P.A. Kuryntseva*, I.B. Vybornova**, P.Yu. Galitskaya***, S.Yu. Selivanovskaya****

Kazan Federal University, Kazan, 420008 Russia

E-mail: *polinazwerewa@yandex.ru, **irflying@mail.ru,***gpolina33@yandex.ru, ****svetlana.selivanovskaya@kpfu.ru

Received July 7, 2018


Full text PDF

DOI: 10.26907/2542-064X.2019.1.77-92

For citation: Kuryntseva P.A., Vybornova I.B., Galitskaya P.Yu., Selivanovskaya S.Yu. Changes in the toxicological characteristics of biochars from chicken manure dependent on their chemical modification. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2019, vol. 161, no. 1, pp. 77–92. doi: 10.26907/2542-064X.2019.1.77-92. (In Russian)


Abstract

Data on changes in the chemical composition and toxicological characteristics of the biochars modified by nitrogen doping with urea ((NH2)2CO), potassium, and phosphorus using potassium dihydroorthophosphate (KH2PO4) have been presented. Four variants of doping, differentiated by the sequence of treatment with agents and the multiplicity of pyrolysis processes, have been analyzed. The toxicity has been determined using the protozoa Paramecium caudatum, planktonic crustacean Daphnia magna, and higher plants Hordeum vulgare. The results obtained have been processed by the method of principal components. It has been established that both pyrolysis and chemical modification lead to a significant change in the content of organogenic elements and toxicity. Using the method of principal components, we have identified a variant of the biochar modification, which allows to produce biochar with a high content of organogenic elements and a low increase of toxicity. This variant implies pyrolysis of the raw substrate for 2 h, treatment with regents in dry or dissolved forms, and repeated pyrolysis for 2 h.

Keywords: biochar, toxicity, biochar modification

Acknowledgements. The study was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 14.581.21.0024, project no. RFMEFI58117X0024).

References

  1. Qambrani N.A., Rahman M.M., Won S., Shim S., Ra Ch. Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review. Renewable Sustainable Energy Rev., 2017, vol. 79, pp. 255–273. doi: 10.1016/j.rser.2017.05.057.

  2. Ding Y., Liu Y., Liu Sh., Huang X. Li Zh., Tan X., Zeng G., Zhou L. Potential benefits of biochar in agricultural soils: A review. Pedosphere, 2017, vol. 27, no. 4, pp. 645–661. doi: 10.1016/S1002-0160(17)60375-8.

  3. Preston C.M., Schmidt M.W.I. Black (pyrogenic) carbon: A synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences, 2006, vol. 3, pp. 397–420. doi: 10.5194/bg-3-397-2006.

  4. Knicker H. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry, 2007, vol. 85, no. 1, pp. 91–118. doi: 10.1007/s10533-007-9104-4.

  5. Liesch A.M., Weyers S.L., Gaskin J.W., Das K.C. Impact of two different biochars on earthworm growth and survival. Ann. Environ. Sci., 2010, vol. 4, pp. 1–9.

  6. Knowles O.A., Robinson B.H., Contangelo A., Clucas L. Biochar for the mitigation of nitrate leaching from soil amended with biosolids. Sci. Total Environ., 2011, vol. 409, no. 17, pp. 3206–3210. doi: 10.1016/j.scitotenv.2011.05.011.

  7. Novak J.M., Frederick J.R., Bauer P.J., Watts D.W. Rebuilding organic carbon contents in coastal plain soils using conservation tillage systems. Soil Sci. Soc. Am. J., 2009, vol. 73, no. 2, pp. 622–629.

  8. Husk B., Major J. Biochar Commercial Agriculture Field Trial in Quйbec, Canada – Year Three: Effects of Biochar on Forage Plant Biomass Quantity, Quality and Milk Production. 2011. Available at: https://wiki.opensourceecology.org/images/5/55/ BlueLeafBiocharForageFieldTrial-Year3Report.pdf.

  9. Ahmad M.R., Musirin I., Othman M.M., Rahmat N.A. PHEV charging strategy via user preferences and its impacts on power system network. Proc. 2014 IEEE Conf. on Energy Conversion (CENCON). IEEE, 2014, pp. 19–24. doi: 10.1109/CENCON.2014.6967470.

  10. Lehmann J., Joseph S. Biochar for Environmental Management: Science and Technology. Earthscan Publ. Ltd, 2009. 450 p.

  11. Godlewska P., Schmidt H.P., Oleszczuk P. Biochar for composting improvement and contaminants reduction. A review. Bioresour. Technol., 2017, vol. 246, pp. 193–202. doi: 10.1016/j.biortech.2017.07.095.

  12. Chen X., Chen G., Chen L., Chen Y., Lehmann J., McBride M.B., Hay A.G. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour. Technol., 2011, vol. 102, no. 19, pp. 8877–8884. doi: 10.1016/j.biortech.2011.06.078.

  13. Xu L., Yao Q., Zhang Y., Fu Y. Integrated production of aromatic amines and N-doped carbon from lignin via ex Situ catalytic fast pyrolysis in the presence of Ammonia over Zeolites. ACS Sustainable Chem. Eng., 2017, vol. 5, no. 4, pp. 2960–2969. doi: 10.1021/acssuschemeng.6b02542.

  14. Cha J.S., Park S.H., Jung S.C., Ryu C., Jeon J.K., Shin M.C., Park Y.K. Production and utilization of biochar: A review. J. Ind. Eng. Chem., 2016, vol. 40, pp. 1–15. doi: 10.1016/j.jiec.2016.06.002.

  15. Tan Z., Lin C., Ji X., Rainey T.J. Returning biochar to fields: A review. Appl. Soil Ecol., 2017, vol. 116, pp. 1–11. doi: 10.1016/j.apsoil.2017.03.017.

  16. Agegnehu G., Srivastava A.K., Bird M.I. The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Appl. Soil Ecol., 2017, vol. 119, pp. 156–170. doi: 10.1016/j.apsoil.2017.06.008.

  17. Li Z., Zhang X., Xiong X., Zhang B., Wang L. Determination of the best conditions for modified biochar immobilized petroleum hydrocarbon degradation microorganism by orthogonal test. IOP Conf. Ser.: Earth Environ. Sci., 2017, vol. 94, art.  012191, pp. 1–7. doi: 10.1088/1755-1315/94/1/012191.

  18. Song W., Guo M. Quality variations of poultry litter biochar generated at different pyrolysis temperatures. J. Anal. Appl. Pyrolysis, 2012, vol. 94, pp. 138–145. doi: 10.1016/j.jaap.2011.11.018.

  19. Lyu H., He Y., Tang J., Hecker M., Liu Q., Jones P.D., Codling G., Giesy J.P. Effect of pyrolysis temperature on potential toxicity of biochar if applied to the environment. Environ. Pollut., 2016, vol. 218, pp. 1–7. doi: 10.1016/j.envpol.2016.08.014.

  20. Shakya A., Agarwal T. Poultry litter biochar: An approach towards poultry litter management – A review. Int. J. Curr. Microbiol. Appl. Sci., 2017, vol. 6, no. 10, pp. 2657–2668. doi: 10.20546/ijcmas.2017.610.314.
  21. Li B., Dai F., Xiao Q., Yang L., Shen J., Zhang C., Cai M. Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ. Sci., 2016, vol. 9, no. 1, pp. 102–106. doi: 10.1039/c5ee03149d.

  22. Tan X., Liu Y., Zeng G., Wang X., Hu X., Gu Y., Yang Z. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 2015, vol. 125, pp. 70–85. doi: 10.1016/j.chemosphere.2014.12.058.

  23. Chen Y., Zhang X., Chen W., Yang H., Chen H. The structure evolution of biochar from biomass pyrolysis and its correlation with gas pollutant adsorption performance. Bioresour. Technol., 2017, vol. 246, pp. 101–109. doi:10.1016/j.biortech.2017.08.138.

  24. Zhang J.-X., Maddison W.P. Tisaniba, a new genus of marpissoid jumping spiders from Borneo (Araneae: Salticidae). Zootaxa, 2014, vol. 3852, no. 2, pp. 252–272. doi: 10.11646/zootaxa.3852.2.5.

  25. Chen P., Wang L.-K., Wang G., Gao M.-R., Ge J., Yuan W.-J., Shen Y.-H., Xie A.-J., Yu S.-H. Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: An efficient catalyst for oxygen reduction reaction. Energy Environ. Sci., 2014, vol. 7, no. 12, pp. 4095–4103. doi: 10.1039/C4EE02531H.

  26. Chen W., Yang H., Chen Y., Chen X., Fang Y., Chen H. Biomass pyrolysis for nitrogen-containing liquid chemicals and nitrogen-doped carbon materials. J. Anal. Appl. Pyrolysis., 2016, vol. 120, pp. 186–193. doi: 10.1016/j.jaap.2016.05.004.

  27. Chen J., Yang J., Hu G., Hu X., Li Zh., Shen S., Radosz M., Fan M. Enhanced CO2 capture capacity of nitrogen-doped biomass-derived porous carbons. ACS Sustainable Chem. Eng., 2016, vol. 4, no. 3, pp. 1439–1445. doi: 10.1021/acssuschemeng.5b01425.

  28. Deng Y., Xie Y., Zou K., Ji X. Review on recent advances in nitrogen-doped carbons: Preparations and applications in supercapacitors. J. Mater. Chem. A., 2016, vol. 4, no. 4, pp. 1144–1173. doi: 10.1039/C5TA08620E.

  29. Wang Y., Zuo S., Yang J., Yoon S.-H. Evolution of phosphorus-containing groups on activated carbons during heat treatment. langmuir, 2017, vol. 33, no. 12, pp. 3112–3122. doi: 10.1021/acs.langmuir.7b00095.

  30. Roupcovбpetra P., Friedrichovб R., Klouda K., Weisheitelovб M., Perпochovб M. Biochar modification, thermal stability and toxicity of products modification. Saf. Eng. Ser., 2017, vol. 12, no. 2, pp. 30–43. doi: 10.1515/tvsbses-2017-0012.

  31. Gel'man N.E., Terent'eva E.A., Shanina T.M., Kiparenko L.M., Rezl V. Metody kolichestvennogo organicheskogo elementnogo mikroanaliza [Methods of Quantitative Organic Elemental Microanalysis]. Moscow, Khimiya, 1987. 296 p. (In Russian)

  32. ISO 14235:1998. Soil quality – Determination of organic carbon by sulfochromic oxidation. 1998. 5 p.

  33. Federal Document 16.1:2.3:3.11-98. Quantitative chemical analysis of soil. Methods for measuring the content of metals in solid objects using spectrometry with inductively coupled plasma. Moscow, 1998. 13 p. (In Russian)

  34. ISO 10390:2005. Soil quality – Determination of pH. P. 7. 2005. 5 p.

  35. Kuryntseva P., Galitskaya P., Selivanovskaya S. Changes in the ecological properties of organic wastes during their biological treatment. Waste Manage, 2016, vol. 58, pp. 90–97. doi: 10.1016/j.wasman.2016.09.031.

  36. Kryuchkova M., Danilushkina A., Lvovab Y., Fakhrullin R. Evaluation of toxicity of nanoclays and graphene oxide in vivo: A Paramecium caudatum study. Environ. Sci.: Nano, 2016, vol. 3, no. 2, pp. 442–452. doi: 10.1039/C5EN00201J.

  37. ISO 6341:2012. Preview Water quality – Determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea) – Acute toxicity test. 2012. 22 p.

  38. ISO 22030:2005. Soil quality – Biological methods – Chronic toxicity in higher plants. 2005. 18 p.

  39. Zucconi F., Pera A., Forte M., DeBertolli M. Evaluating toxicity of immature compost. Biocycle, 1981, vol. 22, no. 2, pp. 54–57.

  40. Zhang J., Wang Q. Sustainable mechanisms of biochar derived from brewers' spent grain and sewage sludge for ammonia–nitrogen capture. J. Cleaner Prod., 2016, vol. 112, pt. 5, pp. 3927–3934. doi: 10.1016/j.jclepro.2015.07.096.

  41. Stepanova N.Yu., Akhmetshina A.D., Latypova V.Z. Test-organism sensitivity comparison in toxicological evaluation of bottom sediments polluted with oil of various origin. Povolzh. Ekol. Zh., 2012, no. 3, pp. 319–325. (In Russian)

  42. Causin H.F., Barneix A.J. Regulation of NH4+ uptake in wheat plants: Effect of root ammonium concentration and amino acids. Plant Soil, 1993, vol. 151, no. 2, pp. 211–218. doi: 10.1007/BF00016286.

  43. Li S.-X., Wang Z.-H., Stewart B.A. Responses of crop plants to ammonium and nitrate N. Adv. Agron., 2013, vol. 118, pp. 205–397. doi: 10.1016/B978-0-12-405942-9.00005-0.

  44. Mary B., Recous S., Darwis D., Robin D. Interactions between decomposition of plant residues and nitrogen cycling in soil. Plant Soil, 1996, vol. 181, no. 1, pp. 71–82. doi: 10.1007/BF00011294.


The content is available under the license Creative Commons Attribution 4.0 License.