A.R. Gazizova,b*, S.S. Kharintseva,b, M.Kh. Salakhova,c

aKazan Federal University, Kazan, 420008 Russia

bTatarstan Academy of Sciences, Institute of Applied Research, Kazan, 420111 Russia

cTatarstan Academy of Sciences, Kazan, 420111 Russia

E-mail: *equus.meteores@gmail.com

Received September 12, 2017

Full text PDF

Abstract

This paper is devoted to modeling of the Raman scattering in the ``antenna – sample'' system. The system consists of an anisotropic azo-dye molecule attached covalently to a polymer chain and a plasmonic antenna located near the molecule. A model of near-field interaction in a system of dipoles has been proposed. The model takes into account changes in the polarizabilities of both the antenna and the molecule due to the mutual influence of their near field on each other. Based on the proposed model, the spectra of the tip-enhanced Raman scattering in longitudinally and transversely polarizied field for both isomers of azo-chromophore have been simulated. The static polarizability of the molecule and the Raman-tensors of the vibration modes have been determined by the quantum chemical calculations of a molecule with one monomer according to the density functional theory.

Keywords: azo-chromophore, azo-polymer film, plasmonic antenna, tip-enhanced Raman scattering, near-field polarization, density functional theory, polarizability tensor, Raman tensor

Acknowledgments. We are grateful to K.L. Shukhina and Prof. A.I. Fishman (Kazan Federal University) for their help in the analysis of oscillation modes of the molecule and for obtaining and providing us with the experimental spectra of IR absorption and Raman scattering for the studied molecule.

The study was supported by the Ministry of Education and Science of the Russian Federation (state assignment no. 3.7737.2017/7.8) and performed by using the equipment of the Center of Shared Facilities of Kazan Federal University. The work was funded by the Ministry of Education and Science of the Russian Federation (contract no. 14.575.21.0149 (RFMEFI57517X0149)).

Figure Captions

Fig. 1. The structure of the Disperse Orange 3 (DO3) molecule attached to the CFAO polymer.

Fig. 2. The calculated spectra of IR absorption ( a) and non-resonance Raman scattering ( b) for the cis-isomer and spectra of IR absorption ( c) and non-resonance Raman scattering ( d) for trans-isomer of the DO3 molecule. Scale factor x = 0.981.

Fig. 3. The simulated tip-enhanced Raman spectra of the DO3 molecule attached to the polymer repeat unit:  a) cis-isomer in z-polarization of the scattered light,  b) cis-isomer in transversal polarization,  c) trans-isomer in z-polarization,  d) trans-isomer in transversal polarization. Scale factor x = 0.981.

References

1. Kharintsev S.S., Fishman A.I., Saikin S.K., Kazarian S.G. Near-field Raman dichroism of azo-polymers exposed to nanoscale dc electrical and optical poling. Nanoscale, 2016, vol. 8, no. 47, pp. 19867–19875. doi: 10.1039/c6nr07508h.

2. Mino T., Saito Y., Yoshida H., Kawata S., Verma P. Molecular orientation analysis of organic thin films by z-polarization Raman microscope. J. Raman Spectrosc., 2012, vol. 43, no. 12, pp. 2029–2034. doi: 10.1002/jrs.4118.

3. Novotny L., van Hulst N. Antennas for light. Nat. Photonics, 2011, vol. 5, pp. 83–90. doi: 10.1038/nphoton.2010.237.

4. Krasnok A.E., Maksimov I.S. Denisyuk A.I., Belov P.A., Miroshnichenko A.E., Simovskii K.R., Kivshar' Yu.S. Optical nanoantennas. Usp. Fiz. Nauk, 2013, vol. 183, no. 11, pp. 561–589. doi: 10.3367/UFNr.0183.201306a.0561. (In Russian)

5. Mino T., Saito Y., Verma P. Quantitative analysis of polarization-controlled tip-enhanced raman imaging through the evaluation of the tip dipole. ACS Nano, 2014, vol. 8, no. 10, pp. 10187–10195. doi: 10.1021/nn5031803.

6. Mino T., Saito Y., Verma P. Control of near-field polarizations for nanoscale molecular orientational imaging. Appl. Phys. Lett., 2016, vol. 109, no. 4, art. 041105, pp. 1–5. doi: 10.1063/1.4960016.

7. Saito Y., Verma P. Polarization-controlled Raman microscopy and nanoscopy. J. Phys. Chem., 2012, vol. 3, no. 10, pp. 1295–1300. doi: 10.1021/jz300213t.

8. Yano T, Ichimura T., Kuwahara S., H'Dhili F., Uetsuki K, Okuno Y., Verma P., Kawata S. Tip-enhanced nano-Raman analytical imaging of locally induced strain distribution in carbon nanotubes. Nat. Commun., 2013, vol. 4, art. 3592, pp. 1–7. doi: 10.1038/ncomms3592.

9. Ossikovski R., Nguyen Q., Picardi G. Simple model for the polarization effects in tip-enhanced Raman spectroscopy. Phys. Rev. B, 2007, vol. 75, no. 4, art. 045412, pp. 1–9. doi: 10.1103/PhysRevB.75.045412.

10. Cançado L.G., Jorio A., Ismach A., Joselevich E., Hartschuh A., Novotny L. Mechanism of near-field Raman enhancement in one-dimensional systems. Phys. Rev. Lett., 2009, vol. 103, no. 18, art. 186101, pp. 1–4. doi: 10.1103/PhysRevLett.103.186101.

11. Maximiano R.V., Beams R., Novotny L., Jorio A., Cançado L.G. Mechanism of near-field Raman enhancement in two-dimensional systems. Phys. Rev. B, 2012, vol. 85, no. 13, art. 235434, pp. 1–8. doi: 10.1103/PhysRevB.85.235434.

12. Nikonorova N.A., Balakina M.Yu., Fominykh O.D., Pudovkin M.S., Vakhonina T.A., Diaz-Calleja R., Yakimanskya A.V. Dielectric spectroscopy and molecular dynamics of epoxy oligomers with covalently bonded nonlinear optical chromophores. Chem. Phys. Lett., 2012, vol. 552, pp. 114–121. doi: 10.1016/j.cplett.2012.09.053.

13. Merlen A., Valmalette J.C., Gucciardi P.G., Lamy de la Chapelle M., Frigout A., Ossikovski R. Depolarization effects in tip-enhanced Raman spectroscopy. J. Raman Spectrosc., 2009, vol. 40, no. 10, pp. 1361–1370. doi: 10.1002/jrs.2424.

14. Novotny L., Hecht B. Principles of Nano-Optics. New York, Cambridge Univ. Press, 2006. 559 p.

15. Landau L.D., Lifshitz E.M. Teotericheskaya fizika [Course of Theoretical Physics]. Vol. VIII: Electrodynamics of Continuous Media. Moscow, Nauka, 1982. 621 p. (In Russian)

16. Becke A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, vol. 98, no. 7, pp. 5648–5652. doi: 10.1063/1.464913.

17. Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 1988, vol. 37, no. 2, pp. 785–789. doi: 10.1103/PhysRevB.37.785.

18. Weigend F., Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys., 2005, vol. 7, no. 18, pp. 3297–3305. doi: 10.1039/B508541A.

19. Grimme S., Ehrlich S., Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem., 2011, vol. 32, no. 15, pp. 1456–1465. doi: 10.1002/jcc.21759.

20. Grimme S., Ehrlich S., Antony J., Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys., 2010, vol. 132, no. 7, art. 154104, pp. 1–19. doi: 10.1063/1.3382344.

21. Neese F. The ORCA program system. Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2012, vol. 2, no. 1, pp. 73–78. doi: 10.1002/wcms.81.

22. Kharintsev S.S., Shukhina K.L., Fishman A.I., Saikin S.K. Effect of secondary relaxation transitions on photo-induced anisotropy in glassy azobenzene-functionalized polymers. J. Mat. Chem. C, 2017, vol. 5, no. 27, pp. 6828–6833. doi: 10.1039/C7TC01652B.

23. Arnoldus H.F. Representation of the near-field, middle-field, and far-field electromagnetic Green's functions in reciprocal space. J. Opt. Soc. Am. B, 2001, vol. 18, no. 4, pp. 547–555. doi: 10.1364/JOSAB.18.000547.

24. Johnson P.B., Christy R.W. Optical constants of the noble metals. Phys. Rev. B, 1972, vol. 6, no. 12, pp. 4370–4379. doi: 10.1103/PhysRevB.6.4370.


For citation:  Gazizov  A.R.,  Kharintsev  S.S.,  Salakhov  M.Kh.  Self-consistent  model for enhancement of the Raman scattering of polarized light in azo-polymer film with a plasmonic nanoantenna. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2018, vol. 160, no. 1, pp. 61–71. (In Russian)


The content is available under the license Creative Commons Attribution 4.0 License.