E.A. Burilova a*, L.I. Vagapova b**, Z.A. Nasirova a***, T.V. Nikitina a****, A.N. Solodov a*****, J.R. Shaiymova a******, R.R. Amirov a*******

aKazan Federal University, Kazan, 420008 Russia

bArbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088 Russia

E-mail: *burilovajen07@mail.ru, **vagapoval@iopc.ru, ***nasirovaz89@mail.ru, ****vlalinik2012@yandex.ru, *****sanya.solodoff@yandex.ru, ******julia_shayimova@mail.ru, *******ramirov@kpfu.ru

Received April 9, 2019


Full text PDF

DOI: 10.26907/2542-064X.2019.2.199-210

For citation: Burilova E.A., Vagapova L.I., Nasirova Z.A., Nikitina T.V., Solodov A.N., Shaiymova J.R., Amirov R.R. Peculiarities of manganese(II) interaction with hydroxyethylidene diphosphonic acid and aminomethylated calix[4]resorcinol in organized media. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2019, vol. 161, no. 2, pp. 199–210. doi: 10.26907/2542-064X.2019.2.199-210. (In Russian)

Abstract

The hydration state of the first coordination sphere of manganese complexes with hydroxyethylidene diphosphonic acid (HEDP, H4L) as well as for Mn(II) systems with salt compositions of aminomethylated calix[4]resorcinol (AMC) of different lipophilicity in micellar solutions, was evaluated by the nuclear magnetic relaxation method using manganese(II) as a paramagnetic probe. In acidic (pH 2–4) solutions of the Mn(II) –HEDP – AMC system for AMC with pentyl radicals, a bell-like rise in the relaxation efficiency values (up to 2 times) was observed. In the remaining pH areas and with a low ligand content, the calix[4]resorcinol do not affect the relaxation efficiency of Mn (II) complexes with HEDP.

Keywords: manganese(II), hydroxyethylidene diphosphonic acid, aminomethylated calix[4]resor­cinol, complexation, NMR relaxation

Acknowledgments. The study was supported by the Russian Foundation for Basic Research (project no. № 18-33-00441-mol_a).

Figure Captions

Scheme 1. Ca(II)-activated complex hexylaminobis (methylenephosphonate) –Gd(III) – DOTA and a schematic representation of possible metal ion detection using MRI [7].

Fig. 1. Changes in the spin-spin relaxation efficiency R2 (a) and the R2/R1 ratio (b) depending on pH of the medium of the Mn(II) –HEDP system. СMn(II) 0.2 mM, СHEDP 0.21 (1), 0.84 (2), 4 (3), 8 (4) mM.

Fig. 2. Changes in the spin-lattice R1 (a), spin-spin (b) relaxation efficiency and the R2/R1 ratio (c) depending on pH of the medium of the Mn(II) –HEDP system. СMn(II) 0.2 mM, САМКЕО 0.21 (1), 1 (2), 2 mM (3).

Fig. 3. Changes in the spin-lattice R1 (a) and spin-spin R2 (b) relaxation efficiency depending on pH of the medium of the following systems: Mn(II) – HEDP (1), Mn(II) – AMCEO (2), Mn(II) – AMCPO – TritonХ100 (3), Mn(II) – AMCPO – Bridge35 (4). СMn(II) 0.2 mM, СHEDP 8 mM (1), СAMCEO 2 mM (2), СAMCPO 2 mM (3, 4), СTritonХ100 10 mM (3), СBridge35 10 mM (4).

References

  1. Russell R.G. Bisphosphonates: Mode of action and pharmacology. Pediatrics, 2007, vol. 119, suppl. 2, pp. S150–S162. doi: 10.1542/peds.2006-2023H.

  2. Galezowska J., Gumienna-Kontecka E. Phosphonates, their complexes and bio-applications: A spectrum of surprising diversity. Coord. Chem. Rev., 2012, vol. 256, nos. 1–2, pp. 105–124. doi: 10.1016/j.ccr.2011.07.002.

  3. Rayment E.A., Dargaville T.R., Shooter G.K., George G.A., Upton Z. Attenuation of protease activity in chronic wound fluid with bisphosphonate-functionalised hydrogels. Biomaterials, 2008, vol. 29, no. 12, pp. 1785–1795. doi: 10.1016/j.biomaterials.2007.12.043.

  4. US FDA Approval for Quadramet, 28/03/97 (NDA) 020570.

  5. Que E.L., Chaug C.J. Responsive magnetic resonance imaging contrast agents as chemical sensors for metals in biology and medicine. Chem. Soc. Rev., 2010, vol. 39, no. 1, pp. 51–60. doi: 10.1039/B914348N.

  6. Kalman F.K., Woods M., Caravan P., Jurek P., Spiller M., Tircao G., Kiraly R., Brucher E., Sherry A.D. Potentiometric and relaxometric properties of a gadolinium-based MRI contrast agent for sensing tissue pH. Inorg. Chem., 2007, vol. 46, no. 13, pp. 5260–5270. doi: 10.1021/ic0702926.

  7. Mamedov I., Canals S., Henig H., Beyerlin M., Murayama Y., Mayer H.A., Logothetis N.K., Angelovski G. In vivo characterization of a smart MRI agent that displays an inverse response to calcium concentration. ACS Chem. Neurosci., 2010, vol. 1, no. 12, pp. 819–828. doi: 10.1021/cn100083a.

  8. Burilova E.A., Ziyatdinova A.B., Zyavkina Yu.I., Amirov R.R. Influence of water-soluble polymers on the formation of manganese(II) complexonates in solutions. I. Complexes with EDTA. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2013, vol. 155, no. 2, pp. 10–25. (In Russian)

  9. Burilova E.A., Ziyatdinova A.B., Zyavkina Yu.I., Amirov R.R. Influence of water-soluble polymers on the formation of manganese(II) complexonates in solutions. II. Complexes with DTPA. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2013, vol. 155, no. 2, pp. 26–38. (In Russian)

  10. Burilova E.A. Association reactions and complexation of Gd(III), Mn(II), and Fe(III) ions in aqueous polymer solutions. Cand. Chem. Sci. Diss. Kazan, 2014. 163 p. (In Russian)

  11. Dyatlova N.M., Temkina V.Ya., Popov K.I. Kompleksony i kompleksonaty metallov [Metal Complexons and Complexonates]. Moscow, Khimiya, 1988. 544 p. (In Russian)

  12. Rizkalla E.N., Zaki M.T.M., Ismail M.I. Metal chelates of phosphonate-containing ligands – V Stability of some 1-hydroxyethane-1,1-diphosphonic acid metal chelates. Talanta, 1980, vol. 27, no. 9, pp. 715–719. doi: 10.1016/0039-9140(80)80164-0.

  13. Bogatyrev O.V., Yamaltdinova A.F., Devyatov F.V. Complexation of 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP) and manganese(ii) in aqueous solution. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2016, vol. 158, no. 1, pp. 44–54. (In Russian)

  14. Vagapova L.I., Nasirova Z.A., Burilova E.A., Zobov V.V., Burilov A.R., Amirov R.R. New salt structures based on aminomethylated calix[4]-resorcinarenes and (1-hydroxyethane-1,1-diyl)bisphosphonic acid. Russ. J. Org. Chem., 2017, vol. 53, no. 2, pp. 312–314. doi: 10.1134/S1070428017020324.

  15. Popel' A.A. Magnitno-relaksatsionnyi metod analiza neorganicheskikh veshchestv [Magnetic Relaxation Method for the Analysis of Inorganic Substances]. Moscow, Khimiya, 1978. 224 p. (In Russian)

  16. Amirov R.R., Burilova E.A., McMillan Z.T., Amirova L.R., Ziyatdinova A.B., Shayimova J.R., Bukharov M.S., Dimiev A.M., Zakharov A.V. An NMR relaxivity and ESR study of the interaction of the paramagnetic manganese(II) and gadolinium(III) ions with anionic, cationic and neutral water soluble polymers and their mixtures. J. Mol. Liq., 2017, vol. 238, pp. 184–192. doi: 10.1016/j.molliq.2017.04.131.

  17. Amirov R.R., Burilova E.A., Zhuravleva Yu.I., Zakharov A.V., Ziyatdinova A.B. NMR paramagnetic probing of polymer solutions using manganese(II) ions. Polym. Sci., Ser. C, 2017, vol. 59, no. 1, pp. 133–140. doi: 10.1134/S1811238217010015.


The content is available under the license Creative Commons Attribution 4.0 License.