G.R. Akhmetova*, N.L. Rudakova**, T.L. Din***, M.R. Sharipova****

Kazan Federal University, Kazan, 420008 Russia

E-mail: *gulnaz55@inbox.ru, **natalialrudakova@mail.ru, ***nhanhlanrung01102000@gmail.com, 

****marsharipova@gmail.com

Received April 15, 2019

Full text PDF

DOI: 10.26907/2542-064X.2019.3.363-374

For citation: Akhmetova G.R., Rudakova N.L., Din T.L., Sharipova M.R. The role of various factors in the process of biofilm formation by bacilli. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2019, vol. 161, no. 3, pp. 363–374. doi: 10.26907/2542-064X.2019.3.363-374. (In Russian)

Abstract

The strategy of existence of microorganisms in the structure of biofilms determines their adaptation to specific environmental conditions. Bacteria of the genus Bacillus are actively used as models for studying the processes of regulation and formation of biofilms. This work aims to assess the effect of proteases secreted by bacilli on the formation of biofilms, as well as on the resistance of recombinant strains to environmental stress factors. We compared the dynamics of biofilm formation by the wild strain B. subtilis 168 and the following strains with altered expression of extracellular proteases: non-protease strains (B. subtilis BG2036, B. subtilis BRB8, and B. subtilis BRB14) and strains with increased protease secretion (B. subtilis (aprBp), B. subtilis (gseBp), and B. subtilis (mprBp)). We also investigated the effect of ethanol and sodium chloride on the ability of the B. subtilis strains to form biofilms in a liquid medium.

The bacterial strains were cultured at pH 7.4 and temperature 37 ?C in a synthetic E-medium in U-shaped 96-well plates. Biofilm formation was identified by incubation with crystal violet (CV).

We found that the level of biofilm formation is higher (by an average of 10%) in the protease-deficient strains of B. subtilis. The recombinant strains expressing genes of serine proteases form biofilms with a reduced level (by an average of 40%). A strain with the expression of metalloendopeptidase is characterized by an increased level of biofilm formation (up to 10%), which is possibly due to the functional in vivo role of this new enzyme. The wild and protease-deficient strains of B. subtilis respond similarly to ethanol stress: biofilm formation is reduced in both of them. The wild strain exhibits a greater sensitivity to osmotic stress than the protease-deficient one.

Keywords: B. subtilis, protease-deficient strains, biofilms, extracellular proteases of B. pumilus, ethanol stress, osmotic stress

Acknowledgments. The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University.

References

  1. Baslé A., Hewitt L., Koh A., Lamb H.K., Thompson P., Burgess J.G., Hall M.J., Hawkins A.R., Murray H., Lewis R.J. Crystal structure of NucB, a biofilm-degrading endonuclease. Nucleic Acids Res., 2017, vol. 46, no. 1, pp. 473–484. doi: 10.1093/nar/gkx1170.
  2. Donlan R.M., Costerton J.W. Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev., 2002, vol. 15, no. 2, pp. 167–193. doi: 10.1128/CMR.15.2.167-193.2002.
  3. Costerton J.W., Lewandowski Z., Caldwell D.E., Korber D.R., Lappin-Scott H.M. Microbial biofilms. Annu. Rev. Microbiol., 1995, vol. 49, pp. 711–745. doi: 10.1146/annurev.mi.49.100195.003431.
  4. Vlamakis H., Chai Y., Beauregard P., Losick R., Kolter R. Sticking together: Building a biofilm the Bacillus subtilis way. Nat. Rev. Microbiol., 2013, vol. 11, no. 3, pp. 157–168. doi: 10.1038/nrmicro2960.
  5. Epstein A.K., Pokroy B., Seminara A., Aizenberg J. Bacterial biofilm shows persistent resistance to liquid wetting and gas penetration. Appl. Phys. Sci., 2011, vol. 108, no. 3, pp. 995–1000. doi: 10.1073/pnas.1011033108.
  6. Römling U., Balsalobre C. Biofilm infections, their resilience to therapy and innovative treatment strategies. J. Intern. Med., 2012, vol. 272, no. 6, pp. 541–561. doi: 10.1111/joim.12004.
  7. Biel M.A. Photodynamic therapy of bacterial and fungal biofilm infections. Methods Mol. Biol., 2010, vol. 635, pp. 175–194. doi: 10.1007/978-1-60761-697-9_13.
  8. Cairns L.S., Hobley L., Stanley-Wall N.R. Biofilm formation by Bacillus subtilis: New insights into regulatory strategies and assembly mechanisms. Mol. Microbiol., 2014, vol. 93, no. 4, pp. 587–598. doi: 10.1111/mmi.12697.
  9. Davey M.L., O'Toole G.A. Microbial biofilms: From ecology to molecular genetics. Microbiol. Mol. Biol. Rev., 2000, vol. 64, no. 4, pp. 847–867. doi: 10.1128/mmbr.64.4.847-867.2000.
  10. Chen Y., Cao S., Chai Y., Clardy J., Kolter R., Guo J.H., Losick R. Bacillus subtilis sensor kinase involved in triggering biofilm formation on the roots of tomato plants. Mol. Microbiol., 2012, vol. 85, no. 3, pp. 418–430. doi: 10.1111/j.1365-2958.2012.08109.x.
  11. Chen Y., Yan F., Chai Y., Liu H., Kolter R., Losick R., Guo K.H. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ. Microbiol., 2013, vol. 15, no. 3, pp. 848–864. doi: 10.1111/j.1462-2920.2012.02860.x.
  12. Garcia-Gutierrez L., Zeriouh H., Romero D., Cubero J., de Vicente A., Perez-Garcia A. The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate- and salicylic acid-dependent defence responses. Microb. Biotechnol., 2013, vol. 6, no. 3, pp. 264–274. doi: 10.1111/1751-7915.12028.
  13. Zeriouh H., de Vicente A., Perez-Garcia A., Romero D. Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity. Environ. Microbiol., 2013, vol. 16, no. 7, pp. 2196–1211. doi: 10.1111/1462-2920.12271.
  14. Choudhary D.K., Johri B.N. Interactions of Bacillus spp. and plants – with special reference to induced systemic resistance (ISR). Microbiol. Res., 2009, vol. 164, no. 5, pp. 493–513. doi: 10.1016/j.micres.2008.08.007.
  15. McDonnell G., Russell A.D. Antiseptics and disinfectants: Activity, action, and resistance. Clin. Microbiol. Rev., 1999, vol. 12, no. 1, pp. 147–179.
  16. Dorman H.J., Deans S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol., 2000, vol. 88, no. 2, pp. 308–316. doi: 10.1046/j.1365-2672.2000.00969.x.
  17. Ishida H., Ishida Y., Kurosaka Y., Otani T., Sato K., Kobayashi H. In vitro and in vivo activities of levofloxacin against biofilm-producing Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 1998, vol. 42, no. 7, pp. 1641–1645. doi: 10.1128/AAC.42.7.1641.
  18. Aguilar C., Vlamakis H., Losick R., Kolter R. Thinking about Bacillus subtilis as a multicellular organism. Curr. Opin. Microbiol., 2007, vol. 10, no. 6, pp. 638–643. doi: 10.1016/j.mib.2007.09.006.
  19. Chernova L.S., Sharafutdinov I.S., Kayumov A.R. HtrA protein hyperproduction increases the viability of Bacillus subtilis cells under the stress conditions and stimulates biofilm formation. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2017, vol. 159, no. 2, pp. 262–271. (In Russian)
  20. Morikawa M., Kagihiro S., Haruki M., Takano K., Branda S., Kolter R., Kanaya S. Biofilm formation by a Bacillus subtilis strain that produces γ-polyglutamate. Microbiology, 2006, vol. 152, pt. 9, pp. 2801–2807. doi: 10.1099/mic.0.29060-0.
  21. O'Toole G.A., Pratt L.A., Watnick P.I., Newman D.K., Weaver V.B., Kolter R. Genetic approaches to study of biofilms. Methods Enzymol., 1999, vol. 310, pp. 97–109. doi: 10.1016/S0076-6879(99)10008-9.
  22. Merritt J.H., Kadouri D.E., O'Toole G.A. Growing and analyzing static biofilms. Curr. Protoc. Microbiol., 2006, no. 1, pp. 1B.1.1–1B.1.17. doi: 10.1002/9780471729259.mc01b01s00.
  23. Ashmarin I.P., Vorob'ev A.A. Statisticheskie metody v mikrobiologicheskikh issledovaniyakh [Statistical Methods in Microbiological Studies]. Leningrad, Medgiz, 1962. 180 p. (In Russian)
  24. Rey M.W., Ramaiya P., Nelson B.A., Brody-Karpin B.A., Zaretsky E.J., Tang M., de Leon A.L., Xiang H., Gusti V., Clausen I.G., Olsen P.B., Rasmussen M.D., Andersen M.D., Jørgensen P.L., Larsen T.S., Sorokin A., Bolotin A., Lapidus A., Galleron N., Ehrlich S.D., Berka R.M. Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biol., 2004, vol. 5, no. 10, art. R77, pp. 1–12. doi: 10.1186/gb-2004-5-10-r77.
  25. Balaban N.P., Rudakova N.L., Sabirova A.R., Valeeva L.R., Sharipova M.R. The novel ADAMs-like microbial metalloendopeptidase. Russ. J. Bioorg. Chem., 2012, vol. 38, no. 4, pp. 383–391. doi: 10.1134/S1068162012040036.
  26. Shemesh M., Chai Y. A combination of glycerol and manganese promotes biofilm formation in Bacillus subtilis via histidine kinase KinD signaling. J. Bacteriol., 2013, vol. 195, no. 12, pp. 2747–2754. doi: 10.1128/JB.00028-13.

The content is available under the license Creative Commons Attribution 4.0 License.