V.A. Levina*, K.M. Zingermanb** , K.Yu. Krapivinc***, O.A. Ryabovab**** , A.V. Kukushkind*****
aMoscow State University, Moscow, 119991, Russia
bTver State University, Tver, 170100, Russia
cFidesys LLC, Moscow, 121205, Russia
dTula State Lev Tolstoy Pedagogical University, Tula, 300026, Russia
E-mail: *v.a.levin@mail.ru, **zingerman@rambler.ru, ***krapivin@saldlab.com, ****ryabova.oa@tversu.ru, *****kukushkinav@mail.ru
Received April 17, 2019
Full text PDF
DOI: 10.26907/2541-7746.2019.2.191-204
For citation: Levin V.A., Zingerman K.M., Krapivin K.Yu., Ryabova O.A., Kukushkin A.V. A model of material microstructure formation on selective laser sintering with allowance for large elastoplastic strains. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2019, vol. 161, no. 2, pp. 191–204. doi: 10.26907/2541-7746.2019.2.191-204. (In Russian)
Abstract
A mathematical model of material microstructure formation in the process of selective laser sintering was proposed. The model is based on the stress and strain analysis in a representative volume of a powder that contains some particles. The strains and stresses are caused by contact interaction of particles due to surface tension. It was assumed that the particles are made of elastoplastic material. The material properties were described by the associative Drucker–Prager model with hardening. The nonlinear efiects caused by large strains were taken into account. The model permits one to determine the shape of particles in the deformed state and the shape of pores. The numerical results were presented for the problem of contact interaction between two particles that assume the spherical shape before deformation. The displacements of centers of powder particles were specifled as input. The flnite-element method was used for computations. The flow rule was integrated using the implicit Euler backward method. The mortar method was used to solve the problem with account of contact interaction. The distribution of contact stresses over the surfaces of powder particles and the distribution of the von Mises plastic strains in the section of these particles were shown as a result of the analysis. The dependence of contact zone radius on the contact displacements of the particles' centers was investigated. It was analyzed how the radius of contact zone depends on the material parameter characterizing the pressure dependence of plastic flow.
Keywords: selective laser sintering, microstructure formation, large strains, plasticity, flnite-element method
Acknowledgments. The study was performed at Tula State Lev Tolstoy Pedagogical University and supported by the Ministry of Science and Higher Education of the Russian Federation (project no. 14.577.21.0271, project ID RFMEFI57717X0271)
References
1. Shishkovskii I.V. Lazernyi sintez funktsional'no gradientnykh mezostruktur i ob'emnykh izdelii [Laser Synthesis of Functionally Graded Mesostructures and Volumetric Articles]. Moscow, Fizmatlit, 2009. 424 p.
2. Zlenko M.A., Nagaitsev M.V., Dovbysh V.M. Additivnye tekhnologii v mashinostroenii. Posobie dlya inzhenerov [Additive Technologies in Mechanical Engineering. Manual for Engineers]. Moscow, GNTs RF FGUP “NAMI”, 2015. 220 p.
3. Frenkel Ya.I. Viscous flow in crystal bodies. Zh. Eksp. Teor. Fiz. ETF, 1946, vol. 16, no. 1, pp. 29–35. (In Russian)
4. Geguzin Ya.E. Pochemu i kak ischezaet pustota [Why and How the Void Vanishes]. Moscow, Nauka, 1983. 192 p. (In Russian)
5. Geguzin Ya.E. Fizika spekaniya [The Physics of Sintering]. Moscow, Nauka, 1984. 312 p. (In Russian)
6. Levin V.A., Lokhin V.V., Zingerman K.M. A method for estimating the effective charac- teristics of porous bodies subjected to finite deformations. Izv. Akad. Nauk. Mekh. Tverd. Tela, 1997, vol. 32, no. 4, pp. 39–43. (In Russian)
7. Levin V.A., Lokhin V.V., Zingerman K.M. Effective elastic properties of porous materials with randomly dispersed pores. Finite deformation. J. Appl. Mech., 2000, vol. 67, no. 4, pp. 667–670. doi: 10.1115/1.1286287.
8. Levin V.A., Zingerman K.M., Vershinin A.V., Yakovlev M. Numerical analysis of effective mechanical properties of rubber-cord composites under finite strains. Compos. Struct., 2015, vol. 131, pp. 25–36. doi: 10.1016/j.compstruct.2015.04.037.
9. Levin V., Vdovichenko I., Vershinin A., Yakovlev M., Zingerman K. Numerical estima- tion of effective mechanical properties for reinforced plexiglas in the two-dimensional case. Modell. Simul. Mater. Sci. Eng., 2016, vol. 2016, art. 9010576, pp. 1–10. doi: 10.1155/2016/9010576.
10. Vdovichenko I.I., Yakovlev M.Ya., Vershinin A.V., Levin V.A. Calculation of the effective thermal properties of the composites based on the finite element solutions of the boundary value problems. IOP Conf. Ser.: Mater. Sci. Eng., 2016, vol. 158, no. 1, art. 012094, pp. 1– 7. doi: 10.1088/1757-899X/158/1/012094.
17. Simo J.C., Hughes T.J.R. Computational Inelasticity. New York, Springer, 1998. 392 p.
19. Lee E.H., Liu D.T. Finite-strain elastic-plastic theory particularly for plane wave analysis. J. Appl. Phys., 1967, vol. 38, pp. 19–27. doi: 10.1063/1.1708953.
20. Zienkiewicz O.C., Taylor R.L., Fox D.D. The Finite Element Method for Solid and Struc- tural Mechanics. Elsevier, 2014. 672 p. doi: 10.1016/C2009-0-26332-X.
22. Puso M.A., Laursen T.A. A mortar segment-to-segment frictional contact method for large deformations. Comput. Methods Appl. Mech. Eng., 2017, vol. 193, nos. 45–47, pp. 4891–4913. doi: 10.1016/j.cma.2004.06.001.
23. Feng B., Levitas V.I. Large elastoplastic deformation of a sample under compression and torsion in a rotational diamond anvil cell under megabar pressures. Int. J. Plast., 2017, vol. 92, pp. 79–95. doi: 10.1016/j.ijplas.2017.03.002.
24. Feng B., Levitas V.I., Hemley R.J. Large elastoplasticity under static megabar pressures: Formulation and application to compression of samples in diamond anvil cells. Int. J. Plast., 2015, vol. 84, pp. 33–57. doi: 10.1016/j.ijplas.2016.04.017.
25. Idesman A.V., Levitas V.I. Finite element procedure for solving contact thermoelastoplas- tic problems at large strains, normal and high pressures. Comput. Methods Appl. Mech. Eng., 1995, vol. 126, nos. 1–2, pp. 39–66. doi: 10.1016/0045-7825(95)00757-R.
26. Badriev I.B., Makarov M.V., Paimushin V.N. Geometrically nonlinear problem of longi- tudinal and transverse bending of a sandwich plate with transversally soft core. Uchenye Zapiski Kazanskogo Universiteta, Seriya Fiziko-Matematicheskie Nauki, 2016, vol. 158, no. 4, pp. 453–468. (In Russian)
27. Paimushin V.N., Badriev I.B., Makarov M.V., Kholmogorov S.A. Transformable calcula- tion schemes in geometrically nonlinear problems of mechanics of sandwich plates with the contour reinforcing beams. J. Phys.: Conf. Ser., 2019, vol. 1158. no. 3, art. 032043, pp. 1–7. doi: 10.1088/1742-6596/1158/3/032043.
28. Abdrakhmanova A.I., Sultanov L.U. The algorithm of investigation of deformations of solids with contact interaction. J. Phys.: Conf. Ser., 2019, vol. 1158, no. 2, art. 022001, pp. 1–7. doi: 10.1088/1742-6596/1158/2/022001.
29. Morozov E.M., Levin V.A., Vershinin A.V. Prochnostnyi analiz. Fidesis v rukakh inzhenera [Strength Analysis. Fidesys in the Hands of an Engineer]. Moscow, URSS, 2015. 408 p. (In Russian)
30. Kukushkin A.V., Konovalov D.A., Vershinin A.V., Levin V.A. Numerical simulation in CAE Fidesys of bonded contact problems on non-conformal meshes. J. Phys.: Conf. Ser., 2019, vol. 1158, no. 3, art. 032022, pp. 1–8. doi: 10.1088/1742-6596/1158/3/032022.
31. Karpenko V.S., Vershinin A.V., Levin V.A., Zingerman K.M. Some results of mesh con- vergence estimation for the spectral element method of different orders in FIDESYS industrial package. IOP Conf. Ser.: Materi. Sci. Eng., 2016, vol. 158, no. 1, art. 012049, pp. 1–6. doi: 10.1088/1757-899X/158/1/012049.
32. Landau L.D., Lifshitz E.M. Theoretical Physics. Vol. 6.: Hydrodynamics. Moscow, Nauka, 1986. 736 p. (In Russian)
33. Brown S.B., Kim K.H., Anand L. An internal variable constitutive model for hot working of metal. Int. J. Plast., 1989, vol. 5, no. 2, pp. 95–130. doi: 10.1016/0749-6419(89)90025-9.
34. Chen G., Zhang Z.-S., Mei Yu.-H., Li X., Yu D.-J., Wang L., Chen X. Applying viscoplas- tic constitutive models to predict ratcheting behavior of sintered nanosilver lap-shear joint. Mech. Mater., 2014, vol. 72, pp. 61–71. doi: 10.1016/j.mechmat.2014.02.001.
35. Burenin A.A., Kovtanyuk L.V., Panchenko G.L. Deformation and heating of an elastovis- coplastic cylindrical Layer moving owing to a varying pressure drop. Mech. Solids, 2018, vol. 53, no. 1, pp. 1–11. doi: 10.3103/S0025654418010016.
36. Burenin A.A., Bykovtsev G.I., Kovtanyuk L.V. A simple model of finite strain in an elastoplastic medium. Dokl. Phys., 1996, vol. 41, no. 3, pp. 127–129.
38. Bazhin A.A., Burenin A.A., Murashkin E.V. Simulation of the process of the accumulation of large irreversible deformations under plastic flow and creep conditions. J. Appl. Math. Mech., 2016, vol. 80, no. 2, pp. 182–189. doi: 10.1016/j.jappmathmech.2016.06.012.
37. Choi J.-P., Shin G.-H., Lee H.-S., Yang D.-Y., Yang S., Lee C.-W., Brochu M., Yu J.-H. Evaluation of powder layer density for the selective laser melting (SLM) process. Mater. Trans., 2017, vol. 58, no. 2, pp. 294–297. doi: 10.2320/matertrans.M2016364.
The content is available under the license Creative Commons Attribution 4.0 License.