R.O. Sherstyukov*, A.D. Akchurin**

Kazan Federal University, Kazan, 420008 Russia

E-mail: * sher-ksu@mail.ru, ** Adel.Akchurin@kpfu.ru

Received April 12, 2017

Full text PDF

Abstract

To analyze midlatitude medium-scale traveling ionospheric disturbances (MSTIDs), the sufficiently dense network of GNSS receivers (more than 150 ground-based stations) have been used. For the first time, daytime MSTIDs in the form of their main signature (band structure) on high-resolution two-dimensional maps of the total electron content perturbation (TEC maps) have been compared with ionosonde data with a high temporal resolution. For a pair of events, a relationship between southwestward TEC perturbations and evolution of F2 layer traces has been established. So, F2 peak frequency varied in antiphase to TEC perturbations. The ionograms show that during the moving of plasma depletion band (overhead ionosonde) the F2 peak frequency is the highest, and vice versa, for the plasma enhancement band, the F2 peak frequency is the lowest. One possible explanation may be a greater inclination of the radio beam from the vertical during the placement of a plasma enhancement band above the ionosonde, as evidenced by the absence of multiple reflections and the increased occurrence rate of extra cusp trace. Another possible explanation may be the redistribution of the electron content in the topside ionosphere with a small decrease in the F peak concentration of the layer with a small increase in TEC along the line-of-sight. The analysis of F2 peak frequency variation has shown that the observed values of TEC perturbations equal to 0.4 and 0.8 TECU correspond to the values of ΔN/N equal to 10% and 25%. The need for further research is evident.

Keywords: ionosphere, medium-scale traveling ionospheric disturbances, perturbations of ionospheric plasma, F2 layer, two-dimensional maps of total electron content perturbation, ionosonde, GPS/GLONASS

Acknowledgments. This study was supported by the subsidy allocated to Kazan Federal University for the state assignment in the area of scientific activities (project no. 3.7400.2017/8.9) and by the the Russian Government Program of Competitive Growth of Kazan Federal University.

Figure Captions

Fig. 1. Location of GPS/GLONASS receivers and ionosonde. Black dots represent the location of the GPS/GLONASS receivers. The red star represents the location of the ionosonde.

Fig. 2. Two-dimensional TEC perturbation maps in the right side of the figure and ionograms in the left side of the figure, September 21, 2016. White lines in the ionograms show  F2 peak frequency. The red star on the TEC map represents the location of the ionosonde, the solid lines represent the wavefronts of band structures.

Fig. 3. Two-dimensional TEC perturbation maps in the right side of the figure and ionograms in the left side of the figure, February 11, 2017. White lines in the ionograms show F2 peak frequency. The red star on the TEC map represents the location of the ionosonde, the solid lines represent the wavefronts of band structures.

Fig. 4. The ionograms with hook signatures. The hook signatures are circled by the white quadrates.

References

1. Georges T.M. HF Doppler studies of traveling ionospheric disturbances. J. Atmos. Terr. Phys., 1968, vol. 30, no. 5, pp. 735–736.

2. Bowman G.G. Movements of ionospheric irregularities and gravity waves. J. Atmos. Terr. Phys., 1968, vol. 30, no. 5, pp. 721–734.

3. Bowman G.G. Ionization troughs below the F2-layer maximum. Planet. Space Sci., 1969, vol. 17, no. 5, pp. 777–796.

4. Bowman G.G., Dunne G.S. Some initial results on mid-latitude spread-F irregularities using a directional ionosonde. J. Atmos. Terr. Phys., 1981, vol. 43, no. 12, pp. 1295–1307.

5. Petrova I.R., Bochkarev V.V., Teplov V.Yu, Sherstyukov O.N. The daily variations of Doppler frequency shift of ionospheric signal on middle-latitude radio lines. Adv. Space Res., 2007, vol. 40, no. 6, pp. 825–834.

6. Seker I., Livneh D.J., Mathews J.D. A 3-D empirical model of F region Medium-Scale Traveling Ionospheric Disturbance bands using incoherent scatter radar and all-sky imaging at Arecibo. J. Geophys. Res., 2009, vol. 114, no. A6. doi: 10.1029/2008JA014019.

7. Semeter J., Butler T., Heinselman C., Nicolls M., Kelly J., Hampton D. Volumetric imaging of the auroral ionosphere: Initial results from PFISR. J. Atmos. Sol. Terr. Phys., 2009, vol. 71, nos. 6–7, pp. 738–743. doi: 0.1016/j.jastp.2008.08.014.

8. Shiokawa K., Otsuka Y., Ihara C., Ogawa T., Rich F.J. Ground and satellite observations of nighttime medium-scale traveling ionospheric disturbance at midlatitude. J. Geophys. Res., 2009, vol. 108, no. A4, art. 1145, pp. 1–13. doi: 10.1029/2002JA009639.

9. Otsuka Y., Suzuki K., Nakagawa S., Nishioka M., Shiokawa K., Tsugawa T. GPS observations of medium-scale traveling ionospheric disturbances over Europe. Ann. Geophys., 2013, vol. 31, pp. 163–172. doi: 10.5194/angeo-31-163-2013.

10. Zakharenkova I., Astafyeva E., Cherniak I. GPS and GLONASS observations of large-scale traveling ionospheric disturbances during the 2015 St. Patrick's Day storm. J. Geophys. Res. Space Phys., 2016, vol. 121, no. 12, pp. 12,138–12,156. doi: 10.1002/2016JA023332.

11. Perkins F. Spread F and ionospheric currents. J. Geophys. Res., 1973, vol. 78, pp. 218–226.

12. Kelley M.C., Makela J.J. Resolution of the discrepancy between experiment and theory of midlatitude F-region structures. Geophys. Res. Lett., 2001, vol. 28, no. 13, pp. 2589–2592.

13. Yokoyama T., Hysell D., Otsuka Y., Yamamoto, M. Three dimensional simulation of the coupled Perkins and -layer instabilities in the nighttime midlatitude ionosphere. J. Geophys. Res., 2009, vol. 114, no. A3, art. A03308, pp. 1–16. doi: 10.1029/2008JA013789.

14. Yokoyama T., Hysell D. L. A new midlatitude ionosphere electrodynamics coupling model (MIECO): :Latitudinal dependence and propagation of mediumscale traveling ionospheric disturbances, Geophys. Res. Lett., 2010, vol. 37, no. 8, art. L08105, pp. 1–5. doi:10.1029/2010GL042598.

15. Akchurin A.D., Sherstyukov O.N., Zykov E.Yu. The influence of lower atmosphere dynamics on the mid-latitude sporadic E-layer. Adv. Space Res., 1997, vol. 20, no. 6, pp. 1309–1312.

16. Fahrutdinova A.N., Sherstyukov O.N., Yasnitsky D.S. The influence of the irregular movements in the lower thermosphere on the ionospheric Es-Layer by radiometeor observations in Kazan (N, E). Phys. Chem. Earth, Part C, 2001, vol. 26, no. 6, pp. 445–448.

17. Sherstyukov O.N., Ryabchenko E.Yu. Synoptic oscillations in the parameters of the midlatitude sporadic E layer. Geomagn. Aeron., 2004, vol. 44, no. 5, pp. 610–616.

18. Otsuka Y., Onoma F., Shiokawa K., Ogawa T., Yamamoto M., Fukao S. Simultaneous observations of nighttime medium-scale traveling ionospheric disturbances and E-region field-aligned irregularities at midlatitude. J. Geophys. Res., 2007, vol. 112, no. A6, art. A06317, pp. 1–9. doi: 10.1029/2005JA011548.

19. Saito S., Yamamoto M., Hashiguchi H., Maegawa A., Saito A. Observational evidence of coupling between quasi-periodic echoes and medium scale traveling ionospheric disturbances. Ann. Geophys., 2007, vol. 25, no. 10, pp. 2185–2194. doi: 10.5194/angeo-25-2185-2007.

20. Morgan M.G., Calderon C.H.J, Ballard K.A. Techniques for the study of TIDs with multistation rapid-run ionosondes. Radio Sci., 1978, vol. 13, no. 4, pp. 729–741. doi: 10.1029/RS013i004p00729.

21. Williams P.J.S., Virdi T.S., Lewis R.V., Lester M., Rodger A.S., McCrea I.W., Freeman K.S.C. Worldwide atmospheric gravity-wave study in the European sector 1985–1990. J. Atmos. Terr. Phys., 1993, vol. 55, nos. 4–5, pp. 683–696.

22. Habarulema J.B., Katamzi Z.T., McKinnell L.-A. Estimating the propagation characteristics of largescale traveling ionospheric disturbances using ground-based and satellite data. J. Geophys. Res.: Space Phys., 2013, vol. 118, no. 12, pp. 7768–7782. doi: 10.1002/2013JA018997.

23. Ding F., Wan W., Ning B., Zhao B., Li Q., Wang Y., Hu L., Zhang R., Xiong B. Observations of poleward-propagating large-scale traveling ionospheric disturbances in southern China. Ann. Geophys., 2013, vol. 31, no. 2, pp. 377–385. doi: 10.5194/angeo-31-377-2013.

24. Bowman G.G. A review of some recent work on mid-latitude spread-F occurrence as detected by ionosondes. J. Geomagn. Geoelectr., 1990, vol. 42, no. 2., pp. 109–138.

25. Lobb R.J., Titheridge J.E., The effects of travelling ionospheric disturbances on ionograms. J. Geophys. Res., 1977, vol. 39, no. 2, pp. 129–138.

26. Akchurin A.D., Bochkarev V.V., Ildiryakov V.R., Usupov K.M. TID selection and research of its characteristics on ionograms. Proc. 30th URSI Gen. Assem. Sci. Symp., 2011, pp. 1–4. doi: 10.1109/URSIGASS.2011.6050965

27. Cooper J., Cummack C.H. The analysis of a travelling ionospheric disturbance with non-linear ionization response. J. Atmos. Terr. Phys., 1986, vol. 48, no. 1, pp. 61–71.

28. Tsugawa T., Otsuka Y., Coster A.J., Saito A. Medium-scale traveling ionospheric disturbances detected with dense and wide TEC maps over North America. Geophys. Res. Lett., 2007, vol. 34, no. 22. doi: 10.1029/2007GL031663.

29. Afraimovich E.L., Perevalova N.P. GPS-Monitoring of the Earth's Upper Atmosphere. Irkutsk, GU NTs RVKh VSNTs SO RAMN, 2006. 480 p.

30. Kotake N., Otsuka Y., Ogawa T., Tsugawa T., Saito A. Statistical study of medium-scale traveling ionospheric disturbances observed with the GPS networks in Southern California. Earth, Planets Space, 2007, vol. 59, no. 2, pp. 95–102. doi: 10.1186/BF03352681.

31. Evans J.V., Holt J.M., Wand R.H., A differential-Doppler study of traveling ionospheric disturbances from Millstone Hill. Radio Sci., 1983, vol. 18, no. 3, pp. 435–451. doi: 10.1029/RS018i003p00435.


For citation: Sherstyukov R.O., Akchurin A.D. Analysis of daytime medium-scale traveling ionospheric disturbances by two-dimensional maps of total electron content perturbation and ionograms. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2017, vol. 159, no. 2, pp. 374–389. (In Russian)


The content is available under the license Creative Commons Attribution 4.0 License.