E.A. Boulygina*, V.V. Bochkarev**, V.D. Solovyev***

Kazan Federal University, Kazan, 420008 Russia

E-mail: *boulygina@gmail.com, **vbochkarev@mail.ru, ***maki.solovyev@mail.ru

Received April 24, 2017

Full text PDF

Abstract

The origin of humans and their settling around the globe are explored using various scientific methods. Genomic profiling data increasing in volume every day are of particular interest to researchers of these problems. In the current post-genomic era, a large amount of data on the genetic profiling of human ethnic groups has been accumulated, thereby making it possible to clarify the direction of human migration and distribution across the globe.

Here, we have presented a method for studying and reconstructing the migration events based on the joint analysis of data on the genetic (Y chromosomal and mitochondrial markers and single nucleotide variation panel) and linguistic (grammar features) diversity of Eurasian populations.

We have shown that, on the one hand, the direction of human migrations is associated with their contacts with neighboring ethnicities, and, on the other hand, the correlation coefficient of genetic and linguistic distances is closely related to and the shape of the points cloud on the scatter plots. The presence of a significant negative correlation is a reliable migration event signal.

Moreover, we have described a few patterns of correlation expected between population's genetic pool and linguistic features. The study covers such a large territory (the whole Eurasia, except the southeastern area) for the first time and is based on the representative genetic and linguistic databases.

Keywords: coevolution of genes and languages, gene geography, migrations, Y chromosome, mitochondrial DNA, SNP

Acknowledgments. The study was performed within the framework of the state task of the Ministry of Science and Education of the Russian Federation (agreement no. 34.5517.2017/VU) and using the equipment of the Interdisciplinary Center of Shared Facilities, Kazan Federal University.

Figure Captions

Fig. 1. The scatter diagram of genetic and linguistic distances from the Mongolian population/language to other populations/languages; a) SNP data, b) data on Y haplogroups. The language families of the languages under study are shown with color.

Fig. 2. The scatter diagram of genetic and linguistic distances from the Portuguese population/language to other populations/languages under study based on the data on Y haplogroups. The language families of the languages under study are shown with color.

Fig. 3. The scatter diagram of genetic and linguistic distances from the Hungarian population/language to other populations/languages under study based on the data on Y haplogroups. The language families of the languages under study are shown with color.

Fig. 4. The scatter diagram of genetic and linguistic distances from the Kalmyk population/language to other populations/languages under study based on the data on mtDNA. The language families of the languages under study are shown with color.

References

  1. Cavalli-Sforza L.L. Genes, peoples, and languages. PNAS, 1997, vol. 94, no. 15, pp. 7719–7724. doi: 10.1073/pnas.94.15.7719.
  2. Sajantila A., Lahermo P., Anttinen T., Lukka M., Sistonen P., Savontaus M.L., Aula P., Beckman L., Tranebjaerg L., Gedde-Dahl T., Issel-Tarver L., DiRienzo A., Pääbo S. Genes and languages in Europe: An analysis of mitochondrial lineages. Genome Res., 1995, vol. 5, no. 1, pp. 42–52.
  3. Hunley K., Dunn M., Lindström E., Reesink G., Terrill A., Healy M.E., Koki G., Friedlaender F.R., Friedlaender J.S. Genetic and linguistic coevolution in Northern Island Melanesia. PLoS Genet., 2008, vol. 4, no. 10, art. e1000239, pp. 1–14. doi: 10.1371/journal.pgen.1000239.
  4. Balanovsky O., Dibirova K., Dybo A., Mudrak O., Frolova S., Pocheshkhova E., Haber M., Platt D., Schurr Th., Haak W., Kuznetsova M., Radzhabov M., Balaganskaya O., Romanov A., Zakharova T., Soria-Hernanz D.F., Zalloua P., Koshel S., Ruhlen M., Renfrew C., Wells R.S., Tyler-Smith Ch., Balanovska E., The Genographic Consortium 2011 Parallel evolution of genes and languages in the Caucasus region. Mol. Biol. Evol., 2011, vol. 28, no. 10, pp. 2905–2920. doi: 10.1093/molbev/msr126.
  5. Lansing S., Cox M.P., Downey S.S., Gabler B.M., Hallmark B., Karafet T.M., Norquest P., Schoenfelder J.W., Sudoyo H., Watkins J.C., Hammer M.F. Coevolution of languages and genes on the island of Sumba, eastern Indonesia. Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 41, pp. 16022–16026. doi: 10.1073/pnas.0704451104.
  6. Balanovskii O.P., Pshenichnov A.S., Sychev R.S., Evseeva I.V., Balanovskaya E.V. Y-base: Y chromosome haplogroup frequencies among the peoples of the world. 2010. Available at: http://www.genofond.ru/genofond.ru/default22a2e.html?s=0&p=711. (In Russian)
  7. Zaporozhchenko V.V., Balanovskii O.P., Pshenichnov A.S., Balanovskaya E.V. Database “Frequencies of mtDNA haplogroups in Western Eurasia”, version 1.0. 2007. Available at: http://www.genofond.ru/genofond.ru/default26226.html?s=0&p=333. (In Russian)
  8. Purdue M.P., Johansson M., Zelenika D., Toro J.R., Scelo G., Moore L.E., Prokhortchouk E., Wu X., Kiemeney L.A., Gaborieau V., Jacobs K.B., Chow W.H., Zaridze D., Matveev V., Lubinski J., Trubicka J., Szeszenia-Dabrowska N., Lissowska J., Rudnai P., Fabianova E., Bucur A., Bencko V., Foretova L., Janout V., Boffetta P., Colt J.S., Davis F.G., Schwartz K.L., Banks R.E., Selby P.J., Harnden P., Berg C.D., Hsing A.W., Grubb R.L. 3rd, Boeing H., Vineis P., Clavel-Chapelon F., Palli D., Tumino R., Krogh V., Panico S., Duell E.J., Quirós J.R., Sanchez M.J., Navarro C., Ardanaz E., Dorronsoro M., Khaw K.T., Allen N.E., Bueno-de-Mesquita H.B., Peeters P.H., Trichopoulos D., Linseisen J., Ljungberg B., Overvad K., Tjønneland A., Romieu I., Riboli E., Mukeria A., Shangina O., Stevens V.L., Thun M.J., Diver W.R., Gapstur S.M., Pharoah P.D., Easton D.F., Albanes D., Weinstein S.J., Virtamo J., Vatten L., Hveem K., Njølstad I., Tell G.S., Stoltenberg C., Kumar R., Koppova K., Cussenot O., Benhamou S., Oosterwijk E., Vermeulen S.H., Aben K.K., van der Marel S.L., Ye Y., Wood C.G., Pu X., Mazur A.M., Boulygina E.S., Chekanov N.N., Foglio M., Lechner D., Gut I., Heath S., Blanche H., Hutchinson A., Thomas G., Wang Z., Yeager M., Fraumeni J.F. Jr., Skryabin K.G., McKay J.D., Rothman N., Chanock S.J., Lathrop M., Brennan P. Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3. Nat. Genet., 2011, vol. 43, no. 1, pp. 60–65. doi: 10.1038/ng.723.
  9. Excoffier L., Smouse P.E., Quattro J.M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics, 1992, vol. 131, no. 2, pp. 479–491.
  10. Polyakov V.N., Solovyev V.D. Komp'yuternye modeli i metody v tipologii i komparativistike [Computer Models and Methods in Typology and Comparative Studies]. Kazan, Kazan. Gos. Univ., 2006. 210 p. (In Russian)
  11. Nei M., Tajima F. Genetic drift and estimation of effective population size. Genetics, 1981, vol. 98, no. 3, pp. 625–640.
  12. Moritz C., Dowling T. E., Brown W. M. Evolution of animal mitochondrial DNA: Relevance for population biology and systematics. Annu. Rev. Ecol. Syst., 1987, vol. 18, no. 1, pp. 269–292.
  13. Seielstad M., Minch E., Cavalli-Sforza L. Genetic evidence for a higher female migration rate in humans. Nat. Genet., 1998, vol. 20, no.3, pp. 278–280.
  14. Tallerman M., Gibson K. The Oxford Handbook of Language Evolution. Oxford, Oxford Univ. Press, 2012. 763 p.


For citation: Boulygina E.A., Bochkarev V.V., Solovyev V.D. Comparison of genetic and linguistic data as an approach to studying human migrations. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2018, vol. 160, no. 2, pp. 227–239. (In Russian)


The content is available under the license Creative Commons Attribution 4.0 License.