V.Yu. Belashov a∗∗, O.A. Kharshiladze b∗∗

a Kazan Federal University, Kazan, 420008 Russia

b Ivane Javakhishvili Tbilisi State University, Tbilisi, 0179 Georgia

E-mail: vybelashov@yahoo.com, ∗∗o.kharshiladze@mail.ru

Received August 28, 2018


Full text PDF

DOI: 10.26907/2541-7746.2019.1.5-23

For citation: Belashov V.Yu., Kharshiladze O.A. The modified method of contour dynamics and modeling of vortical structures. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2019, vol. 161, no. 1, pp. 5–23. doi: 10.26907/2541-7746.2019.1.5-23. (In Russian)

Abstract

This paper considers one of the most effective methods for modeling vortical structures, which are described by the 2-dimensional equation of carry of a vortex and by the Poisson equation for a flow function, namely, the contour dynamics method based on representation of a vortical stream by finite-area vortical regions. A modification of the contour dynamics method minimizing the errors arising at its direct application to des­cription of vortical structures has been elaborated. The examples of the results of numerical experiments on the study of the dynamics of interaction of vortical structures for various configurations of their relative positioning, signs of vorticity, and distances between borders of the finite-area vortical regions have been presented.

 Keywords: vortices, finite-area vortical regions, modeling, hydrodynamics, modified contour dynamics method, regimes of interaction, quasi-recurrence phenomenon, phase intermixing

Acknowledgments. The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University and supported by the Shota Rustaveli National Science Foundation of Georgia (SRNF) (project no. RF17_252).

References

1. Belotserkovskii O.M., Oparin A.M. Chislennye eksperimenty v turbulentnosti ot poryadka k khaosu [Numerical Experiments in Turbulence from Order to Chaos]. Moscow, Nauka, 2000. 223 p. (In Russian)

2. Lamb H. Hydrodynamics. New York, Dover Publ., 1945. 735 p.

3. Monin A.S., Yaglom A.M. Statisticheskaya gidromekhanika [Statistical Hydromechanics]. Moscow, Nauka, 1967. Pt. 1, 720 p.; Pt. 2, 638 p. (In Russian)

4. Kochin N.E., Kibel' I.A., Roze N.V. Teoreticheskaya gidromekhanika [Theoretical Hydromechanics]. Pt.1. Moscow, Nauka, 1963. 584 p. (In Russian)

5. Roache P.J. Computational Fluid Dynamics. Hermosa, Albuquerque, NM, 1982. 612 p.

6. Fundamental Methods in Hydrodynamics. Alder B.J., Fernbach S., Rotenberg M. (Eds.). New York, Acad. Press, 1964. 386 p.

7. Deem G.S., Zabusky N.J. Stationary V-states, interactions, recurrence, and breaking. In: Solitons in Action. Lonngren K., Scott A. (Eds.). Academic, 1978, pp. 277–293.

8. Zabusky N.J., Hughes M.N., Roberts K.V. Contour dynamics for the Euler equations in two dimensions. J. Comput. Phys., 1979, vol. 30, no. 1, pp. 96–106. doi: 10.1016/0021-9991(79)90089-5. (In Russian)

9. Potter D. Computational Physics. London, John Wiley & Sons Ltd, 1973. 392 p.

10. Berezin Yu.A., Fedorchuk N.P. Modelirovanie nestatsionarnykh plazmennykh protsessov [Simulation of Nonstationary Plasma Processes]. Novosibirsk, Nauka, 1993. 357 p. (In Russian)

11. Belotserkovskii S.M., Ginevskii A.S. Modelirovanie turbulentnykh strui i sledov na osnove diskretnykh vikhrei [Modeling of Turbulent Jets and Traces on the Basis of Discrete Vortices]. Moscow, Fiz.-Mat. Lit., 1995. 365 p. (In Russian)

12. Belashov V.Yu., Singatulin R.M. Algoritm metoda konturnoi dinamiki i modelirovanie vikhrevykh struktur [Algorithm of the Contour Dynamics Method and Simulation of the Vortical Structures]. Kazan, KGEU, 2003, 39 p. Dep. VINITI on Feb. 11, 2003, no. 272-B2003. (In Russian)

13. Overman E.A., Zabusky N.J. Coaxial scattering of Euler-equation translating V-states via contour dynamics. J. Fluid Mech., 1982, vol. 125, pp. 187–202. doi: 10.1017/S0022112082003309.

14. Baker G.R. A study of the numerical stability of the method of contour dynamics. Philos. Trans. R. Soc., A, 1990, vol. 333, pp. 391–400. doi: 10.1098/rsta.1990.0167.

15. Belashov V.Yu., Singatulin R.M. Dynamics of vortex type wave structures in plasmas and fluids. Plasma Physics. AIP Conf. Proc., 2003, vol. 669, pp. 609–612. doi: 10.1063/1.1594004.

16. Belashov V.Yu., Kharshiladze O.A. A modified CD method and simulation of vortical structures. Dvenadtsataya ezhegod. konf. “Fizika plazmy v Solnechnoi sisteme” [Proc. 12th Annu. Conf. “Plasma Physics in the Solar System”]. Moscow, IKI Ross. Akad. Nauk, 2017. 160 p. (In Russian)

17. Belashov V.Yu. Modeling of dynamics of vortex structures in continuous media. Astrophys. Aerosp. Technol., 2016, vol. 4, no. 3, p. 28.

18. Saffman P.G. Vortex Dynamics. Cambridge Univ. Press, 1993. 376 p.

19. Belashov V.Yu., Belashova E.S., Kharshiladze O.A. Modified CD method and simulation of vortical structures in a plasma and fluids. J. Phys. Chem. Biophys., 2018, vol. 8, p. 61. doi: 10.4172/2161-0398-C1-028.

20. Belashov V.Yu., Kharshiladze O.A. Numerical modeling of interaction of vortex structures in fluids and plasmas. Proc. VIII Annu. Meet. of the Georgian Mechanical Union. Book of Abstracts. Tbilisi, Tbilisi Univ. Press. 2017, pp. 31–32.

21. Pokhotelov O.A., Stenflo L., Shukla P.K. Nonlinear structures in the Earth's magnetosphere and atmosphere. Plasma Phys. Rep., 1996, vol. 22, no. 10, pp. 852–863.

22. Belashov V.Yu. Interaction of N-vortex structures in a continuum, including atmosphere, hydro-sphere and plasma. Adv. Space Res., 2017. V. 60. P. 1878–1890.

23. Belashov V.Yu. Numerical study of interaction of vortex structures in plasmas and fluids. J. Phys. Chem. Biophys., 2017, vol. 7, no. 3, suppl., p. 49. doi: 10.4172/2161-0398-C1-022.

24. Belashov V.Yu., Belashova E.S., Kharshiladze O.A. Nonlinear wave structures of the soliton and vortex types in complex continuous media: Theory, simulation, applications. In: Lecture Notes of TICMI. Tbilisi, Tbilisi Univ. Press, 2018, vol. 18. 90 p.


The content is available under the license Creative Commons Attribution 4.0 License.