S.Y. Selivanovskayaa*, A.R. Gilmullinaa**, Y.V. Kuzyakovb***, P.Y. Galitskayaa****

aKazan Federal University, Kazan, 420008 Russia

bUniversity of Göttingen, Göttingen, 37073 Germany

E-mail: *svetlana.selivanovskaya@kpfu.ru, **gilmullinaar@mail.ru, ***kuzyakov@gwdg.de, ****gpolina33@yandex.ru

Received August 15, 2017

Full text PDF

Abstract

Carbon fixation in soil, its transformation and mineralization are the important stages of carbon cycle regulating soil fertility and ecosystem stability. Organic fertilizers and toxic substances, such as heavy metals, lead to changes in the natural carbon flux. Organic and soluble organic carbon contents, microbial biomass, and cumulative respiratory activity have been measured for soils influenced by glucose and cadmium addition and sampled from various depths. Soluble organic compounds (here glucose) lead to a strong increase in metabolic activity, but they cause no carbon fixation in soil in the form of microbial biomass or insoluble compounds. The introduction of heavy metals into the soil has reduced the carbon flux rate through the soluble carbon pool, but has left the microbial biomass carbon unaffected. These effects turned out to be more pronounced in subsoils (below 20 cm) having low organic matter content.

Keywords: carbon flux, soil ecology, cadmium, glucose, heavy metals

Acknowledgments. The study was supported by the Russian Foundation for Basic Research (project no. 15-04-04520) and the Russian Government Program of Competitive Growth of Kazan Federal University.

Figure Captions

Fig. 1. The cumulative release of CO2 from the soil samples and the effect of addition of glucose and cadmium.

Fig. 2. Changes in the organic carbon content upon the incubation of soil samples supplemented with glucose and cadmium and without them.

Fig. 3. Changes in the microbial biomass upon the incubation of soil samples supplemented with glucose and cadmium and without them.

Fig. 4. Changes in the content of soluble organic matter upon the incubation of soil samples supplemented with glucose and cadmium and without them.

References

  1. Moinet G.Y.K., Cieraad E., Turnbull M.H., Whitehead D. Effects of irrigation and addition of nitrogen fertiliser on net ecosystem carbon balance for a grassland. Sci. Total Environ., 2017, vol. 579, pp. 1715–1725. doi: 10.1016/j.scitotenv.2016.11.199.
  2. Song Y., Zou Y., Wang G., Yu X. Altered soil carbon and nitrogen cycles due to the freeze-thaw effect: A meta-analysis. Soil Biol. Biochem., 2017, vol. 109, pp. 35–49. doi: 10.1016/j.soilbio.2017.01.020.
  3. Liao C., Peng R., Luo Y., Zhou X., Wu X., Fang C., Chen J., Li B. Altered ecosystem carbon and nitrogen cycles by plant invasion: A meta-analysis. New Phytol., 2008, vol. 177, pp. 706–714. doi: 10.1111/j.1469-8137.2007.02290.x.
  4. Blagodatskaya E.V., Blagodatsky S.A., Anderson T.-H., Kuzyakov Y. Priming effects in Chernozem induced by glucose and N in relation to microbial growth strategies. Appl. Soil Ecol., 2007, vol. 37, nos. 1–2, pp. 95–105. doi: 10.1016/j.apsoil.2007.05.002.
  5. Schlesinger W.H., Andrews J.A. Soil respiration and the global carbon cycle. Biogeochemistry, 2000, vol. 48, no. 1, pp. 7–20. doi: 10.1023/A:1006247623877.
  6. Abaye D.A., Brookes P.C. Relative importance of substrate type and previous soil management in synthesis of microbial biomass and substrate mineralization. Eur. J. Soil Sci., 2006, vol. 57, no. 2, pp. 179–189. doi: 10.1111/j.1365-2389.2005.00727.x.
  7. Wang J., Xiong Z., Yan X., Kuzyakov Y. Carbon budget by priming in a biochar-amended soil. Eur. J. Soil Biol., 2016, vol. 76, pp. 26–34. doi: 10.1016/j.ejsobi.2016.07.003.
  8. Li Q., Tianc Y., Zhanga X., Xua X., Wanga H., Kuzyakov Y. Labile carbon and nitrogen additions affect soil organic matter decomposition more strongly than temperature. Appl. Soil Ecol., 2017, vol. 114, pp. 152–160. doi: 10.1016/j.apsoil.2017.01.009.
  9. Hernández D., Fernández J.M., Plaza C., Polo A. Water-soluble organic matter and biological  activity of a degraded soil amended with pig slurry. Sci. Total Environ., 2007, vol. 378, nos. 1–2, pp. 101–103. doi: 10.1016/j.scitotenv.2007.01.020.
  10. Plaza C., García-Gil J.C., Polo A. Microbial activity in pig slurry amended soils under aerobic  incubation. Biodegradation, 2007, vol. 18, no. 2, pp. 159–165. doi: 10.1007/s10532-006-9051-0.
  11. Yanardağ I.H., Zornoza R., Bastida F., Büyükkiliç-Yanardağ A., García C., Faz A., Mermut A.R. Native soil organic matter conditions the response of microbial communities to organic inputs with different stability. Geoderma, 2017, vol. 295, pp. 1–9. doi: 10.1016/j.geoderma.2017.02.008.
  12. Xu N., Tan G., Wang H., Gai X. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. Eur. J. Soil Biol., 2016, vol. 74, pp. 1–8. doi: 10.1016/j.ejsobi.2016.02.004.
  13. Zavalloni C., Alberti G., Biasiol S., Vedove G.D., Fornasier F., Liu J., Peressotti A. Microbial mineralization of biochar and wheat straw mixture in soil: A short-term study. Appl. Soil Ecol., 2011, vol. 50, pp. 45–51. doi: 10.1016/j.apsoil.2011.07.012.
  14. Zornoza R., Acosta J.A., Faz A., Bååth E. Microbial growth and community structure in acid mine soils after addition of different amendments for soil reclamation. Geoderma, 2016, vol. 272, pp. 64–72. doi: 10.1016/j.geoderma.2016.03.007.
  15. Eilers K.G., Lauber C.L., Knight R., Fierer N. Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil. Soil Biol. Biochem., 2010, vol. 42, no. 6, pp. 896–903. doi: 10.1016/j.soilbio.2010.02.003.
  16. Blagodatskaya E., Yuyukina T., Blagodatsky S., Kuzyakov Y. Three-source-partitioning of microbial biomass and of CO2 efflux from soil to evaluate mechanisms of priming effects. Soil Biol. Biochem., 2011, vol. 43, no. 4, pp. 778–786. doi: 10.1016/j.soilbio.2010.12.011.
  17. De Nobili M., Contin M., Mondini C., Brookes P.C. Soil microbial biomass is triggered into activity by trace amounts of substrate. Soil Biol. Biochem., 2001, vol. 33, no. 9, pp. 1163–1170. doi: 10.1016/S0038-0717(01)00020-7.
  18. Dalenberg J.W., Jager G. Priming effect of small glucose additions to 14C-labelled soil. Soil Biol. Biochem., 1981, vol. 13, no. 3, pp. 219–223. doi: 10.1016/0038-0717(89)90157-0.
  19. Subedi R., Taupe N., Ikovi I., Bertora C., Zavattaro L., Schmalenberger A., Leahy J.J.,Grignani C. Chemically and biologically-mediated fertilizing value of manure-derived biochar. Sci. Total Environ., 2016, vol. 550, pp. 924–933. doi: 10.1016/j.scitotenv.2016.01.160.
  20. Khan S., Cao Q., Hesham Ael.-L., Xia Y., He J.Z. Soil enzymatic activities and microbial community structure with different application rates of Cd and Pb. J. Environ. Sci., 2007, vol. 19, no. 7, pp. 834–840. doi: 10.1016/S1001-0742(07)60139-9.
  21. Zoghlami R.I., Hamdi H., Mokni-Tlili S., Khelil M.N., Ben Aissa N., Jedidi N. Changes in light-textured soil parameters following two successive annual amendments with urban sewage sludge. Ecol. Eng., 2016, vol. 95, pp. 604–611. doi: 10.1016/j.ecoleng.2016.06.103.
  22. Healy M.G., Ryan P.C., Fenton O., Peyton D.P., Wall D.P., Morrison L. Bioaccumulation of metals in ryegrass (Lolium perenne L.) following the application of lime stabilised, thermally dried and anaerobically digested sewage sludge. Ecotoxicol. Environ. Saf., 2016, vol. 130, pp. 303–309.
  23. Giller K.E., Witter E., McGrath S.P. Heavy metals and soil microbes. Soil Biol. Biochem., 2009, vol. 41, no. 10, pp. 2031–2037.
  24. Charlton A., Sakrabani R., Tyrrel S., Rivas Casado M., McGrath S.P., Crooks B., Cooper P., Campbell C.D. Long-term impact of sewage sludge application on soil microbial biomass: An evaluation using meta-analysis, Environ. Pollut., 2016, vol. 219, pp. 1021–1035. doi: 10.1016/j.envpol.2016.07.050
  25. Epelde L., Muñiz O., Garbisu C. Microbial properties for the derivation of critical risk limits in cadmium contaminated soil. Applied Soil Ecol., 2016, vol. 99, pp. 19–28. doi: 10.1016/j.apsoil.2015.11.014.
  26. Galitskaya P.Y., Saveliev A.A., Selivanovskaya S.Y. Response of soil microbial community to the simultaneous influence of metals and an organic substance. Contemp. Probl. Ecol., 2015, vol. 8, no. 6, pp. 780–788. doi: 10.1134/S1995425515060062.
  27. Vig K, Megharaj M, Sethunathan N, Naidu R. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: A review. Adv. Environ. Res., 2003, vol. 8, no. 1, pp. 121–135. doi: 10.1016/S1093-0191(02)00135-1.
  28. ISO 14235:1998. Soil Quality – Determination of Organic Carbon by Sulfochromic Oxidation. 1998. 5 p.
  29. ISO 14240-2. Soil Quality – Determination of Soil Microbial Biomass. Part 2: Fumigation-Extraction Method. 1997. 10 p.
  30. ISO 16072. Soil Quality – Laboratory Methods for Determination of Microbial Soil Respiration. 2002. 19 p.
  31. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. Available at: https://www.R-project.org/.
  32. Barajas–Aceves M. Comparison of different microbial biomass and activity measurement methods in metal–contaminated soils. Biores. Technol., 2005, vol. 96, no. 12, pp. 1405–1414. doi: 10.1016/j.biortech.2004.09.013.
  33. Niemeyer J. C., Lolata G. B., Carvalho G. M., Da Silva E. M., Sousa J. P. Nogueira M. P. Microbial indicators of soil health as tools for ecological risk assessment of a metal contaminated site in Brazil. Appl. Soil Ecol., 2012, vol. 59, pp. 96–105. doi: 10.1016/j.apsoil.2012.03.019.
  34. Spohn M., Chodak M. Microbial respiration per unit biomass increases with carbon-to-nutrient ratios in forest soils. Soil Biol. Biochem., 2015, vol. 81, pp. 128–133. doi: 10.1016/j.soilbio.2014.11.008.


For citation: Selivanovskaya S.Y., Gilmullina A.R., Kuzyakov Y.V., Galitskaya P.Y. Carbon fluxes in soil systems supplemented with glucose and cadmium. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2017, vol. 159, no. 4, pp. 589–601. (In Russian)


The content is available under the license Creative Commons Attribution 4.0 License.