A.V. Koryukin*, A.A. Akhmadeev

Kazan Federal University, Kazan, 420008 Russia

Institute for Advanced Study, Tatarstan Academy of Sciences, Kazan, 420111 Russia

 E-mail: *akoryukin@gmail.com

Received December 7, 2017

Full text PDF

Abstract

Tamm plasmons (TP) attract interest due to their applications in a new type of lasers and high sensitivity sensors. Hybrid plasmonic-photonic crystals allow direct excitation of TP without prisms and gratings. These crystals consist of two components: photonic crystal (PC) and metal layer on the surface of PC. The optical transmission has been still insufficiently studied for the hybrid plasmonic-photonic crystal with a buffer layer between PC and a layer of gold. In this paper, we have considered the dependence of the wavelength of the TP on the thickness and refraction index of the buffer layer. Photonic crystal has spatial periodicity of the refraction index in one direction. The transmission spectra of 1D plasmonic-photonic crystals have been calculated by FDTD modeling. The wavelength of the transmission peak in the photonic band gap increases along with the increase of the refractive index and thickness of the first dielectric layer in the metal-PC interface. The intensity of the transmission peak in the photonic band gap increases and then decreases along with the increase with the thickness of the first dielectric layer in metal-PC interface. Therefore, we can change the distribution of energy inside the hybrid photonic-plasmonic mode. The wavelength of the TP can be changed by tuning the refractive index and the thickness of the buffer layer. These results have application potential for developing lasers and sensors.

Keywords: Tamm plasmon polaritons, photonic crystals, metal-dielectric structures

Figure Captions

Fig. 1. Modeling scheme. The upward arrow indicates light propagation.

Fig. 2. The transmission spectrum of the photonic crystal (PC).

Fig. 3. The transmission spectrum of hybrid plasmonic-photonic crystal (HPPC), a layer of gold on the boundary layer of PC with the refraction value of 1.46.

Fig. 4. The transmission spectrum of HPPC with the refraction value of 1.95.

Fig. 5. The transmission spectrum of HPPC with the buffer layer thickness of 50 nm (n  = 1.46).

Fig. 6. The dependence of the transmission peak wavelength on the buffer layer thickness with the refraction value of 1.46.

Fig. 7. The dependence of the transmission peak intensity on the buffer layer thickness with the refraction value of 1.46.

Fig. 8. The transmission spectrum of HPPC with the buffer layer thickness of 160 nm (n  = 1.95).

Fig. 9. The dependence of the transmission peak wavelength on the buffer layer thickness with the refraction value of 1.95.

Fig. 10. The dependence of the transmission peak intensity on the buffer layer thickness with the refraction value of 1.95.

References

1. Barnes W.L., Dereux A., Ebbesen T.W. Surface plasmon subwavelength optics. Nature, 2003, vol. 424, pp. 824–830. doi: 10.1038/nature01937.

2. Homola J., Ye S.S., Gauglitz G. Surface plasmon resonance sensors: Review. Sens. Actuators, B, 1999, vol. 54, nos. 1–2, pp. 3–15. doi: 10.1016/S0925-4005(98)00321-9.

3. Kneipp K., Kneipp H., Itzkan I., Dasari R.R., Feld M.S. Surface-enhanced Raman scattering and biophysics. J. Phys.: Condens. Matter, 2002, vol. 14, no. 18, pp. R597–R624. doi: 10.1088/0953-8984/14/18/202.

4. Krasavin A.V., Zayats A.V., Zheludev N.I. Active control of surface plasmon-polariton waves. J. Opt. A: Pure Appl. Opt., 2005, vol. 7, pp. S85–S89. doi: 10.1088/1464-4258/7/2/011.

5. Zayats A.V., Smolyaninov I.I. Near-field photonics: surface plasmon polaritons and localized surface plasmons. J. Opt. A, Pure Appl. Opt., 2003, vol. 5, pp. S16–S50. doi: 10.1088/1464-4258/5/4/353.

6. Symonds C., Lheureux G., Hugonin J.P., Greffet J.J., Laverdant J., Brucoli G., Lemaitre A., Senellart P., Bellessa J. Confined Tamm plasmon lasers. Nano Lett., 2013, vol. 13, pp. 3179–3184. doi: 10.1021/nl401210b.

7. Zhang W.L., Wang F., Rao Y.J., Jiang Y. Novel sensing concept based on optical Tamm plasmon. Opt. Express, 2014, vol. 22, pp. 14524–14529. doi: 10.1364/OE.22.014524.

8. Novotny L., Hecht B. Principles of Nano-Optics. New York, Cambridge Univ. Press, 2006. 539 p.

9. Maier S. Plasmonics: Fundamentals and Applications. Springer, 2007. 224 p.

10. Kaliteevski M., Iorsh I., Brand S., Abram R.A., Chamberlain J.M., Kavokin A.V., Shelykh I.A. Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror. Phys. Rev. B, 2007, vol. 76, no. 16, art. 165415, pp. 1–5. doi: 10.1103/PhysRevB.76.165415.

11. Sasin M.E., Seisyan R.P., Kaliteevski M.A., Brand S., Abram R.A., Chamberlain J.M., Iorsh I.V., Shelykh I.A., Egorov A.Yu., Vasil'ev A.P., Mikhrin V.S., Kavokin A.V. Tamm plasmon-polaritons: First experimental observation. Superlattices Microstruct., 2010, vol. 47, no. 1, pp. 44–49. doi: 10.1016/j.spmi.2009.09.003.

12. De Angelis F., Das G., Candeloro P., Patrini M., Galli M., Bek A., Lazzarino M., Maksymov I., Liberale C., Andreani L.C., Di Fabrizio E. Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. Nat. Nanotechnol., 2010, vol. 5, pp. 67–72. doi: 10.1038/NNANO.2009.348.

13. Gazizov A.R., Zohrabi M., Kharintsev S.S., Salakhov M.Kh. Improvement of near-field enhancement with a grating-assisted gold tapered nanoantenna. J. Phys.: Conf. Ser., 2016, vol. 714, art. 012010, pp. 1–5. doi: 10.1088/1742-6596/714/1/012010.

14. Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett., 1987, vol. 58, pp. 2059–2062. doi: 10.1103/PhysRevLett.58.2059.

15. Joannopoulos J.D., Johnson S.G., Winn J.N., Meade R.D. Photonic Crystals: Molding the Flow of Light. Princeton, Princeton Univ. Press, 2008. 286 p.

16. Ding B., Pemble M.E., Korovin A.V., Peschel U., Romanov S.G. Three-dimensional photonic crystals with an active surface: Gold film terminated opals. Phys. Rev. B, 2010, vol. 82, art. 035119, pp. 1–9. doi: 10.1103/PhysRevB.82.035119.

17. Lopez-Garcia M., Galisteo-Lopez J.F., Blanco A., Sanchez-Marcos J., Lopez C., Garcia-Martin A. Enhancement and directionality of spontaneous emission in hybrid self-assembled photonic-plasmonic crystals. Small, 2010, vol. 6, no. 16, pp. 1757–1761. doi: 10.1002/smll.201000216.

18. Lopez-Garcia M., Galisteo-Lopez J.F., Blanco A., Lopez C., Garcia-Martin A. High degree of optical tunability of self-assembled photonic-plasmonic crystals by filling fraction modification. Adv. Funct. Mater., 2010, vol. 20, pp. 4338–4343. doi: 10.1002/adfm.201001192.

19. Ding B., Bardosova M., Pemble M.E., Korovin A.V., Peschel U., Romanov S.G. Broadband omnidirectional diversion of light in hybrid plasmonic-photonic heterocrystals. Adv. Funct. Mater., 2011, vol. 21, pp. 4182–4192. doi: 10.1002/adfm.201100695.

20. Romanov S.G., Korovin A.V., Regensburger A., Peschel U. Hybrid colloidal plasmonic-photonic crystals. Adv. Mater., 2011, vol. 23, pp. 2515–2533. doi: 10.1002/adma.201100460.

21. Galisteo-Lopez J.F., Lopez-Garcia M., Blanco A., Lopez C. Studying light propagation in self-assembled hybrid photonic-plasmonic crystals by fourier microscopy. Colloidal Nanoplasmonics, 2012, vol. 28, pp. 9174–9179. doi: 10.1021/la300448y.

22. Chen Y., Zhang D., Zhu L., Wang R., Wang P., Ming H., Badugu R., Lakowicz J.R. Tamm plasmon- and surface plasmon-coupled emission from hybrid plasmonic-photonic structures. Optica, 2014, vol. 1, no. 6, pp. 407–413. doi: 10.1364/OPTICA.1.000407.

23. Liu T-l., Russel K.J., Cui S., Hu E.L. Two-dimensional hybrid photonic/plasmonic crystal cavities. Opt. Express, 2014, vol. 22, no. 7, pp. 8219–8225. doi: 10.1364/OE.22.008219.

24. Lin T., Lin J., Guo J., Kan H. Suppression of photonic bandgap reflection by localized surface plasmons in self-assembled plasmonic-photonic crystals. Adv. Opt. Mater., 2015, vol. 3, pp. 1470–1475. doi: 10.1002/adom.201500168.

25. Frederich H., Wen F., Laverdant J., Coolen L., Schwob C., Maitre A. Isotropic broadband absorption by a macroscopic self-organized plasmonic crystal. Opt. Express, 2011, vol. 19, no. 24, pp. 24424–24433. doi: 10.1364/OE.19.024424.

26. Afinogenov B.I., Bessonov V.O., Nikulin A.A., Fedyanin A.A. Observation of hybrid state of Tamm and surface plasmon-polaritons in one-dimensional photonic crystals. Appl. Phys. Lett., 2013, vol. 103, no. 6, art. 061112, pp. 1–4. doi: 10.1063/1.4817999.


For  citation:  Koryukin  A.V.,  Akhmadeev  A.A.  Calculation  of  the  transmission  peak at  the  band  gap  of  one-dimensional  photonic  crystal  with  an  active  layer.  Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2018, vol. 160, no. 1, pp. 89–99. (In Russian)


The content is available under the license Creative Commons Attribution 4.0 License.