N.V. Danilova*, P.Y. Galitskaya**, S.Y. Selivanovskaya***

Kazan Federal University, Kazan, 420008 Russia

E-mail: *natasha-danilova91@mail.ru, **gpolina33@yandex.ru, ***svetlana.selivanovskaya@kpfu.ru

Full text PDF

Abstract

Antibiotics are used in animal husbandry for treating and preventing diseases and as growth stimulators. Being disposed in the environment with dung and manure, they contribute to the spread of antibiotic-resistant bacteria and resistance genes. In this study, the level of contamination of cattle manure and poultry dung by genes resistant to tetracyclines, sulfonamides, and macrolides (erythromycin) has been investigated based on 19 samples. The polymerase chain reaction with specific primers for tet(X), sul1, and ereA genes has been used to reveal the resistance genes. It has been found that 18 samples contained genes encoding for the resistance to antibiotics. Furthermore, four samples have turned out to be simultaneously contaminated by all three genes. It has been revealed that gene tet(X) encoding tetracycline resistance is the most abundant one.

Keywords: antibiotics, tetracyclines, sulfonamides, macrolides, erythromycin, antibiotic resistance, resistance genes, multiresistance, manure, dung

Acknowledgments. The study was supported by the Russian Foundation for Basic Research (project no. 16-04-00443).

References

  1. Sarmah A.K., Meyer M.T., Boxall A.B. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 2006, vol. 65, no. 5, pp. 725–759. doi: 10.1016/j.chemosphere.2006.03.026.
  2. Bouki C., Venieri D., Diamadopoulos E. Detection and fate of antibiotic resistant bacteria in wastewater treatment plants : A review. Ecotoxicol. Environ. Saf., 2013, vol. 91, pp. 1–9. doi: 10.1016/j.ecoenv.2013.01.016.
  3. Tang X., Lou Ch., Wang Sh., Lu Y., Liu M., Hashmi M.Z., Liang X., Li Z., Liao Y., Qin W., Fan F., Xua J., Brookes P.C. Effects of long-term manure applications on the occurrence of antibiotics and antibiotic resistance genes (ARGs ) in paddy soils : Evidence from four field experiments in south of China. Soil Biol. Biochem., 2015, vol. 90, pp. 179–187. doi: 10.1016/j.soilbio.2015.07.027.
  4. Yang Q., Zhang J., Zhu K., Zhang H. Influence of oxytetracycline on the structure and activity of microbial community in wheat rhizosphere soil. J. Environ. Sci. (China), 2009, vol. 21, no. 7, pp. 954–959. doi: 10.1016/S1001-0742(08)62367-0.
  5. Schauss K., Focks A., Heuer H., Kotzerke A., Schmitt H., Thiele-Bruhn S., Smalla K., Wilke B.-M., Matthies M., Amelung W., Klasmeier J., Schloter M. Analysis, fate and effects of the antibiotic sulfadiazine in soil ecosystems. Trends Anal. Chem., 2009, vol. 28, no. 5, pp. 612–618. doi: 10.1016/j.trac.2009.02.009.
  6. Aydin S., Ince B., Ince O. Development of antibiotic resistance genes in microbial communities during long-term operation of anaerobic reactors in the treatment of pharmaceutical wastewater. Water Res., 2015, vol. 83, pp. 337–344. doi: 10.1016/j.watres.2015.07.007.
  7. Zhang T., Zhang M., Zhang X., Fang H.H. Tetracycline resistance genes and tetracycline resistant lactose-fermenting Enterobacteriaceae in activated sludge of sewage treatment plants. Environ. Sci. Technol., 2009, vol. 43, no. 10, pp. 3455–3460. doi: 10.1021/es803309m.
  8. Song L., Li L., Yang S., Lan J., He H., McElmurry S.P., Zhao Y. Sulfamethoxazole, tetracycline and oxytetracycline and related antibiotic resistance genes in a large-scale landfill, China. Sci. Total Environ., 2016, vol. 551–552, no. 26, pp. 9–15. doi: 10.1016/j.scitotenv.2016.02.007.
  9. Kyselková M., Kotrbová L., Bhumibhamon G., Chroňáková A., Jirout J., Vrchotová N., Schmitt H., Elhottová D. Tetracycline resistance genes persist in soil amended with cattle feces independently from chlortetracycline selection pressure. Soil Biol. Biochem., 2015, vol. 81, pp. 259–265. doi: 10.1016/j.soilbio.2014.11.018.
  10. Supotnitsky M.V. Mechanisms of bacterial antibiotic resistance development. Biopreparaty, 2011, no. 2, pp. 4–13. (In Russian)
  11. Wang F.-H., Qiao M., Chen Z., Su J.-Q., Zhu Y.-G. Antibiotic resistance genes in manure-amended soil and vegetables at harvest. J. Hazard. Mater., 2015, vol. 299, pp. 215–221. doi: 10.1016/j.jhazmat.2015.05.028.
  12. Selvam A., Xu D., Zhao Z., Wong J.W. Fate of tetracycline, sulfonamide and fluoroquinolone resistance genes and the changes in bacterial diversity during composting of swine manure. Bioresour. Technol., 2012, vol. 126, pp. 383–390. doi: 10.1016/j.biortech.2012.03.045.
  13. Littmann J., Buyx A., Cars O. Antibiotic resistance : An ethical challenge. Int. J. Antimicrob. Agents, 2015, vol. 46, no. 4, pp. 359–361. doi: 10.1016/j.ijantimicag.2015.06.010.
  14. Sanitary Rules and Norms 2.3.2.1078-01. Hygienic requirements for safety and nutritional value of food products. Moscow, 2002. (In Russian)
  15. Speer B.S., Shoemaker N.B., Salyers A.A. Bacterial resistance to tetracycline: Mechanisms, transfer, and clinical significance. Clin. Microbiol. Rev., 1992, vol. 5, no. 4, pp. 387–399.
  16. Pei R., Kim S.-Ch., Carlson K.H., Pruden A. Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water Res., 2006, vol. 40, no. 12, pp. 2427–2435. doi: 10.1016/j.watres.2006.04.017.
  17. Sommer M.O.A., Dantas G. Antibiotics and the resistant microbiome. Curr. Opin. Microbiol., 2011, vol. 14, no. 5, pp. 556–563. doi: 10.1016/j.mib.2011.07.005.
  18. Brooks J.P., Adeli A., McLaughlin M.R. Microbial ecology, bacterial pathogens, and antibiotic resistant genes in swine manure wastewater as influenced by three swine management systems. Water Res., 2014, vol. 57, pp. 96–103. doi: 10.1016/j.watres.2014.03.017.
  19. Heuer H., Focks A., Lamshöft M., Smalla K., Matthies M., Spiteller M. Fate of sulfadiazine administered to pigs and its quantitative effect on the dynamics of bacterial resistance genes in manure and manured soil. Soil Biol. Biochem., 2008, vol. 40, no. 7, pp. 1892–1900. doi: 10.1016/j.soilbio.2008.03.014.
  20. Heuer H., Schmitt H., Smalla K. Antibiotic resistance gene spread due to manure application on agricultural fields. Curr. Opin. Microbiol., 2011, vol. 14, no. 3, pp. 236–243. doi: 10.1016/j.mib.2011.04.009.
  21. Pyörälä S., Baptiste K.E., Catry B., van Duijkeren E., Greko C., Moreno M.A., Pomba M.C., Rantala M., Ružauskas M., Sanders P., Threlfall E.J., Torren-Edo J., Törneke K. Macrolides and lincosamides in cattle and pigs: Use and development of antimicrobial resistance. Vet. J., 2014, vol. 200, no. 2, pp. 230–239. doi: 10.1016/j.tvjl.2014.02.028.
  22. Chen J., Yu Zh., Michel F.C. Jr., Wittum T., Morrison M. Development and application of real-time PCR assays for quantification of erm genes conferring resistance to macrolides-lincosamides-streptogramin B in livestock manure and manure management systems. Appl. Environ. Microbiol., 2007, vol. 73, no. 14, pp. 4407–4416. doi: 10.1128/AEM.02799-06.
  23. Koike S., Aminov R.I., Yannarell A.C., Gans H.D., Krapac I.G., Chee-Sanford J.C., Mackie R.I. Molecular ecology of macrolide-lincosamide-streptogramin B methylases in waste lagoons and subsurface waters associated with swine production. Microb. Ecol., 2010, vol. 59, no. 3, pp. 487–498. doi: 10.1007/s00248-009-9610-0.

For citation: Danilova N.V., Galitskaya P.Y., Selivanovskaya S.Y. Multiresistance of bacteria to veterinary antibiotics in dung and manure samples of farm animals. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2016, vol. 158, no. 4, pp. 507–516. (In Russian)


The content is available under the license Creative Commons Attribution 4.0 License.