Ya.I. Zabotin*, A.I. Golubev**

Kazan Federal University, Kazan, 420008 Russia

E-mail: *yaroslav_zabotin@rambler.ru, **anatolii.golubev_1937@mail.ru

Received May 17, 2017

Full text PDF

Abstract

Acoel turbellarians (Acoela) are of great interest in discussions on the origin of the nervous system, because they are among the most primitive multicellular animals. In particular, we can trace that they undergo all the main stages, which are characteristic of Bilateria in general, in formation of the nervous and sensory systems. The relatively simple organization of the nervous apparatus is, however, often accompanied in Acoela with the diversity of their epidermal sensory structures. During the ultrastructural investigation of Convoluta convoluta, the unusual sensillae containing myofibrils have been found. Each cell is clearly divided in height into the apical sensitive and basal contractile parts. The sensitive part bears one cilium with a thin transversely striated spindle-shaped rootlet; the basal part contains a bundle of myofibrils. The presence of sensory-muscular cells in Acoela allows further discussion on the origin of the nervous system in Bilateria. Along with N. Kleinenberg and O. and R. Hertwig's classical concepts, it is possible to suggest that the third scenario took place in this evolutionary process. Apparently, the sensitive and contractile parts of the sensory-muscular cell diverged into sensillae and muscle cells, respectively. Subsequently, both types of cells independently came into contact with the processes of neurons. This feature of acoel sensillae may be a consequence of still weak cell differentiation of these peculiar invertebrates and, at the same time, is a morphological basis for further divergence of two different tissues in higher bilaterally symmetrical animals. The revision of the literature data on the early periods of evolution of nervous-sensory apparatus in various taxa of lower invertebrates (sponges, coelenterates and acoel turbellarians) is presented.

Keywords: Acoela, nervous system, sensillae, sensory-muscular cells, evolution, phylogeny

Figure Captions

Fig. 1. Sensory muscular cells of Convoluta convoluta: a – single sensillum, b – group of sensillae. Scale: 1.0 ?m. Designations: C – cilium, CR – cilium rootlet, – epidermal cell, EMC – epithelial-muscular cell, MC – muscle cell, MF – myofibrils, NC – neural cell, SC – sensillum cell, SMC – sensory-muscular cell.

Fig. 2. Schematic reconstruction of the origin and relation of nervous, sensory, and muscular systems in metazoans: a – according to N. Kleinenberg's “neuromuscular” theory [1], b – according to O. and R. Hertwig's “sensory” theory [2, 3], c – according to the original “sensory-muscular” hypothesis. For designations see Fig. 1.

References

  1. Kleinenberg N. Hydra. Eine anatomishe entwicklungsgeschichtliche Untersuchung. Leipzig, Engleman, 1872. 90 S. (In German)
  2. Hertwig O., Hertwig R. Das Nervensystem und die Sinnesorgane der Medusan. Leipzig, Vogel, 1878. 186 S. (In German)
  3. Hertwig O., Hertwig R. Die Actinien anatomisch und histologisch mit besonderer Berucksichtigung des Nervenmuskelsystems untersucht. Jena. Z. Naturwiss. N.F., 1880, Bd. 7, S. 39–89. (In German)
  4. Zavarzin A.A. Essays on Evolutionary Histology of Nervous System. Moscow, Leningrad, Medgiz, 1941. 380 p (In Russian)
  5. Livanov N.A. Origin and first stages of the evolution of nervous system. Probl. Sovrem. Biol., 1943, vol. 21, no. 4, pp. 385–414. (In Russian)
  6. Beklemischev V.N. Foundations of Comparative Evolution of Invertebrates. Moscow, Nauka, 1964. 446 p. (In Russian)
  7. Philippe H., Derelle R., Lopez P., Pick K., Borchiellini D.C., Boury-Esnault N., Vacelet J., Renard E., Houliston E., Queinnec E., Da Silva C., Wincker P., Le Guyader H., Leys S., Jackson D., Schreiber F., Erpenbeck D., Morgenstern B., Worheide G., Manuel M. Phylogenomics revives traditional views on deep animal relationships. Curr. Biol., 2009, vol. 19, no. 8, pp. 706–712. doi: 10.1016/j.cub.2009.02.052.
  8. Borchiellini C., Manuel M., Alivon E., Boury-Esnault N., Vacelet J., Le Parco Y. Sponge paraphyly and the origin of Metazoa. J. Evol. Biol., 2001, vol. 14, no. 1, pp. 171–179. doi: 10.1046/j.1420-9101.2001.00244.x.
  9. Nielsen C. Six major steps in animal evolution: Are we derived sponge larvae?. Evol. Dev., 2008, vol. 1, no. 2, pp. 241–257. doi: 10.1111/j.1525-142X.2008.00231.x.
  10. Müller W.E., Schröder H.C., Skorokhod A., Bünz C., Müller I.M., Grebenjuk V.A. Contribution of sponge genes to unravel the genome of the hypothetical ancestor of Metazoa (Urmetazoa). Gene, 2001, vol. 276, nos. 1–2, pp. 161–173.
  11. Renard E., Vacelet J., Gazave E., Lapebie P., Borchiellini C., Ereskovsky A.V. Origin of the neuro-sensory system: New and expected insights from sponges. Integr. Zool., 2009, vol. 4, no. 3, pp. 294–308. doi: 10.1111/j.1749-4877.2009.00167.x.
  12. Maldonado M. The ecology of the sponge larva. Can. J. Zool., 2006, vol. 84, no. 2, pp. 175–194. doi: 10.1139/z05-177.
  13. Malakhov V.V. Mysterious Groups of Marine Invertebrates. Moscow, Izd. Mosk. Gos. Univ., 1990. 144 p. (In Russian)
  14. Tuzet O., Pavans de Ceccatty M. Les cellules nerveuses de l'eponge Sycon raphanus. O.S. C.R. Acad. Sci., 1952, vol. 234, pp. 1341–1396. (In French)
  15. Tuzet O., Pavans de Ceccatty M. Les cellules nerveuses de l'eponge calcaire homocoel Leucandra johnstoni. O.S. C.R. Acad. Sci., 1953, vol. 236, pp. 1447–1449. (In French)
  16. Pavans de Ceccatty M. Coordination in sponges. The foundations of integration. Am. Zool., 1974, vol. 14, no. 3, pp. 895–903.
  17. Lentz T.L. Histochemical localization of neurohumors in a sponge. J. Exp. Zool., 1966, vol. 162, no. 2, pp. 171–180. doi: 10.1002/jez.1401620204.
  18. Thiney Y. Morphologie et cytochimie ultrastructurale de l'oscule d'Hippospongia communis LMK el de sa regeneration. Thèse, Univ. Claude Bernard, 1972. 63 p.
  19. Weyrer S., Rützler K., Rieger R. Serotonin in Porifera? Evidence from developing Tedania ignis, the Caribbean fire sponge (Demospongiae). Mem. Queensl. Mus., 1999, vol. 44, pp. 659–665.
  20. Richards G.S., Simionato E., Perron M., Adamska M., Vervoort M., Degnan B.M. Sponge genes provide new insight into the evolutionary origin of the neurogenic circuit. Curr. Biol., 2008, vol. 18, no. 15, pp. 1156–1161. doi: 10.1016/j.cub.2008.06.074.
  21. Garm A., Poussart Y., Parkefelt L., Ekström P., Nilsson D.E. The ring nerve of the box jellyfish Tripedalia cystophora. Cell Tissue Res., 2007, vol. 329, no. 1, pp. 147–157. doi: 10.1007/s00441-007-0393-7.
  22. Parkefelt L., Ekström P. Prominent system of RFamide immunoreactive neurons in the rhopalia of box jellyfish (Cnidaria: Cubozoa). J. Comp. Neurol., 2009, vol. 516, no. 3, pp. 157–165. doi: 10.1002/cne.22072.
  23. Watanabe H., Fujisawa T., Holstein T.W. Cnidarians and the evolutionary origin of the nervous system. Dev., Growth Differ., 2009, vol. 51, no. 3, pp. 167–183. doi: 10.1111/j.1440-169X.2009.01103.x.
  24. Galliot B., Quiquand M., Ghila L., De Rosa R., Milijkovic-Licina M., Chera S. Origin of neurogenesis, a cnidarian view. Dev. Biol., 2009, vol. 332, no. 2, pp. 2–24. doi: 10.1016/j.ydbio.2009.05.563.
  25. Martin V. Development of nerve cells in hydrozoan planulae. I. Differentiation of ganglionic cells. Biol. Bull., 1988, vol. 174, no. 3, pp. 319–329. doi: 10.2307/1541957.
  26. Martin V. Development of nerve cells in hydrozoan planulae. II. Examination of sensory cell differentiation using electron microscopy and immunocytochemistry. Biol. Bull., 1988, vol. 175, no. 1, pp. 65–78. doi: 10.2307/1541894.
  27. Piraino S., Zega G., Di Benedetto C., Leone A., Dell'Anna A., Pennati R., Carnevali D.C., Schmid V., Reichert H. Complex neural architecture in the diploblastic larva of Clava multicornis (Hydrozoa, Cnidaria). J. Comp. Neurol., 2011, vol. 519, no. 10, pp. 1931–1951. doi: 10.1002/cne.22614.
  28. Mamkaev Yu.V., Kotikova E.A. On the morphological features of the nervous apparatus of acoel turbellarians. Zool. Zh., 1972, vol. 51, no. 4, pp. 477–489. (In Russian)
  29. Ivanov A.V., Mamkaev Yu.V. Turbellarian Worms (Turbellaria), Their Origin and Evolution. Leningrad, Nauka, 1973. 221 p. (In Russian)
  30. Golubev A.I. Electron Microscopy of the Worm Nervous System. Kazan, Izd. Kazan. Univ., 1982. 109 p. (In Russian)
  31. Golubev A.I. Evolutionary regularities of the nervous system in scolecids and annelids (ultrastructural aspect). Doct. Biol. Sci. Diss. Kazan, 1986. 392 p. (In Russian)
  32. Joffe B.I. Morphological regularities of the evolution of nervous system in flatworms: Different variants of orthogon and its relation to the body shape. Tr. Zool. Inst. Akad. Nauk SSSR, 1990, vol. 221, pp. 87–125 (In Russian)
  33. Kotikova E.A. The orthogon of the Plathelminthes and main trends of its evolution. Tr. Zool. Inst. Akad. Nauk SSSR, 1991, vol. 241, pp. 88–111. (In Russian)
  34. Kotikova E.A. The nervous system of Acoela, Plathelminthes, and Rotifera: Morphological aspect. Doct. Biol. Sci. Diss. St. Petersburg, 2009. 43 p. (In Russian)
  35. Kotikova E.A., Raikova O.I. Features of central nervous system structure in Acoela, Plathelminthes, and Rotifera. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2007, vol. 149, no. 3, pp. 126–131. (In Russian)
  36. Kotikova E.A., Raikova O.I. Architectonics of the central nervous system of Acoela, Plathelminthes, and Rotifera. J. Evol. Biochem. Physiol., 2008, vol. 44, no. 1, pp. 95–108. (In Russian)
  37. Mamkaev Yu.V. Essays on the morphology of acoelous turbellarians. Tr. Zool. Inst. Akad. Nauk SSSR, 1967, vol. 44, pp. 26–108. (In Russian)
  38. Dӧrjes J. Die Acoela (Turbellaria) der Deutschen Nordseeküste und ein neues System der Ordnung. Z. Zool. Syst. Evolutionsforsch., 1968, Bd. 6, S. 56–452. (In German)
  39. Raikova O.I. Ultrastructure of the nervous system and sensory organs in acoel turbellarians. Tr. Zool. Inst. Akad. Nauk SSSR, 1989, vol. 195, pp. 36–46. (In Russian)
  40. Raikova O.I., Reuter M., Gustafsson M.K.S., Maule A.G., Halton D.W., Jondelius U. Basiepidermal nervous system in Nemertoderma westbladi (Nemertodermatida): GYIRFamide immunoreactivity. Zoology (Jena, Ger.), 2004, vol. 107, no. 1, pp. 75–86. doi: 10.1016/j.zool.2003.12.002.
  41. Raikova O.I., Reuter M., Jondelius U., Gustafsson M.K.S. An immunocytochemical and ultrastructural study of the nervous and muscular systems of Xenoturbella westbladi (Bilateria inc. sed.). Zoomorphology, 2000, vol. 120, no. 2, pp. 107–118. doi: 10.1007/s004350000028.
  42. Dogiel V.A. Oligomerization of Homologous Organs as One of the Main Pathways of Animal Evolution. Leningrad, Izd. Leningr. Univ., 1954, 368 p. (In Russian)
  43. Popova N.V., Mamkaev Yu.V. On the types of sensillae in acoel turbellarians. Tr. Zool. Inst. Akad. Nauk SSSR, 1987, vol. 167, pp. 85–89. (In Russian)
  44. Bedini C., Ferrero E., Lanfranchi A. The ultrastructure of ciliary sensory cells in two Turbellaria Acoela. Tissue Cell, 1973, vol. 5, no. 3, pp. 359–372. doi: 10.1016/S0040-8166(73)80030-8.
  45. Pfistermüller R., Tyler S. Correlation of fluorescence and electron microscopy of F-actin-containing sensory cells in the epidermis of Convoluta pulchra (Platyhelminthes: Acoela). Acta Zool., 2002, vol. 83, no. 1, pp. 15–24. doi: 10.1046/j.1463-6395.2002.00095.x.
  46. Todt C., Tyler S. Ciliary receptors associated with the mouth and pharynx of Acoela (Acoelomorpha): A comparative ultrastructural study. Acta Zool., 2007, vol. 88, no. 1, pp. 41–58. doi: 10.1111/j.1463-6395.2007.00246.x.
  47. Grundfest H. Essays on Physiological Evolution. Evolution of Electrophysiological Properties among Sensory Receptor System. Oxford, Pergamon Press, 1965, pp. 107–138.


For citation: Zabotin Ya.I., Golubev A.I. On the origin of the nervous system based on  studying sensillae in acoel turbellarians (Acoela). Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2017, vol. 159, no. 3, pp. 421–432. (In Russian)


The content is available under the license Creative Commons Attribution 4.0 License.