O.Yu. Kuznetsova a*, M.F. Shaehov a**, G.K. Ziyatdinova b***, H.C. Budnikov b****

aKazan National Research Technological University, Kazan, 420015 Russia

bKazan Federal University, Kazan, 420008 Russia

E-mail: *kuznetsovaolga@mail.ru, **shaechov@kstu.ru, ***ziyatdinovag@mail.ru, ****Herman.Budnikov@kpfu.ru

Received March 27, 2019


Full text PDF

DOI: 10.26907/2542-064X.2019.2.211-221

For citation: Kuznetsova O.Yu., Shaehov M.F., Ziyatdinova G.K., Budnikov H.C. Chaga extracts and melanins after plasma treatment of raw material. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2019, vol. 161, no. 2, pp. 211–221. doi: 10.26907/2542-064X.2019.2.211-221. (In Russian)

Abstract

The extracts and melanins of chaga (Inonotus obliquus (Pers.) Pil.) obtained by raw material pretreatment with high-frequency capacitive low-pressure plasma (RF-plasma) under different technological conditions were studied. The advantages of RF-plasma treatment of raw materials in three different plasma-forming media (argon, air, and nitrogen) were shown. In all cases, the modification of the natural particles surface affecting the extraction process was observed. Optimization of the extraction parameters demonstrated that best results (increase of the extractive compounds yield and higher antioxidant capacity) were achieved with the air-based plasma. The surface topology of the melanins under investigation was evaluated by atomic force microscopy (AFM). The difference of melanins structural features by roughness degree, height, and diameter of single particles in relation to the raw material RF-plasma treatment mode was shown that enabled a deeper insight into the nature of fungal melanins. Preliminary RF-plasma treatment of raw material can be recommended for Inonotus obliquus (Pers.) Pil. extraction while producing medications on their basis.

Keywords: Inonotus obliquus (Pers.) Pil. fungus, chaga, RF-plasma treatment, extract, melanin, extraction, antioxidant capacity, atomic force microscopy

Acknowledgments. The study was performed using the equipment of the “Nanomaterials and Nanotechnologies” Center of Shared Facilities of Kazan National Research Technological University. We thank I.Sh. Abdullin, Doctor of Technical Sciences and Professor, for his valuable advice concerning plasma processes, as well as E.S. Nefed'ev and R.A. Safiullin from the “Spectroscopy, Microscopy, and Thermal Analysis” Laboratory of Kazan National Research Technological University for kindly providing us with AFM images.

Figure Captions

Fig. 1. AFM images of melanins surface topology: §С) melanin control; b) melanin §Ў3; c) melanin §Ј6; d) melanin N9.

Fig. 2. Plots of pigment particles height distribution: §С) melanin control; b) melanin §Ў3; c) melanin §Ј6; d) melanin N9.

References


  1. Kuznetsova O.Yu. Review of modern advanced medicinal products containing the biologically active components of chaga birch fungus. Razrab. Regist. Lek. Sredstv, 2016, vol. 14, no. 1, pp. 128–141. (In Russian)

  2. Gosudarstvennaya farmakopeya Rossiiskoi Federatsii [The State Pharmacopoeia of the Russian Federation]. Vol. IV. Moscow, 2018, pp. 5188–7019. (In Russian)

  3. Fedoseeva G.M. On the use of chaga in medicinal practice. Sib. Med. Zh., 2004, vol. 49, no. 8, pp. 66–69 (In Russian)

  4. Arata S., Watanabe J., Maeda M., Yamamoto M., Matsuhashi H., Mochizuki M., Kagami N., Honda K., Inagaki M. Continuous intake of the Chaga mushroom (Inonotus obliquus) aqueous extract suppresses cancer progression and maintains body temperature in mice. Heliyon, 2016, vol. 2, no. 5, art. e00111, pp. 1–16. doi: 10.1016/j.heliyon.2016.e00111.

  5. Staniszewska J., SzymaЁЅski M., Ignatowicz E. Antitumor and immunomodulatory activity of Inonotus obliquus. Herba Pol., 2017, vol. 63, no. 2. pp. 48–58. doi: 10.1515/hepo-2017-0013.

  6. GЁ?ry A., Dubreule C., AndrЁ? V., Rioult J.-P., Bouchart V., Heutte N., de PЁ?coulas P.E., Krivomaz T., Garon D. Chaga (Inonotus obliquus), a future potential medicinal fungus in oncology? A chemical study and a comparison of the cytotoxicity against human lung adenocarcinoma cells (A549) and human bronchial epithelial cells (BEAS-2B). Integr. Cancer Ther., 2018, vol. 17, no. 3, pp. 832–843. doi: 10.1177/1534735418757912.

  7. Patel S. Chaga (Inonotus Obliquus) mushroom: Nutraceutical assesement based on latest findings. In: Emerging Bioresources with Nutraceutical and Pharmaceutical Prospects. Applied Environmental Science and Engineering for a Sustainable Future. Cham, Springer, 2015, pp. 115–126. doi: 10.1007/978-3-319-12847-4_11.

  8. Balandaykin M.E., Zmitrovich I.V. Review on chaga medicinal mushroom, Inonotus obliquus (higher basidiomycetes): Realm of medicinal applications and approaches on estimating its resource potential. Int. J. Med. Mushrooms, 2015, vol. 17, no. 2. pp. 95–104. doi: 10.1615/IntJMedMushrooms.v17.i2.10.

  9. Polkovnikova M.V., Nosik N.N., Garaev T.M., Kondrashina N.G., Phinogenova M.P., Shibnev V.A. A Study of the antiherpetic activity of the chaga fungus (Inonotus obliquus) extracts in the Vero cells infected with the herpes simplex virus. Vopr. Virusol., 2014, vol. 59, no. 2. pp. 45–48. (In Russian)

  10. Gracheva N.V., Golovanchikov A.B. Studies of the intensification of the extraction of biologically active substances from chaga using direct current electric fields. Pharm. Chem. J., 2011, vol. 44, no. 11, pp. 608–610. doi: 10.1007/s11094-011-0528-8.

  11. Kim J.H., Sung N.Y., Kwon S.K., Srinivasan P., Song B.S., Choi J.I., Yoon Y., Kim J.K., Byun M.W., Kim M.R., Lee J.W. ?Г-Irradiation improves the color and antioxidant properties of chaga mushroom (Inonotus obliquus) extract. J. Med. Food, 2009, vol. 12, no. 6, pp. 1343–1347. doi: 10.1089/jmf.2008.1281.

  12. Chen Y., Gu X., Huang S.Q., Li J., Wang X., Tang J. Optimization of ultrasonic/microwave assisted extraction (UMAE) of polysaccharides from Inonotus obliquus and evaluation of its anti-tumor activities. Int. J. Biol. Macromol., 2010, vol. 46, no. 4, pp. 429–435. doi: 10.1016/j.ijbiomac.2010.02.003.

  13. Kuznetsova O.Yu., Abdullin I.Sh., Shaekhov M.F., Ziyatdinova G.K., Budnikov H.C. Investigation of Inonotus obliquus (Pers.) Pil. extracts and melanins after RF-plasma treatment of raw material. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2016, vol. 158, no. 1, pp. 23–33. (In Russian)

  14. Kuznetsova O.Yu., Abdullin I.Sh., Shaekhov M.F., Ziyatdinova G.K., Budnikov H.C. Optimizing pretreatment of medicinal raw materials by RFC plasma before extraction. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2016, vol. 158, no. 2, pp. 197–206. (In Russian)

  15. Kuznetsova O.J., Sysoeva M.A. Method for producing chromogenic shelf fungus complex. Patent RF no. 2450817, 2011. (In Russian)

  16. Kondratieva T.S. Rukovodstvo k laboratornym zanyatiyam po aptechnoi tekhnologii lekarstvennykh form [Laboratory Guide on Pharmaceutical Technology of Dosage Forms]. Moscow, Meditsina, 1986. 288 p. (In Russian)

  17. Murav'eva D.A. Farmakognoziya [Pharmacognosy]. Moscow, Meditsina, 1981. 714 p. (In Russian)

  18. Dubois M., Gilles K.A., Hamilton J.K., Rebers P.A., Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem., 1956, vol. 28, no. 3, pp. 350–356. doi: 10.1021/ac60111a017.

  19. Pohloudek-Fabini R., Beyrich Th. Organicheskii analiz []. Leningrad, Khimiya, 1981. 624 p. (In Russian)

  20. Ziyatdinova G.K., Budnikov H.C., Pogorel'tzev V.I., Ganeev T.S. The application of coulometry for total antioxidant capacity determination of human blood. Talanta, 2006, vol. 68, no. 3, pp. 800–805. doi: 10.1016/j.talanta.2005.06.010.

  21. Kuznetsova O.Yu. Study of surface transdermal therapeutic systems using atomic force microscopy. Biofarm. Zh., 2013, vol. 5, no. 2, pp. 13–21. (In Russian)

The content is available under the license Creative Commons Attribution 4.0 License.