conserv., 2018, vol. 227, pp. 335–342. doi: 10.1016/j.biocon.2018.09.018.
  4. El-Demerdash M. Medicinal plants of Egypt. In: Saxena P. (Ed.) Development of Plant-Based Medicines: Conservation, Efficacy and Safety. Ch. 4. Springer Neth., 2001. pp. 69–93.
  5. Unnati  Sh., Ripal Sh., Sanjeev A., Niyati A. Novel anticancer agents from plant sources. Chin. J. Nat. Med., 2013, vol. 11, no. 1, pp. 16−23. doi: 10.1016/S1875-5364(13)60002-3.
  6. Kamalova Ya.N., Karamova N.S., Ilinskaya O.N. Herbal preparations in antitumor therapy (review). Biofarm. Zh., 2018, vol. 10, no. 3, pp. 3−19. (In Russian)
  7. Azwanida N.N. A review on the extraction methods use in medicinal plants, principle, strength and limitation. Med. Aromat. Plants, 2015, vol. 4, no. 3, art. 10001966, pp. 1–6. doi: 10.4172/2167-0412.1000196.
  8. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, vol. 65, nos. 1–2, pp. 55–63. doi: 10.1016/0022-1759(83)90303-4.
  9. Aslam M.Sh., Ahmad M.S. Worldwide importance of medicinal plants: Current and historical perspectives. Recent Adv. Biol. Biomed., 2016, vol. 2, pp. 88–93.
  10. Iqbal J., Abbasi B.A., Mahmood T. Plant-derived anticancer agents: A green anticancer approach. Asian Pac. J. Trop. Biomed., 2017, vol. 7, no. 12, pp. 1129–1150. doi: 10.1016/j.apjtb.2017.10.016.
  11. Buyel J.F. How plants can contribute to the supply of anticancer compounds. In: Malik S. (Ed.) Biotechnology and Production of Anti-Cancer Compounds. Ch. 2. Springer, 2017, pp. 39–72.
  12. Sáenz M.T., Garcia M. D., Quilez A., Ahumada M.C. Cytotoxic activity of Agave intermixta L. (Agavaceae) and Cissus sicyoides L. (Vitaceae). Phytother. Res., 2000, vol. 14, no. 7, pp. 552–554. doi: 10.1002/1099-1573(200011)14:7<552::AID-PTR639>3.0.CO;2-U.
  13. Ohtsuki T., Koyano T., Kowithayakorn T. New chlorogenin hexasaccharide isolated from Agave fourcroydes with cytotoxic and cell cycle inhibitory activities. Bioorg. Med. Chem., 2004, vol. 12, no. 14, pp. 3841–3845. doi: 10.1016/j.bmc.2004.05.004.
  14. Jin M., Zhang Y.J., Yang C.R. Spirostanol and furostanol glycosides from the fresh tubers of Polianthes tuberosa. J. Nat. Prod., 2004, vol. 67, no. 1, pp. 5–9. doi: 10.1021/np034028a.
  15. Raslan M.A., Melek F.R., Said A.A., Elshamy A.I., Umeyama A., Mounier M.M. New cytotoxic dihydrochalcone and steroidal saponins from the aerial parts of Sansevieria cylindrica Bojer ex Hook. Phytochem. Lett., 2017, vol. 22, pp. 39–43. doi: 10.1016/j.phytol.2017.08.004.
  16. Amida M.B. Yemitan O.K., Adeyemi O.O. Toxicological assessment of the aqueous root extract of Sanseviera liberica Gerome and Labroy (Agavaceae). J. Ethnopharmacol., 2007, vol. 113, no. 1, pp. 171–175. doi: 10.1016/j.jep.2007.03.033.
  17. Kamalova Ya.N., Shtyrev V.V., Issam Abdul-Hafiz, Omer Kh.M. Ibrahim, Zelenikhin P.V., Karamova N.S., Ilinskaya O.N. Cytotoxic and apoptosis-inducing effect of plant extracts of the Asparagaceae family in relation to human lung adenocarcinoma cells. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2016, vol. 158, no. 3, pp. 338–350. (In Russian)
  18. Ali M.S., Sharma G.C., Asplund R.O., Nevins M.P., Garb S. Isolation of antitumor polysaccharide fractions from Yucca glauca Nutt. (Lilliaceae), Growth, 1978, vol. 42, no. 2, pp. 213–223.
  19. Balestrieri C., Felice F., Piacente S., Pizza C., Montoro P., Oleszek W., Visciano V., Balestrieri M. Relative effects of phenolic constituents from Yucca schidigera Roezl. bark on Kaposi's sarcoma cell proliferation, migration, and PAF synthesis. Biochem. Pharmacol., 2006, vol. 71, no. 10, pp. 1479–1487. doi: 10.1016/j.bcp.2006.01.021.
  20. Mimaki Y., Yokosuka A., Sashida Y. Steroidal glycosides from the aerial parts of Polianthes tuberosa. J Nat Prod., 2000, vol. 63, no. 11, pp. 1519–1523. doi: 10.1021/np000230r.
  21. Yokosuka A., Sano T., Hashimoto K., Sakagami H., Mimaki Y. Steroidal glycosides from Furcraea foetida and their cytotoxic activity. Chem. Pharm. Bull., 2009, vol. 57, no. 10, pp. 1161–1166. doi: 10.1248/cpb.57.1161.

The content is available under the license Creative Commons Attribution 4.0 License.