A.G. Sulkarnayevaa*,V.V. Shitikovaa**,F.V. Minibayevaa,b***

aKazan Institute of Biochemistry and Biophysics, Kazan Scientific Center,

Russian Academy of Sciences, Kazan, 420111 Russia

bKazan Federal University, Kazan, 420008 Russia

E-mail: *sulkarnayeva@gmail.com, **vicry@yandex.ru, ***fminibayeva@gmail.com

Received April 11, 2017

Full text PDF

Abstract

The paper is devoted to the comparative analysis of proteomic profiles and genotoxicity of common wheat (Triticum aestivum L.), an important crop and one of the most complicated objects of study in genetics, cytogenetics, molecular genetics, and phylogenetics of plants. This cereal has an allohexaploid genome (2n = 6x = 42, AABBDD) formed by three diploid species Triticum urartu Thum. (AA), Aegilops speltoides Tausch. (SS), and Aegilops tauschii Coss. (DD). Copies of the same genes in the genomes A, B, and D are called homoeologous genes. It has been shown that most genes in the genome of T. aestivum are present as homoeologous copies that originate from a common ancestral gene.

This review summarizes the current knowledge on the homoeologous genes of wheat. The structural and functional characteristics of certain groups of homoeologous wheat genes that encode the enzymes of biosynthesis of secondary metabolites and sterols, as well as autophagy proteins have been analyzed. Differential expression of these genes in various tissues and at different stages of ontogenesis or under different environmental conditions has been described.

Different evolutionary consequences of the structural and functional divergence of homoeologous genes in polyploids may occur. Possible outcomes include: subfunctionalization, i.e., separation of functions between copies (co-expression of genes, inhibition/stimulation of trans­cription of certain homoeologs, as well as tissue-, organ-, and stage-specific expression); neofunctionalization can occur, where one gene may acquire new functions; pseudogenization, i.e., complete loss of function by one of the homoeologs, which subsequently becomes a pseudogene. Polyploid organisms have the advantage that they can display structural and functional divergence of homoeologous genes, which can increase the adaptive potential of the organism in a changing environment.

Keywords: wheat, Triticum aestivum L., homoeologous genes, multi-copy of genes

Acknowledgments. The study was supported by the Russian Foundation for Basic Research (projects nos. 16-04-00676 and 17-04-01562).

Figure Captions

Fig. 1. The scheme of genome origin in hexaploid wheat [2].

Fig. 2. Homologous and homeologous chromosomes in hexaploid wheat genome.

References

  1. Feldman M., Levy A.A. Allopolyploidy – a shaping force in the evolution of wheat genomes. Cytogenet. Genome Res., 2005, vol. 109, nos. 1–3, pp. 250–258. doi: 10.1159/000082407.
  2. Marcussen T., Sandve S.R., Heier L., Spannagl M., Pfeifer M., International Wheat Genome Sequencing Consortium, Jakobsen K.S., Wulff B.B., Steuernagel B., Mayer K.F., Olsen O.A. Ancient hybridizations among the ancestral genomes of bread wheat. Science, 2014, vol. 345, no. 6194, art. 1250092, pp. 1–4. doi: 10.1126/science.1250092.
  3. Fitzgerald T.L., Kazan K., Li Z., Morell M.K., Manners J.M. A high-throughput method for the detection of homologous gene deletions in hexaploid wheat. BMC Plant Biol., 2010, vol. 10, art. 264, pp. 1–5. doi: 10.1186/1471-2229-10-264.
  4. Nigro D., Blanco A., Anderson O.D., Gadaleta A. Characterization of ferredoxin-dependent glutamine-oxoglutarate amidotransferase (Fd-GOGAT) genes and their relationship with grain protein content QTL in wheat. PLoS One, 2014, vol. 9, no. 8, art. e103869, pp. 1–11. doi: 10.1371/journal.pone.0103869.
  5. Shoeva O.Y., Khlestkina E.K., Berges H., Salina E.A. The homoeologous genes encoding chalcone-flavanone isomerase in Triticum aestivum L.: Structural characterization and expression in different parts of wheat plant. Gene, 2014, vol. 538, no. 2, pp. 334–341. doi: 10.1016/j.gene.2014.01.008.
  6. Himi E., Noda K. Isolation and location of three homoeologous dihydroflavonol-4-reductase (DFR) genes of wheat and their tissue-dependent expression. J. Exp. Bot., 2004. vol. 55, no. 396, pp. 365–375.
  7. Feldman M., Levy A.A., Fahima T., Korol A. Genomic asymmetry in allopolyploid plants: Wheat as a model. J. Exp. Bot., 2012, vol. 63, no. 14, pp. 5045–5059. doi: 10.1093/jxb/ers192.
  8. Garcia-Oliveira A.L., Martins-Lopes P., Tolrá R., Poschenrieder C., Tarquis M., Guedes-Pinto H., Benito C. Molecular characterization of the citrate transporter gene TaMATE1 and expression analysis of upstream genes involved in organic acid transport under Al stress in bread wheat (Triticum aestivum). Physiol. Plant., 2014, vol. 152, no. 3, pp. 441–452. doi: 10.1111/ppl.12179.
  9. Subramaniam K., Liu B., Ye Z., Abbo S., Ueng P.P. Isolation of a gene coding for a putative sterol C-24 methyltransferase in wheat. Wheat Inf. Serv. (Japan), 1999, vol. 89, pp. 17–22.
  10. Bouvier-Navé P., Husselstein T., Desprez T., Benveniste P. Identification of cDNAs encoding sterol methyl-transferases involved in the second methylation step of plant sterol biosynthesis. Eur. J. Biochem., 1997, vol. 246, pp. 518–529.
  11. Schaller H., Bouvier-Navé P., Benveniste P. Overexpression of an Arabidopsis cDNA encoding a sterol-C24(1)-methyltransferase in tobacco modifies the ratio of 24-methyl cholesterol to sitosterol and is associated with growth reduction. Plant Physiol., 1998, vol. 118, no. 2, pp. 461–469.
  12. Neelakandan A.K., Song Z., Wang J., Richards M.H., Wu X., Valliyodan B., Nguyen H.T., Nes W.D. Cloning, functional expression and phylogenetic analysis of plant sterol 24C-methyltransferases involved in sitosterol biosynthesis. Phytochemistry, 2009, vol. 70, nos. 17–18, pp. 1982–1998. doi: 10.1016/j.phytochem.2009.09.003.
  13. Neelakandan A.K., Nguyen T.M., Kumar R., Tran L.S., Guttikonda S.K., Quach T.N., Aldrich D.L., Nes W.D., Nguyen H.T. Molecular characterization and functional analysis of Glycine max sterol methyl transferase 2 genes involved in plant membrane sterol biosynthesis. Plant Mol. Biol., 2010, vol. 74, nos. 4–5, pp. 503–518. doi: 10.1007/s11103-010-9692-6.
  14. Carland F., Fujioka S., Nelson T. The sterol methyltransferases SMT1, SMT2, and SMT3 influence Arabidopsis development through nonbrassinosteroid products. Plant Physiol., 2010, vol. 153, no. 2, pp. 741–756. doi: 10.1104/pp.109.152587.
  15. Sulkarnayeva A.G., Valitova J.N., Minibayeva F.V. Characterization of the homeologous genes of C24-sterol methyltransferase in Triticum aestivum L. Dokl. Biochem. Biophys., 2016, vol. 470, no. 1, pp. 357–360. doi: 10.1134/S1607672916050148.
  16. McIntosh R.A., Hart C.E., Devos K.M., Gale M.D., Rogers W.J. Catalogue of gene symbols for wheat. Proc. 9th Int. Wheat Genet. Symp. Slinkard A.E. (Ed.). Saskatoon, Univ. Ext. Press, Univ. of Sask., 1998, vol. 5, pp. 1–235.
  17. Devos K.M., Dubcovsky J., Dvořák J., Chinoy C.N., Gale M.D. Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination. Theor. Appl. Genet., 1995, vol. 91, pp. 282–288. doi: 10.1007/BF00220890.
  18. Ma J., Stiller J., Berkman P.J., Wei Y., Rogers J., Feuillet C., Dolezel J., Mayer K.F., Eversole K., Zheng Y.L., Liu C. Sequence-based analysis of translocations and inversions in bread wheat (Triticum aestivum L.). PLoS One, 2013, vol. 8, no. 11, art. e79329, pp. 1–5, doi: 10.1371/journal.pone.0079329.
  19. Aramrak A., Kidwell K.K., Steber C.M., Burke I.C. Molecular and phylogenetic characterization of the homoeologous EPSP Synthase genes of allohexaploid wheat, Triticum aestivum (L.). BMC Genomics, 2015, vol. 16, art. 844, pp. 1–14. doi: 10.1186/s12864-015-2084-1.
  20. Huang X.Q., Brûlé-Babel A. Development of genome-specific primers for homoeologous genes in allopolyploid species: The waxy and starch synthase II genes in allohexaploid wheat (Triticum aestivum L.) as examples. BMC Res. Notes, 2010, vol. 3, art. 140, pp. 1–11. doi: 10.1186/1756-0500-3-140.
  21. Sulkarnayeva A.G., Valitova Ju.N., Mukhitova F.K., Minibayeva F.V. Stress-induced changes in membrane sterols in wheat roots. Dokl. Biochem. Biophys., 2014, vol. 455, no. 1, pp. 53–55. doi: 10.1134/S1607672914020033.
  22. Kirisako T., Baba M., Ishihara N., Miyazawa K., Ohsumi M., Yoshimori T., Noda T., Ohsumi Y. Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J. Cell Biol., 1999, vol. 147, no. 2, pp. 435–446. doi: 10.1083/jcb.147.2.435.
  23. Ryabovol V.V., Minibayeva F.V. Autophagic proteins ATG4 and ATG8 in wheat: Structural characteristics and their role under stress conditions. Dokl. Biochem. Biophys., 2014, vol. 458, no. 1, pp.179–181. doi: 10.1134/S1607672914050056.
  24. Ryabovol V.V., Minibayeva F.V. Molecular Mechanisms of autophagy in plants: Role of ATG8 proteins in formation and functioning of autophagosomes. Biochemistry (Moscow), 2016, vol. 81, no. 4, pp. 348–363. doi: 10.1134/S0006297916040052.
  25. Avin-Wittenberg T., Michaeli S., Honig A., Galili G. ATI1, a newly identified atg8-interacting protein, binds two different Atg8 homologs. Plant Signaling Behav., 2012, vol. 7, no. 6, pp. 685–687. doi: 10.4161/psb.20030.
  26. Rose T.L., Bonneau L., Der C., Marty-Mazars D., Marty F. Starvation-induced expression of autophagy-related genes in Arabidopsis. Biol. Cell, 2006, vol. 98, no. 1, pp. 53–67. doi: 10.1042/BC20040516.
  27. Wendel J.F. Genome evolution in polyploids. Plant Mol. Biol., 2000, vol. 42, no. 1, pp. 225–249.


For citation: Sulkarnayeva A.G., ShitikovaV.V., Minibayeva F.V. Homoeologous genes in Triticum aestivum L.: Structural characteristics and differential activity. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2017, vol. 159, no. 2, pp. 321–331. (In Russian)


The content is available under the license Creative Commons Attribution 4.0 License.