A.D. Akchurin*, G.S. Smirnov**
Kazan Federal University, Kazan, 420008 Russia
E-mail: *Adel.Akchurin@kpfu.ru, **gssmirnov@kpfu.ru
Received March 5, 2019

Full text pdf

DOI: 10.26907/2541-7746.2019.3.468-480

For citation: Akchurin A.D., Smirnov G.S. Interrelation of traveling ionospheric disturbances above and below the F-layer peak according to the ionosonde and the SWARM constellation data. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2019, vol. 161, no. 3, pp. 468–480. doi: 10.26907/2541-7746.2019.3.468-480. (In Russian)


Abstract

 One approach to determining the height structure of the mid-latitude medium-scale travelling ionospheric disturbances (MSTIDs) above the F layer peak is to involve simultaneous satellite measurements in the ground-based ionosonde measurements near Kazan. The electron concentration data obtained from the Swarm satellite constellation were the most suitable for our purposes. For accurate spatial attachment to satellite data, a strict selection of daytime satellite flythroughs data was used: their trajectory should not be located in latitude further than 100 km from the Kazan's longitude, and the spatial extent of irregularities in electron plasma density measurements should be at least more 100 km without smaller (high-frequency) irregularities. Of all the satellites in the pass es over ~ 2 years (2016–2018), we managed to select only seven such cases. For the cases found, mutual correlation functions of sequences of values of two series of the critical frequency and electron concentration were constructed. The correlation function has a bright negative peak, with a spread within 100 km, which, taking into account the typical horizontal wavelength of the MSTIDs (~ 200 km), means the antiphase behavior of electronic concentrations within the MSTID below and above the peak of the F layer of the daytime mid-latitude ionosphere.

Keywords: ionosphere, MSTID, perturbations of ionospheric plasma, F region, topside ionosphere, ionosonde, space-based measurements

Acknowledgments. The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University and supported by the Russian Foundation for Basic Research (project no. 18-35-00593).

References

1. Francis S.H. A theory of medium-scale traveling ionospheric disturbances. J. Geophys.Res., 1979, vol. 79, no. 34, pp. 5245–5260. doi: 10.1029/JA079i034p05245.

2. Makela J.J., Otsuka Y. Overview of nighttime ionospheric instabilities at low- and mid-latitudes: coupling aspects resulting in structuring at the mesoscale. Space Sci. Rev., 2012, vol. 168, nos. 1–4, pp. 419–440. doi: 10.1007/s11214-011-9816-6.

3. Otsuka Y., Suzuki K., Nakagawa S., Nishioka M., Shiokawa K., Tsugawa T. GPS observations of medium-scale traveling ionospheric disturbances over Europe. Ann. Geophys., 2013, vol. 31, no. 2, pp. 163–172. doi: 10.5194/angeo-31-163-2013.

 4. Knudsen D.J., Burchill J.K., Buchert S. C., Eriksson A. I., Gill R., Wahlund J.-E., Moffat B. Thermal ion imagers and Langmuir probes in the Swarm electric field instruments. J. Geophys. Res.: Space Phys., 2017, vol. 122, no. 2, pp. 2655–2673. doi: 10.1002/2016JA022571.

5. Lomidze L., Knudsen D.J., Burchill J., Kouznetsov A., Buchert S.C. Calibration and validation of Swarm plasma densities and electron temperatures using ground-based radars and satellite radio occultation measurements. Radio Sci., 2018, vol. 53, no. 1, pp. 15–36. doi: 10.1002/2017RS006415.

6. Hunsucker R.D. Atmospheric gravity waves generated in the high-latitude ionosphere: A review. Rev. Geophys., 1982, vol. 20, no. 2, pp. 283–315. doi: 10.1029/RG020i002p00293.

7. Akchurin A., Smirnov G. MSTID extraction from more frequent ionograms. Proc. 32nd Gen. Assem. Sci. Symp. of the International Union of Radio Science (URSI GASS), 2017, pp. 1–4. doi: 10.23919/URSIGASS.2017.8105046.

8. Akchurin A.D., Yusupov K.M., Sherstyukov O.N., Ildiryakov V.R. Disclosure of transient and small-scale irregularities in the one-minute ionograms of “Cyclon” ionosonde. Geliogeofiz. Issled., 2013, no. 4, pp. 101–110. (In Russian)

9. Hocke K., Schlegel K. A review of atmospheric gravity waves and traveling ionospheric disturbances. Ann. Geophys., 1996, vol. 14, no. 9, pp. 917–940. doi: 10.1007/s00585-996-0917-6.

10. Francis S.H. Global propagation of atmospheric gravity waves: A review. J. Atmos. Terr. Phys., 1975, vol. 37, nos. 6–7, pp. 1011–1030. doi: 10.1016/0021-9169(75)90012-4.

11. Sherstyukov R.O., Akchurin A.D., Sherstyukov O.N. Collocated ionosonde and dense GPS/GLONASS network measurements of midlatitude MSTIDs. Adv. Space Res., 2018, vol. 61, no. 7, pp. 1717–1725. doi: 10.1016/j.asr.2017.11.026.

12. Sherstyukov R.O., Akchurin A.D. Analysis of daytime medium-scale traveling ionospheric disturbances by two-dimensional maps of total electron content perturbation and ionograms. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2017, vol. 159, no. 3, pp. 374–389. (In Russian)

13. Djuth F.T., Zhang L.D., Livneh D.J., Seker I., Smith S.M., Sulzer M.P., Mathews J.D., Walterscheid R.L. Arecibo's thermospheric gravity waves and the case for an ocean source. J. Geophys. Res., 2010, vol. 115, no. A8, art. A08305, pp. 1–22. doi: 10.1029/2009JA014799.

14. Karpachev A.T. Radio sounding of the ionosphere from artificial satellites of the Earth. In: Kuznetsov V.D., Ruzhin Yu.Ya. (Eds.) Entsiklopediya nizkotemperaturnoi plazmy. Seriya B: Spravochnye prilozheniya, bazy i banki dannykh. Ionosfernaya plazma [Encyclopedia of Low-Temperature Plasma. Series B. Reference Applications, Databases, and Data Banks. Ionospheric Plasma]. Vols. 1–3. Pt. 2. Moscow, Yaanus-K, 2009, pp. 45–90. (In Russian)

 

The content is available under the license Creative Commons Attribution 4.0 License.