1. Basedow S.L., Zhou M., Tande K.S. Secondary production at the Polar Front, Barents Sea, August 2007. J. Mar. Syst., 2014, vol. 130, pp. 147–159. doi: 10.1016/j.jmarsys.2013.07.015.
  2. Sheldon R.W., Prakash A., Sutcliffe H. The size distribution of particles in the ocean. Limnol. Oceanogr., 1972, vol. 17, no. 3, pp. 327–340. doi: 10.4319/lo.1972.17.3.0327.
  3. Sheldon R.W., Sutcliffe W.H. Jr., Paranjape M.A. Structure of pelagic food chain and relationship between plankton and fish production. J. Fish. Res. Board Can., 1977, vol. 34, no. 12, pp. 2344–2353. doi : 10.1139/f77-314.
  4. Platt T., Denman K. The structure of pelagic marine ecosystems. J. Cons., Cons. Int. Explor. Mer., 1978, vol. 173, pp. 60–65.
  5. Silvert W., Platt T. Evolution and Ecology of Zooplankton Communities. Kerfoot W.C. (Ed.). Dynamic Energy-Flow Model of the Particle Size Distribution in Pelagic Ecosystems. Hanover, Univ. Press of N. Engl., 1980, pp. 754–763.
  6. Cousins S.H. Ecosystem Theory for Biological Oceanography. Ulanowicz R.E., Platt T. (Eds.). The Trophic Continuum in Marine Ecosystems Structure and Equations for a Predictive Model. Can. Bull. Fish. Aquat. Sci., 1985, vol. 213, pp. 76–93.
  7. Platt T. Structure of the marine ecosystem: Its allometric basis. Can. Bull. Fish. Aquat. Sci., 1985, vol. 213, pp. 55–64.
  8. Beers J.R., Read F.M.H., Stewart G.L. Seasonal abundance of the microplankton population in the North Pacific Central Gyre, Deep-Sea Res., Part A, 1982, vol. 29, no. 2, pp. 227–245. doi: 10.1016/0198-0149(82)90111-X.
  9. Echevarría F., Carrillo O., Jiménez P., Sánchez-Castillo P., Cruz-Pizarro L., Rodriguez L. The size-abundance distribution and taxonomic composition of plankton in an oligotrophic, high mountain lake (la Caldera, Sierra Nevada, Spain). J. Plankton Res., 1990, vol. 12, no. 2, pp. 415–422. doi: 10.1093/plankt/12.2.415.
  10. Platt T., Lewis M., Geiderl R. Flows of Energy and Materials in Marine Ecosystems. Fasham M.J.R. (Ed.). Thermodynamics of the Pelagic Ecosystem: Elementary Closure Conditions for Biological Production in the Open Ocean. New York; NY, Plenum Press, 1984, pp. 49–84.
  11. Rodriguez J., Mullin M.M. Relation between biomass and body weight of plankton in a steady state oceanic ecosystem. Limnol. Oceanogr., 1986, vol. 31, no. 2, pp. 361–370. doi: 10.4319/lo.1986.31.2.0361.
  12. Rodriguez J., Mullin M. Diel and interannual variation of size distribution of oceanic zooplanktonic biomass. Ecology, 1986, vol. 67, no. 1, pp. 215–222. doi: 10.2307/1938521.
  13. Schwinghamer P. Characteristic size distributions of integral benthic communities. Can. J. Fish. Aquat. Sci., 1981, vol. 38, no. 10, pp. 1255–1263. doi: 10.1139/f81-167.
  14. Schwinghamer P. Observations on size-structure and pelagic coupling of some shelf and abyssal benthic communities. Proc. 19th Eur. Mar. Biol. Symp. Gobbs P.E. (Ed.). Cambridge, Cambridge Univ. Press, 1985, pp. 347–359.
  15. Sprules W.G., Casselman J.M., Shuter B.J. Size distribution of pelagic particles in lakes. Can. J. Fish. Aquat. Sci., 1983, vol. 40, no. 10, pp. 1761–1769. doi: 10.1139/f83-205.
  16. Sprules W.G., Knoechel R. Trophic Interactions within Aquatic Ecosystems. Meyers D.G., Strickland R. (Eds.). Lake Ecosystem Dynamics based on Functional Representations of Trophic Components. Boulder, Colo., Westview Press, pp. 383–403.
  17. Sprules W.G., Munawar M. Plankton size spectra in relation to ecosystem productivity, size, and perturbation. Can. J. Fish. Aquat. Sci., 1986, vol. 43, no. 9, pp. 1789–1794. doi: 10.1139/f86-222.
  18. Warwick R.M., Clarke K.R. Species size distributions in marine benthic communities. Oecologia, 1984, vol. 61, no. 1, pp. 32–41. doi: 10.1007/BF00379085.
  19. Witek Z., Krajewska-Soltys A. Some examples of the epipelagic plankton size structure in high latitude oceans. J. Plankton Res., 1989, vol. 11, pp. 1143–1155. doi: 10.1093/plankt/11.6.1143.
  20. Clement T.A., Murry B.A., Uzarski D.G. Fish community size structure of small lakes: The role of lake size, biodiversity and disturbance. J. Freshwater Ecol., 2015, vol. 30, no. 4, pp. 557–568. doi: 10.1080/02705060.2015.1030787.
  21. Genin A. Biomass and body size of oceanic plankton. Trends Ecol. Evol., 1986, vol. 1, pp. 55–56.
  22. Macpherson E., Gordoa A., García-Rubies A. Biomass size spectra in littoral fishes in protected and unprotected areas in the nw mediterranean. Estuarine, Coastal Shelf Sci., 2002, vol. 55, no. 5, pp. 777–788. doi: 10.1006/ecss.2001.0939.
  23. Borgmann U., Shear H., Moore J. Zooplankton and potential fish production in Lake Ontario, Can. J. Fish. Aquat. Sci., 1984, vol. 41, no. 9, pp. 1303–1309. doi: 10.1139/f84-159.
  24. Moloney C.L., Field J.G. Use of particle-size data to predict potential pelagic-fish yields of some southern African areas. S. Afr. J. Mar. Sci., 1985, vol. 3, pp. 119–128.
  25. Thomann R.V. Perspective on Lake Ecosystem Modelling. Scavia D., Robertson A. (Eds.). An Analysis of PCB in Lake Ontario Using Size-Dependent Food Chain Model. Ann Arbor. Sci. Publ., 1979, pp. 293–320.
  26. Thomann R.V. Equilibirum model of fate of microcontaminants in diverse aquatic food chains. Can. J. Fish. Aquat. Sci., 1981, vol. 38, no. 3, pp. 280–296. doi: 10.1139/f81-040.
  27. Griesbach S., Peters R.H., Youakim S. An allometric model for pesticide bioaccumulation. Can. J. Fish. Aquat. Sci., 1982, vol. 39, no. 5, pp. 727−735. doi: 10.1139/f82-101.
  28. Borgmann U., Whittle D.M. Particle-size-conversion efficiency and contaminant concentrations in Lake Ontario biota. Can. J. Fish. Aquat. Sci., 1983, vol. 40, no. 3, pp. 328–336. doi: 10.1139/f83-048.
  29. Sabeel R.A.O., Vanreusel A. Potential impact of mangrove clearance on biomass and biomass size spectra of nematode along the Sudanese Red Sea coast. Mar. Environ. Res., 2015, vol. 103, pp. 46–55. doi: 10.1016/j.marenvres.2014.11.003.
  30. Zhou M., Huntley M.E. Population dynamics theory of plankton based on biomass spectra. Mar. Ecol.: Prog. Ser., 1997, vol. 159, pp. 61–73.
  31. Kerr S.R., Dickie L.M. The Biomass Spectrum: A Predator-Prey Theory of Aquatic Production. New York, Columbia Univ. Press, 2001. 320 p.
  32. Zhou M. What determines the slope of a plankton biomass spectrum? J. Plankton Res., 2006, vol. 28, no. 5, pp. 437–448. doi: 10.1093/plankt/fbi119.
  33. Zhou M., Carlotti F., Zhu Y. A size-spectrum zooplankton closure model for ecosystem modelling. J. Plankton Res., 2010, vol. 32, pp. 1147–1165.
  34. Thompson G.A., Dinofrio E.O., Alder V.A. Structure, abundance and biomass size spectra of copepods and other zooplankton communities in upper waters of the Southwestern Atlantic Ocean during summer. J. Plankton Res., 2013, vol. 35, no. 3, pp. 610–629. doi: 10.1093/plankt/fbt014.
  35.  Suthers I.M., Taggart C.T., Rissik D., Baird M.E. Day and night ichthyoplankton assemblages and zooplankton biomass size spectrum in a deep ocean island wake. Mar. Ecol.: Prog. Ser., 2006, vol. 322, pp. 225–238. doi: 10.3354/meps322225.
  36.  Blanco J.M., Echevarria F., Garcia C.M. Dealing with size-spectra: Some conceptual and mathematical problems. Sci. Mar., 1994, vol. 58, nos. 1–2, pp. 17–29.
  37.  Blanco J.M., Quiñones R. A., Guerrero F., Rodríguez J. The use of biomass spectra and allometric relations to estimate respiration of planktonic communities. J. Plankton Res., 1998, vol. 20, no. 5, pp. 887–900. doi: 10.1093/plankt/20.5.887.
  38.  Ikeda T. Metabolic rates of epipelagic marine zooplankton as a function of body mass and temperature. Mar. Biol., 1985, vol. 85, no. 1, pp. 1–11. doi: 10.1007/BF00396409.
  39.  Peterson I., Wroblewski S. Mortality rate of fishes in the pelagic ecosystem. Can. J. Fish. Aquat. Sci., 1984, vol. 41, no. 7, pp. 1117–1120. doi: 10.1139/f84-131.
  40.  Baikov A.D. How to estimate the daily food consumption of fish under natural conditions. Trans. Am. Fish. Soc., 1935, vol. 65, pp. 288–289.
  41.  Eggers D.M. Factors in interpreting data obtained by diel sampling of fish stomachs. J. Fish. Res. Board Can., 1977, vol. 34, no. 2, pp. 290–294. doi: 10.1139/f77-045.
  42.  Tittel J., Zippel B., Geller W., Juliane S. Relationships between plankton community structure and plankton size distribution in lakes of northern Germany. Limnol. Oceanogr., 1998, vol. 43, no. 6, pp. 1119–1132. doi: 10.4319/lo.1998.43.6.1119.
  43.  Hu V.J.H. Relationships between vertical migration and diet in four species of euphausiids. Limnol. Oceanogr., 1978, vol. 23, no. 2, pp. 296–306. doi: 10.4319/lo.1978.23.2.0296.
  44.  Roe H.S.J., Badcock J. The diel migrations and distributions within a mesopelagic community in the North East Atlantic. 6. Vertical migrations and feeding of fish. Prog. Oceanogr., 1984, vol. 13, nos. 3–4, pp. 389–424. doi: 10.1016/0079-6611(84)90014-4.
  45.  Roe H.S.J. The diel migrations and distributions within a mesopelagic community in the North East Atlantic. 2. Vertical migrations and feeding of mysids and decapod crustacea. Prog. Oceanogr., 1984, vol. 13, nos. 3–4, pp. 269–318. doi: 10.1016/0079-6611(84)90011-9.
  46.  Tseitlin V.B. Energetics of the Deep-Sea Pelagic Communities. Moscow, Nauka, 1986. 112 p. (In Russian)
  47.  Pinot J.M., Jansá J. Time variability of acoustic backscatter from zooplankton in the Ibiza Channel (western Mediterranean). Deep Sea Res., Part I, 2001, vol. 48, no. 7, pp. 1651–1670. doi: 10.1016/S0967-0637(00)00095-9.
  48.  Benoit-Bird K.J., Au W.W.L., Wisdom D.W. Nocturnal light and lunar cycle effects on diel migration of micronekton. Limnol. Oceanogr., 2009, vol. 54, no. 5, pp. 1789–1800. doi: 10.4319/lo.2009.54.5.1789.
  49.  Schlitzer R. Carbon export fluxes in the Southern Ocean: Results from inverse modeling and comparison with satellite-based estimates. Deep Sea Res., Part II, 2002, vol. 49, nos. 9–10, pp. 1623–1644. doi: 10.1016/S0967-0645(02)00004-8.
  50.  Roemmich D., McGowan J. Climate warming and the decline of zooplankton in the California Current, Science, 1995, vol. 267, no. 5202, pp. 1324–1326. doi: 10.1126/science.267.5202.1324.
  51.  Sarmiento J.L., Hughes T.M.C., Stouffer R.J., Manabe S. Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature, 1998, vol. 393, pp. 245–249. doi: 10.1038/30455.
  52.  Matear R. J., Hirst A.C., McNeill B.I. Changes in dissolved oxygen in the Southern Ocean with climate change. Geochem. Geophys. Geosyst., 2000, vol. 1, no. 11, pp. 1–12.
  53.  Plattner G.-K., Joos F., Stocker T.F., Marchal O. Feedback mechanisms and sensitivities of ocean carbon uptake under global warming. Tellus B, 2001, vol. 53, no. 5, pp. 564–592. doi: 10.1034/j.1600-0889.2001.530504.x.
  54.  Bopp L., Que C. Le, Heimann M., Manning A.C., Monfray P. Climate-induced oceanic oxygen fluxes: Implications for the contemporary carbon budget. Global Biogeochem. Cycles, 2002, vol. 16, no. 2, pp. 1022–1035. doi: 10.1029/2001GB001445.
  55.  Keeling R., Garcia H. The change in oceanic O2 inventory associated with recent global warming. Proc. Natl. Acad. Sci., 2002, vol. 99, no. 12, pp. 7848–7853. doi: 10.1073/pnas.122154899.
  56.  Stramma L., Prince E.D., Schmidtko S., Luo J., Hoolihan J.P., Visbeck M., Wallace D.W., Brandt P., Körtzinger A. Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes. Nat. Clim. Change., 2011, vol. 2, pp. 33–37. doi: 10.1038/nclimate1304.
  57.  Goodyear C.P., Luo J., Prince E.D., Hoolihan J.P., Snodgrass D., Orbesen E.S., Serafy J.E. Vertical habitat use of Atlantic blue marlin Makaira nigricans: Interaction with pelagic longline gear. Mar. Ecol.: Prog. Ser., 2008, vol. 365, pp. 233–245. doi: 10.3354/meps07505.
  58.  Prince E.D., Goodyear C.P. Hypoxia-based habitat compression of tropical pelagic fishes. Fish. Oceanogr., 2006, vol. 15, no. 6, pp. 451–464. doi: 10.1111/j.1365-2419.2005.00393.x.