A.A. Malyugina* , V.V. Shurygin**
Kazan Federal University, Kazan, 420008 Russia
E-mail: *alexandra.malyugina@gmail.com, **Vadim.Shurygin@kpfu.ru
Received May 8, 2019

Full text pdf

DOI: 10.26907/2541-7746.2019.3.438-455

Abstract

A smooth manifold over the algebra of dual numbers D (a D-smooth manifold) carries the canonical foliation whose leaves are affine manifolds. Extension of charts on a D-smooth manifold along leaf paths allows ones to associate with an immersed transversal of the canonical foliation a pseudogroup of local D-diffeomorphisms called the holonomy pseudogroup. In the present paper, holonomy pseudogroups are applied to the study of D-diffeomorphisms between quotient manifolds of the algebra  by lattices. In particular, it is shown that a D-diffeomorphism between two such manifolds exists if and only if one of the lattices is obtained from the other by the multiplication by a dual number. In addition, it is shown that some D-smooth manifolds naturally associated with an affine manifold are D-diffeomorphic if and only if this manifold is radiant.

Keywords: affine manifold, manifold over algebra of dual numbers, foliation, foliated bundle, tangent bundle, tangent manifold, torus over the algebra of dual numbers, Weil bundle

References

1. Evtushik L.E., Lumiste Yu.G., Ostianu N.M., Shirokov A.P. Differential-geometric structures on manifolds. J. Sov. Math., 1980, vol. 14, pp. 1573–1719. doi:10.1007/BF01084960

2. Vishnevskii V.V., Shirokov A.P., Shurygin V.V. Prostranstva nad algebrami [Spaces over Algebras]. Kazan, Izd. Kazan. Univ., 1984. 264 p. (In Russian)

3. Malakhaltsev M.A. An analogue of Dolbeault cohomology for varieties over the algebra of dual numbers. Sov. Math. (Izv. VUZov), 1990, vol. 34, no. 11, pp. 107–110.

4. Malakhaltsev M.A. A class of manifolds over the algebra of dual numbers. Tr. Geom. Semin., 1991, vol. 21, pp. 70–79. (In Russian)

5. Thompson G., Schwardmann U. Almost tangent and cotangent structures in the large. Trans. Am. Math. Soc., 1991, vol. 327, no. 1, pp. 313–328.

6. Malakhaltsev M.A. Structures of a manifold over the algebra of dual numbers on a torus. Tr. Geom. Semin., 1994, vol. 22, pp. 47–62. (In Russian)

7. Vaisman I. Lagrange geometry on tangent manifolds. Int. J. Math. Math. Sci., 2003, no. 51, pp. 3241–3266. doi: 10.1155/S0161171203303059.

8. Malyugina A.A, Shurygin V.V. Complexes of differential forms associated with a normalized manifold over the algebra of dual numbers. Lobachevskii J. Math., 2016, vol. 37, no. 1, pp. 66–74. doi: 10.1134/S1995080216010066.

9. Shurygin V.V. On the structure of complete manifolds over Weil algebras. Russ. Math., 2003, vol. 47, no. 11, pp. 84–93.

10. Malyugina A.A., Shurygin V.V. Holonomy representation for a class of manifolds over the algebra of dual numbers. Izv. Penz. Gos. Pedagog. Univ., 2011, no. 26, pp. 128–136. (In Russian)

11. Malyugina A.A., Shurygin V.V. Holonomy pseudogroup of a manifold over the algebra of dual numbers and some its applications. Russ. Math., 2019, vol. 63, no. 2, pp. 74–79. doi: 10.3103/S1066369X19020099.

 12. Molino P. Riemannian Foliations. Boston, Birkhuser, 1988. 339 p.

13. Shurygin V.V. Structure of smooth mappings over Weil algebras and the category of manifolds over algebras. Lobachevskii J. Math., 1999, vol. 5, pp. 29–55.

14. Thurston W.P. Three-Dimensional Geometry and Topology. Princeton, N.J., Princeton Univ. Press. 1997, 328 p.

15. Shurygin V.V. Smooth manifolds over local algebras and Weil bundles. J. Math. Sci., 2002, vol. 108, no. 2, pp. 249–294. doi: 10.1023/A:1012848404391.

16. Phillips J. The holonomic imperative and the homotopy groupoid of a foliated manifold. Rocky Mt. J. Math., 1987, vol. 17, no. 1, pp. 151–165. doi: 10.1216/RMJ-1987-17-1-151.

17. Pogoda Z. Horizontal lifts and foliations. Rend. Circ. Mat. Palermo. Ser. II, 1989, vol. 38, suppl. 21, pp. 279–289.

18. Kosniowski C. A First Course in Algebraic Topology. Cambridge, Cambridge Univ. Press, 1980. 269 p.

19. Diamond F., Shurman J. A First Course in Modular Forms. New York, Springer, 2005. 436 p.

20. Shurygin V.V. Radiance obstructions for smooth manifolds over Weil algebras. Russ. Math., 2005, vol. 49, no. 5, pp. 67–79.

21. Goldman W., Hirsch M.W. The radiance obstruction and parallel forms on affine manifolds. Trans. Am. Math. Soc., 1984, vol. 26, no. 2, pp. 629–649. doi: 10.2307/1999812.

 

The content is available under the license Creative Commons Attribution 4.0 License.