G.K. Ziyatdinova*, E.V. Guss**, E.N. Yakupova***, H.C. Budnikov****

Kazan Federal University, Kazan, 420008 Russia

E-mail: *Ziyatdinovag@mail.ru, **Kozlova.Ekaterina1992@mail.ru,

***Yakupova.Elvira1996@mail.ru, ****Herman.Budnikov@kpfu.ru

Received September 11, 2018


Full text PDF

DOI: 10.26907/2542-064X.2019.1.5-19

For citation: Ziyatdinova G.K., Guss E.V., Yakupova E.N., Budnikov H.C. An electrode based on electropolymerized naringin for voltammetry. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2019, vol. 161, no. 1, pp. 5–19. doi: 10.26907/2542-064X.2019.1.5-19. (In Russian)

Abstract

The working conditions of naringin electropolymerization on the glassy carbon electrode modified with multi-walled carbon nanotubes (MWNT/GCE) under the conditions of potentiodynamic electrolysis have been found. The effect of monomer concentration, polarization window, potential scan rate, and number of cycles on the electrochemical properties of the polynaringin-modified electrode has been evaluated using hexacyanoferrate(II) ions as a redox standard. The best results have been observed for the polymeric coverage obtained from 0.20 mM naringin by tenfold potential cycling in the range of 0.2–0.8 V at a scan rate of 75 mV/s in the Britton-Robinson buffer solution, pH 8.0. The surface of the glassy carbon and modified electrodes has been characterized by scanning electron microscopy, cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy. The high porosity of the polynaringin layer leads to an increase of the electrode effective surface area in comparison to GCE (8.2 ? 0.3 and 12.6 ? 0.6 mm2 for GCE and polynaringin/MWNT/GCE, respectively). The electrochemical impedance spectroscopy data indicate an increase of the electron transfer rate on the polynaringin-modified electrode in comparison to GCE and MWNT/GCE (6.0 ? 0.5 kΩ vs. 181 ? 5 and 6.8 ? 0.3 kΩ, respectively).

Keywords: chemically modified electrodes, polymeric films, electropolymerization, naringin

Acknowledgements. The financial support of the Russian Foundation for Basic Research (project no. 16-03-00507-a) is gratefully acknowledged.


References

  1. Wang J. Analytical Electrochemistry. New Jersey, Wiley-VCH Pub, 2006. 272 p.

  2. Stradiotto N.R., Yamanaka H., Zanoni M.V.B. Electrochemical sensors: A powerful tool in analytical chemistry. J. Braz. Chem. Soc., 2003, vol. 14, no. 2, pp. 159–173. doi: 10.1590/S0103-50532003000200003.

  3. Budnikov H.C., Evtugyn G.A., Maistrenko V.N. Modifitsirovannye elektrody dlya vol'tamperometrii v khimii, biologii i meditsine [Modified Electrodes for Voltammetry in Chemistry, Biology, and Medicine]. §?oscow, Binom. Lab. Znanii, 2012. 416 p. (In Russian)

  4. Ziyatdinova G.K., Budnikov H.C. Carbon nanomaterials and surfactants as electrode surface modifiers in organic electroanalysis. In: Shtykov S.N. (Ed.) Nanoanalytics: Nanoobjects and Nanotechnologies in Analytical Chemistry. Berlin, Boston, De Gruyter, 2018, pp. 223–252. doi: 10.1515/9783110542011-007.

  5. Lukachova L.V., Shkerin E.A., Puganova E.A., Karyakina E.E., Kiseleva S.G., Orlov A.V., Karpacheva G.P., Karyakin A.A. Electroactivity of chemically synthesized polyaniline in neutral and alkaline aqueous solutions: Role of self-doping and external doping. J. Electroanal. Chem., 2003, vol. 544, pp. 59–63. doi: 10.1016/S0022-0728(03)00065-2.

  6. Zhou M., Heinze J. Electropolymerization of pyrrole and electrochemical study of polypyrrole: 1. Evidence for structural diversity of polypyrrole. Electrochim. Acta, 1999, vol. 44, no. 11, pp. 1733–1748. doi: 10.1016/S0013-4686(98)00293-X.

  7. Thang T.V., Cougnon C. Redox properties and reactivity of a polythiophene-modified electrode in presence of ferrocene in solution or fixed onto the polymer network. J. Electroanal. Chem., 2011, vol. 657, nos. 1–2, pp. 79–83. doi: 10.1016/j.jelechem.2011.03.016.

  8. Manjunatha J.G., Swamy B.E.K., Deraman M., Mamatha G.P. Simultaneous voltammetric measurement of ascorbic acid and dopamine at poly (vanillin) modified carbon paste electrode: A cyclic voltammetric study. Pharma Chem., 2012, vol. 4, no. 6, pp. 2489–2497.

  9. Tahar N.B., Savall A. Electropolymerization of phenol on a vitreous carbon electrode in alkaline aqueous solution at different temperatures. Electrochim. Acta, 2009, vol. 55, no. 2, pp. 465–469. doi: 10.1016/j.electacta.2009.08.040.

  10. Samet Y., Kraiem D., AbdelhЁ?di R. Electropolymerization of phenol, o-nitrophenol and o-metho­xyphenol on gold and carbon steel materials and their corrosion protection effects. Prog. Org. Coat., 2010, vol. 69, no. 4, pp. 335–343. doi: 10.1016/j.porgcoat.2010.07.006.

  11. Franco D.L., Afonso A.S., Vieira S.N., Ferreira L.F., Gonçalves R.A., Brito-Madurro A.G., Madurro J.M. Electropolymerization of 3-aminophenol on carbon graphite surface: Electric and morphologic properties. Mater. Chem. Phys., 2008, vol. 107, nos. 2–3, pp. 404–409. doi: 10.1016/j.matchemphys.2007.08.006.

  12. Sayyah S.M., El-Rabiey M.M., Abd El-Rehim S.S., Azooz R.E. Electropolymerization kinetics of o 99, no. 6, pp. 3093–3109. doi: 10.1002/app.22915.

  13. Pontie M., Bedioui F., Devynck J. New composite modified carbon microfibers for sensitive and selective determination of physiologically relevant concentrations of nitric oxide in solution. Electroanalysis, 1999, vol. 11, no. 12, pp. 845–850. doi: 10.1002/(SICI)1521-4109(199908)11%3A12<845%3A%3AAID-ELAN845>3.0.CO%3B2-D.

  14. Adenier A., Chehimi M.M., Gallardo I., Pinson J., VilЁ? N. Electrochemical oxidation of aliphatic amines and their attachment to carbon and metal surfaces. Langmuir 2004, vol. 20, no. 19, pp. 8243–8253. doi: 10.1021/la049194c.

  15. Ciszewski A., Milczarek G. Polyeugenol-modified platinum electrode for selective detection of dopamine in the presence of ascorbic acid. Anal. Chem., 1999, vol. , no. 5, pp. 1055–1061. doi: 10.1021/ac9808223.

  16. Ciszewski A., Milczarek G. Preparation and general properties of chemically modified electrodes based on electrosynthesized thin polymeric films derived from eugenol. Electroanalysis, 2001, vol. 13, no. 10, pp. 860–867. doi: 10.1002/1521-4109(200106)13:10<860::AID-ELAN860>3.0.CO;2-R.

  17. Okumura L.L., Stradiotto N.R., Rees N.V., Compton R.G. Modifying glassy carbon (GC) electrodes to confer selectivity for the voltammetric detection of L-cysteine in the presence of DL-homocysteine and glutathione. Electroanalysis, 2008, vol. 20, no. 8, pp. 916–918. doi: 10.1002/elan.200704151.

  18. Paul D.W., Prajapati I., Reed M.L. Electropolymerized eugenol: Evaluation as a protective film for oxygen sensing. Sens. Actuators, B, 2013, vol. 183, pp. 129–135. doi: 10.1016/j.snb.2013.03.090.

  19. Ziyatdinova G., Kozlova E., Budnikov H. –1668. doi: 10.1002/elan.201400712.

  20. Ziyatdinova G., Kozlova E., Budnikov H. Polyquercetin/MWNT-modified electrode for the determination of natural phenolic antioxidants. Electroanalysis, 2017, vol. 29, no. 11, pp. 2610–2619. doi: 10.1002/elan.201700440.

  21. Oztekin Y., Yazicigil Z., Ramanaviciene A., Ramanavicius A. Square wave voltammetry based on determination of copper(II) ions by polyluteolin- and polykaempferol-modified electrodes. Sens. Actuators, B, 2011, vol. 152, pp. 37–48. doi: 10.1016/j.talanta.2011.05.005.

  22. Abdel-Hamid R., Newair E.F. Voltammetric determination of polyphenolic content in pomegranate juice using a poly (gallic acid)/multiwalled carbon nanotube modified electrode. Beilstein J. Nanotechnol., 2016, vol. 7, pp. 1104–1112. doi: 10.3762/bjnano.7.103.

  23. Ziyatdinova G., Kozlova E., Budnikov H. Poly(gallic acid)/MWNT-modified electrode for the selective and sensitive voltammetric determination of quercetin in medicinal herbs. J. Electroanal. Chem., 2018, vol. 821, pp. 73–81. doi: 10.1016/j.jelechem.2017.12.071.

  24. Lee P.T., Compton R.G. Electrochemical detection of NADH, cysteine, or glutathione using a caffeic acid modified glassy carbon electrode. Electroanalysis, 2013, vol. 25, no. 7, pp. 1613–1620. doi: 10.1002/elan.201300145.

  25. Ziyatdinova G., Kozlova E., Budnikov H. 10.1016/j.electacta.2018.03.102.

  26. GonzЁўlez E.A., Nazareno M.A., Borsarelli C.D. Enthalpy–entropy compensation effect in the chalcone formation from naringin in water-ethanol mixtures. J. Chem. Soc. Perkin Trans., 2002, vol. 2, no. 12, pp. 2052–2056. doi: 10.1039/B207663B.

  27. Enache T.A., Oliveira-Brett A.M. Phenol and para-substituted phenols electrochemical oxidation pathways. J. Electroanal. Chem., 2011, vol. 655, no. 1, pp. 9–16. doi: 10.1016/j.jelechem.2011.02.022.

  28. Popa O.M., Diculescu V.C. Electrochemical behaviour of isoflavones genistein and biochanin A at a glassy carbon electrode. Electroanalysis, 2013, vol. 25, no. 5, pp. 1201–1208. doi: 10.1002/elan.201200657.

  29. Sayyah S.M., Khaliel A.B., Azooz R.E., Mohamed F. Electropolymerization of some ortho-substituted phenol derivatives on Pt-electrode from aqueous acidic solution; kinetics, mechanism, electrochemical studies and characterization of the polymer obtained. In: Schab-Balcerzak E. (Ed.) Electropolymerization. In TechOpen, 2011, pp. 21–52. doi: 10.5772/34357.

  30. Bard A.J., Faulkner L.R. Electrochemical Methods: Fundamentals and Applications. New York, John Wiley & Sons, 2001. 864 p.

  31. Lasia A. Electrochemical impedance spectroscopy and its applications. In: Conway B.E., Bockris J.O'M., White R.E. (Eds.) Modern Aspects of Electrochemistry. Vol. 32. New York, Kluwer Acad. Publ., 2002, pp. 143–248. doi: 10.1007/0-306-46916-2_2.



The content is available under the license Creative Commons Attribution 4.0 License.