L.G. Shaidarova*, A.V. Gedmina**, V.N. Syutkina***, I.A. Chelnokova****, H.C. Budnikov*****

Kazan Federal University, Kazan, 420008 Russia

E-mail: *LarisaShaidarova@mail.ru, **Anna.Gedmina@mail.ru, ***vika_syutkina@mail.ru, ****Irina.Chelnokova@mail.ru, ****Herman.Budnikov@kpfu.ru

Received December 26, 2017


Full text PDF

DOI: 10.26907/2542-064X.2019.1.20-30

For citation: Shaidarova L.G., Gedmina A.V., Syutkina V.N., Chelnokova I.A., Budnikov H.C. The use of an electrode modified by polyvinylpyrrolidone film with a gold deposit for voltammetric determination of tetracycline in milk. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2019, vol. 161, no. 1, pp. 20–30. doi: 10.26907/2542-064X.2019.1.20-30. (In Russian)

Abstract

Gold deposit immobilized on the surface of glassy carbon electrodes (GCE) and included in the polymer film of polyvinylpyrrolidone (Au-PVPr) shows electrocatalytic properties toward tetracycline oxidation. The catalytic effect observed at the GCE modified by gold deposit is expressed in a multiple increase of the current of antibiotic oxidation and in a decrease of the potential on 250 mV in comparison with the GCE. A two-fold increase in the oxidation current of tetracycline has been recorded on the GCE coated by the PVPr film with gold deposit (Au-PVPr-GCE) in comparison with its oxidation at the Au-GCE. The working conditions for the immobilization of the Au-PVPr composite on the GCE have been found. A method for voltammetric determination of tetracycline on the Au-PVPr-GCE has been proposed. Linear dependence of the current at this electrode on the tetracycline concentration has been observed in the range from 1?10–7 to 1?10–3 mol?L–1. The developed voltammetric method has been tested in determination of the tetracycline content in milk.

Keywords: chemically modified electrodes, polyvinylpyrrolidone film with gold deposit, electrocatalysis, voltammetric determination of tetracycline

Acknowledgments. The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University.

References

  1. Wang L., Peng J., Liu L. A reversed-phase high performance liquid chromatography coupled with resonance Rayleigh scattering detection for the determination of four tetracycline antibiotics. Anal. Chim. Acta, 2008, vol. 630, no. 1, pp. 101–106. doi: 10.1016/j.aca.2008.09.066.
  2. Ding X., Fu C. Determination of Fe(III), Al(III), Mo(VI) and W(VI) with tetracycline by reversed-phase high-performance liquid chromatography. Talanta, 1993, vol. 40, no. 5, pp. 641–644.
  3. Tolgyesi A., Tolgyesi L., Bekesi K., Sharma V.K., Fekete J. Determination of tetracyclines in pig and other meat samples using liquid chromatography coupled with diode array and tandem mass spectrometric detectors. Meat Sci., 2014, vol. 96, no. 3, pp. 1332–1339. doi: 10.1016/j.meatsci.2013.11.011.
  4. Zhou Q., Zhang Y.Y., Wang N., Zhu L.H., Tang H.Q. Analysis of tetracyclines in chicken tissues and dung using LC–MS coupled with ultrasound-assisted enzymatic hydrolysis. Food Control, 2014, vol. 46, pp. 324–331. doi: 10.1016/j.foodcont.2014.05.015.
  5. Kuong C.L., Yu T.J., Chen Y.C. Microwave-assisted sensing of tetracycline using europium-sensitized luminescence fibers as probes. Anal. Bioanal Chem., 2009, vol. 395, no. 5, pp. 1433–1439. doi: 10.1007/s00216-009-3106-0.
  6. Liu L.S., Chen G.Y., Fishman M.L. A single sorbent for tetracycline enrichment and subsequent solid-matrix time-resolved luminescence. Anal. Chim. Acta, 2005, vol. 528, no. 2, pp. 261–268. doi: 10.1016/j.aca.2004.10.053.
  7. Salinas F., Muñoz de la Peña A., Durán-Merás I., Soledad Durán M. Determination of salicylic acid and its metabolites in urine by derivative synchronous spectrofluorimetry. Analyst, 1990, vol. 115, no. 7, pp. 1007–1011.
  8. Mamani M.C.V., Farfan J.A., Reyes F.G.R., Rath S. Simultaneous determination of tetracyclines in pharmaceuticals by CZE using experimental design. Talanta, 2006, vol. 70, nо. 2, pp. 236–243. doi: 10.1016/j.talanta.2006.02.048.
  9. Dzantiev B.B., Byzova N.A., Urusov A.E., Zherdev A.V. Immunochromatographic methods in food analysis. Trends Anal. Chem., 2014, vol. 55, pp. 81–93. doi: 10.1016/j.trac.2013.11.007.
  10. Cháfer-Pericás C., Maquieira A., Puchades R. Immunochemical determination of oxytetracycline in fish: Comparison between enzymatic and time-resolved fluorometric assays. Anal. Chim. Acta, 2010, vol. 662, no. 2, pp. 177–185. doi: 10.1016/j.aca.2009.12.044.
  11. Emara K.M., Askal H.F., Saleh G.A. Spectrophotometric determination of tetracycline and oxytetracycline in pharmaceutical preparations. Talanta, 1991, vol. 38, no. 11, pp. 1219–1222. doi: 10.1016/0039-9140(91)80095-H.
  12. Bi S., Song D., Tian Y., Zhou X. Molecular spectroscopic study on the interaction of tetracyclines with serum albumins. Spectrochim. Acta, Part A, 2005, vol. 61, no. 4, pp. 629–636. doi: 0.1016/j.saa.2004.05.028.
  13. Thanasarakhan W., Kruanetr S., Deming R.L., Liawruangrath B. Sequential injection spectrophotometric determination of tetracycline antibiotics in pharmaceutical preparations and their residues in honey and milk samples using yttrium (III) and cationic surfactant. Talanta, 2011, vol. 84, no. 5, pp. 1401–1409. doi: 10.1016/j.talanta.2011.03.087.
  14. Rodríguez M., Pezza H.R., Pezza L. Simple and clean determination of tetracyclines by flow injection analysis. Spectrochim. Acta, Part A., 2016, vol. 153, pp. 386–392. doi: 10.1016/j.saa.2015.08.048.
  15. Tan H., Ma C., Song Y., Xu F., Chen S., Wang L. Determination of tetracycline in milk by using nucleotide/lanthanide coordination polymer-based ternary complex. Biosens. Bioelectron., 2013, vol. 50, pp. 447–452. doi: 10.1016/j.bios.2013.07.011.
  16. Belkheiri D., Fourcade F., Geneste F. Combined process for removal of tetracycline antibiotic – Coupling pre-treatment with a nickel-modified graphite felt electrode and a biological treatment. Int. Biodeterior. Biodegrad, 2015, vol. 103, pp. 147–153. doi: 10.1016/j.ibiod.2015.02.032.
  17. Wong A., Scontri M., Materon E. Development and application of an electrochemical sensor modified with multi-walled carbon nanotubes and graphene oxide for the sensitive and selective detection of tetracycline. J. Electroanal. Chem., 2015, vol. 757, pp. 250–257. doi: 10.1016/j.jelechem.2015.10.001.
  18. Shaidarova L.G., Budnikov G.K. Chemically modified electrodes based on noble metals, polymer films, or their composites in organic voltammetry. J. Anal. Chem., 2008, vol. 63, no. 10, pp. 922–942. doi: 10.1134/S106193480810002X.
  19. Kesavan S., Kumar D., Lee Y., Shim J-J. Determination of tetracycline in the presence of major interference in human urine samples using polymelamine/electrochemically reduced graphene oxide modified electrode. Sens. Actuators, B, 2017, vol. 241, pp. 455–465. doi: 10.1016/j.snb.2016.10.091.
  20. Bougrini M., Florea A., Cristea C., Sandulescu R., Vocanson F., Errachid A., Bouchikhi B., El Bari N., Jaffrezic-Renault N. Development of a novel sensitive molecularly imprinted polymer sensor based on electropolymerization of a microporous-metalorganic framework for tetracycline detection in honey. Food Control, 2016, vol. 59, pp. 424–429. doi: 10.1016/j.foodcont.2015.06.002.
  21. Shaidarova L.G., Gedmina A.V., Chelnokova I.A., Budnikov G.K. Determination of tetracycline antibiotics using the electrocatalytic response of an electrode modified by a mixed-valence ruthenium oxide-ruthenium cyanide film. Pharm. Chem. J., 2008, vol. 42, no. 9, pp. 545–549. doi: 10.1007/s11094-009-0165-7.
  22. Dizavandi Z.R., Alikbar A., Sheykhan M. A novel Pb-poly aminophenol glassy carbon electrode for determination of tetracycline by adsorptive differential pulse cathodic stripping voltammetry. Electrochim. Acta, 2017, vol. 227, pp. 345–356. doi: 10.1016/j.electacta.2016.12.167
  23. Shaidarova L.G., Gedmina A.V., Demina V.D. Voltammetric determination of guanine on the electrode modified by gold deposit and nafion film. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2016, vol. 158, no. 3, pp. 369–380. (In Russian)
  24. Podlovchenko B.I., Andreev V.N. Electrocatalysis on polymer-modified electrodes. Russ. Chem. Rev., 2002, vol. 71, no. 10, pp. 837–851. doi: 10.1070/RC2002v071n10ABEH000672.
  25. Budnikov G.K., Maistrenko V.N., Vyaselev M.R. Osnovy sovremennogo elektrokhimicheskogo analiza [Fundamentals of Modern Electrochemical Analysis]. Moscow, Mir, Binom LZ, 2003. 592 p. (In Russian)
  26. Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem., 1979, vol. 101, no. 1, pp. 19–28. doi: 10.1016/S0022-0728(79)80075-3.
  27. Andrieux C.P., Saveant J.M. Heterogeneous (chemically modified electrodes, polymer electrodes) vs. homogeneous catalysis of electrochemical reactions. J. Electroanal. Chem., 1978, vol. 93, no. 2, pp. 163–168. doi: 10.1016/S0022-0728(78)80230-7.


The content is available under the license Creative Commons Attribution 4.0 License.