K.A. Maltsev a*, V.N. Golosov b,c**, A.M. Gafurov a***

aKazan Federal University, Kazan, 420008 Russia

b Moscow State University, Moscow, 119991 Russia

c Institute of Geography, Russian Academy of Sciences, Moscow, 119017 Russia

E-mail: *mlcvkirill@mail.ru, **gollossov@gmail.com, ***gafurov.kfu@gmail.com

Received April 17, 2018

Full text PDF

Abstract

The paper presents the results of assessing the accuracy of global digital elevation models (GDEMs), SRTM and ASTER GDEMs, based on a small catchment located on the eastern slope of the Central Russian Upland in the upper reaches of the Veduga River basin. The analysis of the errors in the morphometric parameters has been performed by comparing the part of the global DEM SRTM and ASTER GDEMs representing the relief of the selected catchment area with more accurate 1:10 000 (TOPO) maps data. The values of the slopes and the lengths of the slopes have been used as statistical indicators to estimate the accuracy of the models. The results of the comparison show that the SRTM model is more similar to the TOPO model than the ASTER GDEM. Therefore, the tested version of the SRTM model can be successfully used for calculations aimed to not only determine the average annual erosion rates for a river basin, but also to create maps of soil erosion intensity on slopes.

Keywords: erosion, digital elevation model, SRTM, ASTER, GIS, small valley

Acknowledgments. The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University.

Figure Captions

Fig. 1. Distribution of arable land areas of the studied catchment area along the length values of the slopes (m) using different GDEMs.

Fig. 2. Distribution of arable lands of the studied catchment area along the area of the material flow (Sse) using different GDEMs.

Fig. 3. Distributions of the area of arable lands of the studied catchment area based on the intensity of soil erosion (t/ha per year) calculated using the SRTM GDEM and TOPO.

References

  1. Walling D.E. The sediment delivery problem. J. Hydrol., 1983, vol. 65, nos. 1–3, pp. 209–237. doi: 10.1016/0022-1694(83)90217-2.

  2. Lal R. Soil degradation by erosion. Land Degrad. Dev., 2001, vol. 12, no. 6, pp. 519–539. doi: 10.1002/ldr.472.

  3. Litvin L.F. Geografiya erozii pochv sel'skokhozyaistvennykh zemel' Rossii [Geography of Soil Erosion in Agricultural Lands of Russia]. Moscow, Akadenmkn., 2002. 255 p.

  4. Karydas C.G., Panagos P., Gitas I.Z. A classification of water erosion models according to their geospatial characteristics. Int. J. Digital Earth, 2014, vol. 7, no. 3, pp. 229–250. doi: 10.1080/17538947.2012.671380.

  5. Merritt W.S., Letcher R.A., Jakeman A.J. A review of erosion and sediment transport models. Environ. Model. Software, 2003, vol. 18, nos. 8–9, pp. 761–799. doi: 10.1016/S1364-8152(03)00078-1.

  6. Zhang Y., Degroote J., Wolter C., Sugumaran R. Integration of modified universal soil loss equation (MUSLE) into a GIS framework to assess soil erosion risk. Land Degrad. Dev., 2009, vol. 20, no. 1, pp. 84–91. doi: 10.1002/ldr.893.

  7. Larionov G.A. Eroziya i deflyatsiya pochv [Erosion and Deflation of Soils]. Moscow, Izd. Mosk. Univ., 1993. 200 p.

  8. Bazhenova O.I., Lyubtsova E.M., Ryzhov Yu.V., Makarov S.A. Prostranstvenno-vremennoi analiz dinamiki erozionnykh protsessov na yuge Vostochnoi Sibiri Russian)

  9. Mitasova H., Hofierka J., Zlocha M., Iverson L.R. Modeling topographic potential for erosion and depositing using GIS. Int. J. Geogr. Inf. Syst., 1996, vol. 10, no. 5, pp. 629–641. doi: 10.1080/0269379960890210.

  10. Koshel' S.M. Terrain modeling by isolines. In: Berlyant A.M. (Ed.) Universitetskaya shkola geograficheskoi kartografii. K 100-letiyu professora K.A. Salishcheva [University School of Geocow, Aspekt Plyus, 2005. pp. 198–208. (In Russian)

  11. Maltsev K.A. Building digital models of landscape using cubic parabolas. Geomorfologiya, 2006, no. 3. pp. 30–36. doi: 10.15356/0435-4281-2006-3-30-36.

  12. Florinsky I. Digital Terrain Analysis in Soil Science and Geology. Acad. Press, 2016. 506 p.

  13. Hall M. Exclusive terrain models developed by Airbus DS for oil and gas industry. Zemlya Kosmosa: Naibolee Eff. Resheniya, 2015, no. 4, pp. 16–19. (In Russian)

  14. Global digital terrain models. Geomatika, 2015, no. 3, pp. 78–82. (In Russian)

  15. Reuter H.I., Neison A., Strobl P., Mehl W., Jarvis A. A first assessment of Aster GDEM tiles for absolute accuracy, relative accuracy and terrain parameters. 2009 IEEE Int. Geoscience and Remote Sensing Symposium. IEEE, 2009, vol. 5, pp. 240–243. doi: 10.1109/IGARSS.2009.5417688.

  16. The Long Term Archive | Science for a Changing World. Available at: https://lta.cr.usgs.gov/.

  17. Farr T.G., RG2004, pp. 1–33. doi: 10.1029/2005RG000183.

  18. Shortridge A., Messina J. Spatial structure and landscape associations of SRTM error. Remote Sens. Environ., 2011, vol. 115, no. 6, pp. 1576–1587. doi: 10.1016/j.rse.2011.02.017.

  19. Szabу G., Singh S.K., Szabу S. Slope angle and aspect as influencing factors on the accuracy of the SRTM and the ASTER GDEM databases. Phys. Chem. Earth, Parts A/B/C, 2015, vols. 83–84, pp. 137–145. doi: 10.1016/j.pce.2015.06.003.

  20. Pipaud I., Loibl D., Lehmkuhl F. TanDEM-X elevation data for geomorphological mapping and gy, 2015, vol. 246, pp. 232–254. doi: 10.1016/j.geomorph.2015.06.025.

  21. Frey H., Paul F. On the suitability of the SRTM DEM and ASTER GDEM for the compilation of topographic parameters in glacier inventories. Int. J. Appl. Earth Obs. Geoinf., 2012, vol. 18, pp. 480–490. doi: 10.1016/j.jag.2011.09.020.

  22. Mukherjee S., Joshi P.K., Mukherjee S., Ghosh A., Garg R.D., Mukhopadhyay A. Int. J. Appl. Earth Obs. and Geoinf., 2013, vol. 21, pp. 205–217.

  23. Rodriguez E., Morris C.S., Belz J.E. A global assessment of the SRTM performance. Photogramm. Eng. Remote Sens., 2006, no. 3, pp. 249–260. doi: 10.14358/PERS.72.3.249.

  24. ASTER Global DEM Validation: Summary Report, 2009. Available at: sites/default/files/public/aster/docs/ASTER_GDEM_Validation_Summary_Report.pdf.

  25. On'kov IV, Onyanova T.Ya., Shilyaeva O.Yu. A study of the accuracy of radar DTMs based omatika, 2012, no. 4, pp. 33–36. (In Russian)

  26. Dumit Zh.A. On the problem of errors in numerical modeling of the relief (morphometric aspect). In: Pogorelov A.V. (Ed.) Geograficheskie issledovaniya Krasnodarskogo kraya [Geographical Studies of the Krasnoyarsk Region]. Krasnodar, KubGU, 2007, no. 2, pp. 49–53. (In Russian)

  27. Ryzhakov A.N. Comparative analysis of digital terrain models created on the basis of radar and geodetic survey data. Puti Povysh. Eff. Oroshaemogo Zemled., 2016, no. 3, pp. 18–23. (In Russian)

  28. Thomas J.Sensitivity of the digital elevation models: The scenario from the two tropical mountain rivers basins of the Western Ghats, India. Geosci. Front., 2014, vol. 5, no. 6, pp. 893–909.

  29. Gilichinsky M., Morphometric measureka. Can. J. Remote Sens., 2010, vol. 36, no. 4, pp. 287–300. doi: 10.5589/m10-049.

  30. Milevski I., Gorin S., Markovski B., Radevski I. Comparison of the accuracy of DEMs available I., Cьrebal I. (Eds.), 2013. pp. 165–172.

  31. Im S.T. Slope and aspect errors derived from SRTM. Interekspo Geo-Sibir', 2010, vol. 1, no. 4, pp. 164–167. (In Russian)

  32. Atlas of Agricultural Lands. Ministry of Agriculture of the Russian Federation. Available at: http://atlas.mcx.ru/.

  33. Azhigirov A.A., Dobrovolskaya N.G., Golosov V.N., Ivanova N.N., Litvin L.F. Soil erosion and upper links of the hydrographic network. In: Ekologicheskie problemy erozii pochv i ruslovykh protsessov [Ecological Problems of Soil Erosion and Channel Processes]. Moscow, Izd. Mosk. Univ., 1992. pp. 66–80. (In Russian)

  34. Litvin L.F., Zorina Ye.F., Sidorchuk A.Yu., Chernov A.V., Golosov V.N. Erosion and sedimentation on the Russian Plain, part 1: Contemporary processes. Hydrol. Processes, 2003, vol. 17, no. 16, pp. 3335–3346. doi: 10.1002/hyp.1390.

  35. Instruktsiya po fotogrammetricheskim rabotam pri sozdanii tsifrovykh topograficheskikh kart i planov [Instruction on Photogrammetric Works when Creating Digital Topographic Maps and Plans]. Moscow, TsNIIGAiK, 2002. 48 p. (In Russian)

  36. Hutchinson M.F. A new procedure for gridding elevation and stream of data with automatic removal of spurious pits. J. Hydrol., 1989, vol. 106, nos. 3–4, pp. 211–232. doi: 10.1016/0022-1694(89)90073-5.

  37. Burrough P.A., McDonnell R.A., Lloyd C.D. Principles of Geographical Information Systems. Oxford Univ. Press, 2015. 432 p.

  38. Vigiak O., Malagу A., Bouraoui F., Vanmaercke M., Poesen J. Adapting SWAT hillslope erosion model to predict sediment concentrations and yields in large Basins. Sci. Total Environ., 2015, vol. 538, pp. 855–875. doi: 10.1016/j.scitotenv.2015.08.095.

  39. Zaslavskii M.N. Eroziovedenie [Erosiology]. Moscow, Vyssh. Shk., 1983. 320 p.

  40. O'Callaghan J.F., Mark D.M. The extraction of the drainage networks from digital elevation data. Comput. Vision, Graphics, Image Process., 1984, vol. 28, no. 3, pp. 323–344. doi: 10.1016/S0734-189X(84)80011-0.

  41. Pogorelov A.V., Dumit Zh.A. Rel'ef basseina r. Kubani: morfologicheskii analiz [Relief of the Kuban River Basin: Morphological Analysis]. Moscow, GEOS, 2009. 220 p.

  42. Maltsev K.A., Mukharamova S.S. Postroenie modelei prostranstvennykh peremennykh (s primeneniem paketa Surfer) [Building Models of Spatial Variables (Using the Surfer Package)]. Kazan, Kazan. Univ., 2014. 103 p.

  43. Mondal A., Khare D., Kundu S., Mukherjee S., Mukhopadhyay A., Mondal S. Uncertainty of soil erosion modeling using open source high resolution and aggregated DEMs. Geosci. Front., 2017, vol. 8, no. 3, pp. 425–436. doi: 10.1016/j.gsf.2016.03.004.

  44. Kinsey-Henderson, A.E., Wilkinson S.N. Evaluating Shuttle radar and interpolated DEMs for slope gradient and soil erosion estimation in low relief terrain. Environ. Model. Software, 2013, vol. 40, pp. 128–139. doi: 10.1016/j.envsoft.2012.08.010.

  45. Kuznetsova Yu.S., Belyaev V.R., Golosov V.N. Influence of the amount of detail in the initial data on the relief on the accuracy of calculation of the rates of flushing of soils from the slopes. Geomorphologiya, 2011, no. 4, pp. 46–57. (In Russian)


The content is available under the license Creative Commons Attribution 4.0 License.