V.N. Alekseeva*, M.V. Vasilyevaa**, V.I. Vasilyeva***, N.I. Sidnyaevb****

a M.K. Ammosov North-Eastern Federal University, Yakutsk, 677000 Russia
b Bauman Moscow State Technical University, Moscow, 105005 Russia

E-mail: *alekseev.valen@mail.ru, **vasilyevadotmdotv@gmail.com, ***vasvasil@mail.ru, ****sidnyaev@yandex.ru
Received June 10, 2019

Full text pdf

DOI: 10.26907/2541-7746.2019.3.327-340

For citation: Alekseev V.N., Vasilyeva M.V., Vasilyev V.I., Sidnyaev N.I. Numerical simulation of natural convection in a freezing soil. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2019, vol. 161, no. 3, pp. 327–340. doi: 10.26907/2541-7746.2019.3.327-340. (In Russian)

Abstract

A mathematical model and a numerical method for solving the natural convection and crystallization of pore moisture were considered. The mathematical model contains partial differential equations for temperature, velocity, and pressure. The fluid flow, under the assumption of low velocities, was described by the Stokes equations, where the phase transition of the liquid into ice was taken into account using the fictitious domain method by introducing an additional term responsible for the flow in frozen ground with a low permeability coefficient. The discontinuous finite element method on unstructured computational meshes was used for the numerical solution of the problem of modeling a multiphysical process in complex geometric domains. The fictitious domain method for the flow problem enables to carry out calculations on a fixed computational grid. The results of the numerical solution of the two-dimensional problem for three test geometric domains were presented.
Keywords: mathematical modeling, heat and mass transfer, phase transition, flow and transport, fictitious domain method, finite element method
Acknowledgments. The work was supported by the Russian Science Foundation (project no. 19-11-00230).

References

1. Chung E.T., Leung W.T., Vasilyeva M., Wang Y. Multiscale model reduction for transport and flow problems in perforated domains. J. Comput. Appl. Math., 2018, vol. 330, no. 2, pp. 519–535. doi: 10.1016/j.cam.2017.08.017.

2.  Alekseev V.N., Vasilyeva M.V., Stepanov S.P. Iterative methods for solving the problem of transfer and flow in perforated domains. Vestn. Sev.-Vost. Fed. Univ. im. M.K. Ammosova, 2016, no. 5, pp. 67–79. (In Russian)

3. Samarskii A.A., Vabishchevich P.N. Vychislitel'naya teploperedacha [Computational Heat Transfer]. Moscow, LIBROKOM, 2009. (In Russian)

4. Vasilyev V.I., Sidnyaev N.I., Fedotov A.A., Il'ina Yu.S., Vasilyeva M.V., Stepanov S.P. Modelirovanie raspredeleniya nestatsionarnykh temperaturnykh polei v kriolitozone pri proektirovanii geotekhnicheskikh sooruzhenii [Modeling the Distribution of Non-Stationary Temperature Fields in the Permafrost Zone in the Design of Geotechnical Facilities]. Moscow, Kurs, 2017. 624 p. (In Russian)

5. Vabishchevich P.N., Vasilyeva M.V., Pavlova N.V. Numerical simulation of thermal stabilization of filter soils. Math. Models Comput. Simul., 2015, vol. 7, no. 2, pp. 154–164. doi: 10.1134/S2070048215020106.

6. Vabishchevich P.N., Vasilyeva M.V., Gornov V.F., Pavlova N.V. Mathematical modeling of the artificial freezing of soils. Vychisl. Tekhnol., 2014, vol. 19, no. 4, pp. 19–31. (In Russian)

7. Pavlova N.V., Vabishchevich P.N., Vasilyeva M.V. Mathematical modeling of thermal stabilization of vertical wells on high performance computing systems. In: Lirkov I., Margenov S., Wasniewski J. (Eds.) Large-Scale Scientific Computing. LSSC 2013. Lecture Notes in Computer Science. Vol. 8353. Berlin, Heidelberg, Springer, 2013, pp. 636–643. doi: 10.1007/978-3-662-43880-0_73.

8. Belhamadia Y., Kane A. S., Fortin A. A mixed finite element formulation for solving phase change problems with convection. Proc. 20th Annu. Conf. of the CFD Society of Canada, 2012. Available at: http://www.sinmec.ufsc.br/ dihlmann/MALISKA/proceedings_cfd_society_of_canada_conference_may_2012/papers/Belhamadia_Kane_Fortin.pdf/.

9. Vabishchevich P.N. Metod fiktivnykh oblastei v zadachakh matematicheskohi fiziki [Fictitious Domain Method in Problems of Mathematical Physics]. Moscow, Izd. Mosk. Univ., 1991. 156 p. (In Russian)

10. Iliev O., Lakdawala Z., Starikovicius V. On a numerical subgrid upscaling algorithm for Stokes-Brinkman equations. Comput. Math. Appl., 2013, vol. 65, no. 3, pp. 435–448. doi: 10.1016/j.camwa.2012.05.011.

11. Iliev O.P., Lazarov R.D., Willems J. Discontinuous Galerkin subgrid finite element method for heterogeneous Brinkman's equations. In: Lirkov I., Margenov S., Wasniewski J. (Eds.) Large-Scale Scientific Computing. LSSC 2009. Lecture Notes in Computer Science. Vol. 5910. Berlin, Heidelberg, Springer, 2009, pp. 14–25. doi: 10.1007/978-3-642-12535-5_2.

12. Stepanov S., Vasilyeva M., Vasil'ev V.I. Generalized multiscale discontinuous Galerkin method for solving the heat problem with phase change. J. Comput. Appl. Math., 2018, vol. 340, pp. 645–652. doi: 10.1016/j.cam.2017.12.004.

13. Chung E.T., Efendiev Y., Vasilyeva M., Wang Y. A multiscale discontinuous Galerkin method in perforated domains. Proc. Inst. Math. Mech. Inst. Math. Mech., Natl. Acad. Sci. Azerb., 2016, vol. 42, no. 2, pp. 212–229.

14. Logg A., Mardal K.A., Wells G. Automated Solution of Differential Equations by the Finite Element Method. Berling, Heidelberg, Springer, 2012. XIII, 731 p. doi: 10.1007/978-3-642-23099-8.

15. Geuzaine C., Remacle J.F. Gmsh: A 3D finite element mesh generator with builtin preand postprocessing facilities. Int. J. Numer. Methods Eng., 2009, vol. 79, no. 11, pp. 1309–1331. doi: 10.1002/nme.2579.

 

The content is available under the license Creative Commons Attribution 4.0 License.