G.K. Ziyatdinova*, Yu.V. Snegureva, H.C. Budnikov**

Kazan Federal University, Kazan, 420008 Russia

E-mail: *Ziyatdinovag@mail.ru, **Herman.Budnikov@kpfu.ru

Received December 13, 2017

Full text PDF

Abstract

2,2-di(4-tert-octylphenyl)-1-picrylhydrazyl (DTOPPH?) immobilized on the electrode surface has been proposed as a reagent for the evaluation of antioxidant activity (AOA). The electroreduction parameters of DTOPPH? immobilized on glassy carbon electrode (GCE) modified with carbon nanotubes, cerium and tin dioxide nanoparticles dispersed in surfactants have been studied. The best characteristics (system reversibility and maximal reduction currents) have been obtained on the electrode modified with cerium dioxide nanoparticles and cetylpyridium bromide (CPB). The reduction currents of the immobilized DTOPPH? are decreased in the presence of the phenolic antioxidants allowing application of the electrode created for their AOA evaluation. Five minutes have been shown to be enough for the reaction of antioxidants with the immobilized DTOPPH?. AOA evaluation has been performed under conditions of differential pulse voltammetry. ЕC50 parameter for tannin, quercetin, catechin and ferulic acid has been found and compared with that one based on the reaction with 2,2-diphenyl-1-picrylhydrazyl under the same conditions. The approach developed has been applied for the evaluation of AOA in juices and nectars.

Keywords: voltammetry, chemically modified electrodes, CeO2 nanoparticles, stable radicals, antioxidant activity, food analysis

Acknowledgments. The study was supported by the Russian Foundation for Basic Research (project no. 15-03-03224-a).

Figure Captions

Fig. 1. The cyclic voltammogram of 0.65 mM DTOPPH? immobilized on GCE in phosphate buffer solution, pH 7.4. The potential scan rate is 100 mV/s.

Fig. 2. Structures of the phenolic antioxidants under investigation.

Fig. 3. The cyclic voltammograms of DTOPPH?/СеО2-CPB/GCE in phosphate buffer solution, pH 7.4 (curve 1) and in the presence of 10 ?M quercetin (curve 2). The potential scan rate is 500 mV/s. The exposure time is 10 min.

Fig. 4. a) The differential pulse voltammograms of DTOPPH?/СеО2 – CPB/GCE in phosphate buffer solution, pH 7.4 (curve 1) and in the presence of ferulic acid at different concentrations: 2 –10;    3 – 50; 4 – 100; 5 – 500; 6 – 1000 and 7 – 5000 ?M. The pulse amplitude is 50 mV; the pulse time is 50 ms; the potential scan rate is 10 mV/s. The exposure time is 5 min. b) The dependence of DTOPPH? inhibition on the concentration of ferulic acid.

Fig. 5. The differential pulse voltammograms of DTOPPH?/СеО2 – CPB/GCE in phosphate buffer solution, pH 7.4 (curve 1) and in the presence of 200 ?L of pomegranate juice (a) and mango-orange nectar (b) (curve 2). The pulse amplitude is 50 mV; the pulse time is 50 ms; the potential scan rate is 10 mV/s. The exposure time is 5 min.

Fig. 6. The effect of the sample aliquot volume on the AOA value.

References

  1. Rahal A., Kumar A., Singh V., Yadav B., Tiwari R., Chakraborty S., Dhama K. Oxidative stress, prooxidants, and antioxidants: The interplay. Biomed. Res. Int., 2014, vol. 2014, art. 761264, pp. 1–19. doi: 10.1155/2014/761264.
  2. Halliwell B., Gutteridge J.M.C. Free Radicals in Biology and Medicine. 4th Ed. Oxford, Oxford Univ. Press, 2007. 888 p.
  3. Karadag A., Ozcelik B., Saner S. Review of methods to determine antioxidant capacities. Food Anal. Methods, 2009, vol. 2, no. 1, pp. 41–60. doi: 10.1007/s12161-008-9067-7.
  4. Tyurin V.Yu., Meleshonkova N.N., Dolganov A.V., Glukhova A.P., Milaeva E.R. Electrochemical method in determination of antioxidative activity using ferrocene derivatives as examples. Russ. Chem. Bull., Int. Ed., 2011, vol. 60, no. 4, pp. 647–655. doi: 10.1007/s11172-011-0100-4.
  5. Tyurin V.Yu., Zhang J., Glukhova A., Milaeva E.R. Electrochemical antioxidative activity assay of metalloporphyrins bearing 2,6-di-tert-butylphenol groups based on electrochemical DPPH-test. Macroheterocycles, 2011, vol. 4, no. 3, pp. 211–212.
  6. Ahmed S., Tabassum S., Shakeel F., Khan A.Y. A facile electrochemical analysis to determine antioxidant activity of flavonoids against DPPH radical. J. Electrochem. Soc., 2012, vol. 159, no. 5, pp. F103–F109. doi: 10.1149/2.jes112300.
  7. Milardović S., Iveković D., Grabarić B.S. A novel amperometric method for antioxidant activity determination using DPPH free radical. Bioelectrochemistry, 2006, vol. 68, no. 9, pp. 175–180. doi: 10.1016/j.bioelechem.2005.06.005.
  8. Milardovic S., Iveković D., Rumenjak V., Grabarić B.S. Use of DPPH?/DPPH redox couple for biamperometric determination of antioxidant activity. Electroanalysis, 2005, vol. 20, no. 20, pp. 1847–1853. doi: 10.1002/elan.200503312.
  9. Pisoschi A.M., Cheregi M.C., Danet A.F. Total antioxidant capacity of some commercial fruit juices: Electrochemical and spectrophotometrical approaches. Molecules, 2009, vol. 14, no. 1, pp. 480–493. doi: 10.3390/molecules14010480.
  10. Vasilescu I., Eremia S.A.V., Albu C., Radoi A., Litescu S.-C., Radu G.-L. Determination of the antiradical properties of olive oils using an electrochemical method based on DPPH radical. Food Chem., 2015, vol. 166, pp. 324–329. doi: 10.1016/j.foodchem.2014.06.042.
  11. Intarakamhang S., Schulte A. Automated electrochemical free radical scavenger screening in dietary samples. Anal. Chem., 2012, vol. 84, no. 15, pp. 6767–6774. doi: 10.1021/ac301292c.
  12. Magalhães L.M., Santos M., Segundo M.A., Reis S., Lima J.L.F.C. Flow injection based methods for fast screening of antioxidant capacity. Talanta, 2009, vol. 77, no. 5, pp. 1559–1566. doi: 10.1016/j.talanta.2008.10.034.
  13. Andrei V., Bunea A.-I., Tudorache A., Gáspár S., Vasilescu A. Simple DPPH˙-based electrochemical assay for the evaluation of the antioxidant capacity: A thorough comparison with spectrophotometric assays and evaluation with real-world samples. Electroanalysis, 2014, vol. 26, no. 12, pp. 2677–2685. doi: 10.1002/elan.201400376.
  14. Amatatongchai M., Laosing S., Chailapakul O., Nacapricha D. Simple flow injection for screening of total antioxidant capacity by amperometric detection of DPPH radical on carbon nanotube modified-glassy carbon electrode. Talanta, 2012, vol. 97, pp. 267–272. doi: 10.1016/j.talanta.2012.04.029.
  15. Oliveira G.K.F., Tormin T.F., Sousa R.M.F., de Oliveira A., de Morais S.A.L., Richter E.M., Munoz R.A.A. Batch-injection analysis with amperometric detection of the DPPH radical for  evaluation of antioxidant capacity. Food Chem., 2016, vol. 192, pp. 691–697. doi: 10.1016/j.foodchem.2015.07.064.
  16. Apak R., Güçlü K., Demirata B., Ozyürek M., Celik S.E., Bektaşoğlu B., Berker K.I., Ozyurt D. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules, 2007, vol. 12, no. 7, pp. 1496–1547. doi: 10.3390/12071496.
  17. Ozcelik B., Lee J.H., Min D.B. Effects of light, oxygen, and pH on the absorbance of 2,2-diphenyl-1-picrylhydrazyl. J. Food Sci., 2003, vol. 68, no. 2, pp. 487–490. doi: 10.1111/j.1365-2621.2003.tb05699.x.
  18. Stasko A., Brezova V., Biskupic S., Misik V. The potential pitfalls of using 1,1-diphenyl-2-picrylhydrazyl to characterize antioxidants in mixed water solvents. Free Radical Res., 2007, vol. 41, no. 4, pp. 379–390. doi: 10.1080/10715760600930014.
  19. Magalhães L.M., Segundo M.A., Reis S., Lima J.L.F.C. Methodological aspects about in vitro evaluation of antioxidant properties. Anal. Chim. Acta, 2008, vol. 613, no. 1, pp. 1–19. doi: 10.1016/j.aca.2008.02.047.
  20. Zhuang Q.-k., Scholz F., Pragst F. The voltammetric behaviour of solid 2,2-diphenyl-1-picrylhydrazyl (DPPH) microparticles. Electrochem. Commun., 1999, vol. 1, no. 9, pp. 406–410. doi: 10.1016/S1388-2481(99)00086-7.
  21. Ziyatdinova G., Snegureva Yu., Budnikov H. Novel approach for the voltammetric evaluation of antioxidant activity using DPPH?-modified electrode. Electrochim. Acta, 2017, vol. 247, pp. 97–106. doi: 10.1016/j.electacta.2017.06.155.
  22. Berg J.M., Romoser A., Banerjee N., Zebda R., Sayes C.M. The relationship between pH and zeta potential of ~30 nm metal oxide nanoparticle suspensions relevant to in vitro toxicological evaluations. Nanotoxicology, 2009, vol. 3, no. 4, pp. 276–283. doi: 10.3109/17435390903276941.
  23. Li Z., Zhou Y., Yu T., Liu J., Zou Z. Unique Zn-doped SnO2 nano-echinus with excellent electron transport and light harvesting properties as photoanode materials for high performance dye-sensitized solar cell. CrystEngComm, 2012, vol. 14, no. 20, pp. 6462–6468. doi: 10.1039/C2CE25954K.
  24. Brand-Williams W., Cuvelier M.E., Berset C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol., 1995, vol. 28, no. 1, pp. 25–30. doi: 10.1016/S0023-6438(95)80008-5.


For citation: Ziyatdinova G.K., Snegureva Yu.V., Budnikov H.C. 2,2-di(4-tert-octylphenyl)-1-picrylhydrazyl as a novel modifier of the electrode for the voltammetric evaluation of antioxidant activity. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2018, vol. 160, no. 1, pp. 17–31. (In Russian)


The content is available under the license Creative Commons Attribution 4.0 License.