L.R. Biktasheva*, N.V. Belonogova**, S.Y. Selivanovskaya***, P.Y. Galitskaya****

Kazan Federal University, Kazan, 420008 Russia

E-mail: *biktasheval@mail.ru, **nadezhda-belonogova@yandex.ru, ***svetlana.selivanovskaya@kpfu.ru, ****gpolina33@yandex.ru

Full text PDF

Abstract

The use of suppressive composts, which exhibit fertilizing properties towards plants and inhibiting properties towards phytopathogens, instead of traditional pesticides is of growing practical and scientific importance. In this work, we have studied the possibility to obtain suppressive compost by introducing the microbial biopreparation and estimated the survival rate of the biopreparation microbial strains in the compost by means of the real-time PCR method. The biopreparation consisted of four microbial strains (Trichoderma asperellum T203, Pseudomonas putida PCL1760, Pseudomonas fluorescence WCS365, and Streptomyces spp.) characterized by four different mechanisms of plant pathogen inhibition. The compost was prepared using straw waste, chicken and cow manures. The compost has been inoculated with the biopreparation twice, on the 120th and 180th days of composting. Suppressiveness towards Fusarium oxysporum pathogen has been measured. Non-inoculated compost has been used as control. It has been found that single inoculation of the biopreparation increased suppressiveness by 1.4 times for up to 60 days. Repeated inoculation resulted in a more significant increase of suppressiveness with longer duration – by 8.5 times for up to 90 days. The peaks of suppressiveness coincided with the increased abundance of two of four biopreparation microbial strains – P. fluorescence WCS365 and T. asperellum T203.

Keywords: compost, suppressiveness, biopreparation, inoculation, Fusarium oxysporum

Acknowledgments. This study was supported by the subsidy of the Ministry of Education and Science of the Russian Federation for applied research (project no. RFMEFI57814X0089).

Figure Captions

Fig. 1. Suppressiveness of the inoculated and non-inoculated compost (A – first inoculation, 120th day; B – second inoculation, 180th day).

Fig. 2. Survival rate of the biopreparation strains inoculated in the compost (aP. fluorescence WCS365, bP. putida PCL1760, cT. asperellum Т.203, dStreptomyces spp.).

References

  1. Rao S. Principles of Weed Science. Ed. 2. New York, Sci. Publ., 2000. 526 p.
  2. Liu J., Gilardi G., Sanna M., Gullino M.L., Garibaldi A. Biocontrol of Fusarium crown and root rot of tomato and growth-promoting effect of bacteria isolated from recycled substrates of soilless crops. Phytopathol. Mediterr., 2010, vol. 49, pp. 163–171. doi: 10.14601/Phytopathol_Mediterr-3095.
  3. Lopez-Lopez N., Segarra G., Vergara O., López-Fabal A., Trillas M.I. Compost from forest cleaning green waste and Trichoderma asperellum strain T34 reduced incidence of Fusarium circinatum in Pinus radiata seedlings. Biol. Control, 2016, vol. 95, pp. 31–39. doi: 10.1016/j.biocontrol.2015.12.014.
  4. Xin X., Zhang J., Zhu A., Zhang C. Effects of long-term (23 years) mineral fertilizer and compost application on physical properties of fluvo-aquic soil in the North China Plain. Soil Tillage Res., 2016, vol. 156, pp. 166–172. doi: 10.1016/j.still.2015.10.012.
  5. Galitskaya P., Beru F., Kuryntseva P., Selivanovskaya S. Suppressive properties of composts are determined by their raw materials. Indian J. Sci. Technol., 2015, vol. 8, no. 30, pp. 1–7. doi: 10.17485/ijst/2015/v8i30/81875.
  6. Markakis E.A., Fountoulakis M.S., Daskalakis G.Ch., Kokkinis M., Ligoxigakis E.K. The suppressive effect of compost amendments on Fusarium oxysporum f.sp. radicis-cucumerinum in cucumber and Verticillium dahliae in eggplant. Crop Prot., 2016, vol. 79, pp. 70–79. doi: 10.1016/j.cropro.2015.10.015.
  7. Zhang N., He X., Zhang J., Raza W., Yang X.-M., Ruan Y.-Z., Shen Q.-R., Huang Q.-W. Suppression of Fusarium wilt of banana with application of bio-organic fertilizers. Pedosphere, 2014, vol. 24, no. 5, pp. 613–624. doi: 10.1016/S1002-0160(14)60047-3.
  8. Chen M.-H., Jack A.L.H., McGuire I.C., Nelson E.B. Seed-colonizing bacterial communities associated with the suppression of Pythium seedling disease in a municipal biosolids compost. Phytopathology, 2012, vol. 102, no. 5, pp. 478–489. doi: 10.1094/PHYTO-08-11-0240-R.
  9. Wei Z., Huang J., Yang C., Xu Y., Shen Q., Chen W. Screening of suitable carriers for Bacillus amyloliquefaciens strain QL-18 to enhance the biocontrol of tomato bacterial wilt. Crop Prot., 2015, vol. 75, pp. 96–103. doi: 10.1016/j.cropro.2015.05.010.
  10. Gilardi G., Demarchi S., Gullino M.L., Garibaldi A. Evaluation of the short term effect of nursery treatments with phosphite-based products, acibenzolar-S-methyl, pelleted Brassica carinata and biocontrol agents, against lettuce and cultivated rocket fusarium wilt under artificial inoculation and greenhouse conditions. Crop Prot., 2016, vol. 85, pp. 23–32. doi: 10.1016/j.cropro.2016.03.011.
  11. Viterbo A., Landau U., Kim S., Chernin L., Chet I. Characterization of ACC deaminase from the biocontrol and plant growth-promoting agent Trichoderma asperellum T203. FEMS Microbiol. Lett., 2010, vol. 305, no. 1, pp. 42–48. doi: 10.1111/j.1574-6968.2010.01910.
  12. Desaki Y., Miya A., Venkatesh B., Tsuyumu S., Yamane H., Kaku H. Bacterial lipopolysaccharides induce defense responses associated with programmed cell death in rice cells. Plant Cell Physiol., 2006, vol. 47, no. 11, pp. 1530–1540. doi: 10.1093/pcp/pcl019.
  13. Bolwerk A., Lagopodi A.L., Lugtenberg B.J.J., Bloemberg G.V. Visualization of interactions between a pathogenic and a beneficial Fusarium strain during biocontrol of tomato foot and root rot. Mol. Plant-Microbe Interact., 2005, vol. 18, no. 7, pp. 710–721.
  14. Benitez M.-S., Gardener B.B.M. Linking sequence to function in soil bacteria: Sequence-directed isolation of novel bacteria contributing to soilborne plant disease suppression. Appl. Environ. Microbiol., 2009, vol. 75, no. 4, pp. 915–924. doi: 10.1128/AEM.01296-08.
  15. Haas D., Defago G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol., 2005, vol. 3, no. 4, pp. 307–319.
  16. Validov S.Z., Kamilova F., Lugtenberg B.J.J. Pseudomonas putida strain PCL1760 controls tomato foot and root rot in stonewool under industrial conditions in a certified greenhouse. Biol. Control, 2009, vol. 48, no. 4, pp. 6–11. doi: 10.1016/j.biocontrol.2008.09.010.
  17. Galitskaya P., Biktasheva L., Kuryntseva P., Selivanovskaya S. Suppressive properties of composts may be improved by microbial inoculation. Indian J. Sci. Technol., 2016, vol. 7, no. 2, pp. 773–783.
  18. Iqbal M.K., Shafiq T., Ahmed K. Characterization of bulking agents and its effects on physical properties of compost. Biores. Technol., 2010, vol. 101, no. 6, pp. 1913–1919. doi: 10.1016/j.biortech.2009.10.030.
  19. Kumar M., Ou Y.-L., Lin J.-G. Co-composting of green waste and food waste at low C/N ratio. Waste Manage., 2010, vol. 30, no. 4, pp. 602–609. doi: 10.1016/j.wasman.2009.11.023.
  20. Li Z., Lu H., Ren L., He L. Experimental and modeling approaches for food waste composting: A review. Chemosphere, 2013, vol. 93, no. 7, pp. 1247–1257. doi: 10.1016/j.chemosphere.2013.06.064.
  21. Sasaki N., Suehara K., Kohda J., Nakano Y., Yang T. Effects of C/N ratio and pH of raw materials on oil degradation efficiency in a compost fermentation process. J. Biosci. Bioeng., 2003, vol. 96, no. 1, pp. 47–52.
  22. Kim T.G., Knudsen G.R. Quantitative real-time PCR effectively detects and quantifies colonization of sclerotia of Sclerotinia sclerotiorum by Trichoderma spp. Appl. Soil Ecol., 2008, vol. 40, no. 1, pp. 100–108. doi: 10.1016/j.apsoil.2008.03.013.
  23. Kamilova F., Lamers G., Lugtenberg B. Biocontrol strain Pseudomonas fluorescens WCS365 inhibits germination of Fusarium oxysporum spores in tomato root exudate as well as subsequent formation of new spores. Environ. Microbiol., 2008, vol. 10, no. 9, pp. 2455–2461. doi: 10.1111/j.1462-2920.2008.01638.x.
  24. Kinkel L.L., Schlatter D.C., Bakker M.G., Arenz B.E. Streptomyces competition and co-evolution in relation to plant disease suppression. Res. Microbiol., 2012, vol. 163, no. 8, pp. 490–499. doi: 10.1016/j.resmic.2012.07.005.
  25. Netrusov А.I., Egorova M.A., Zakharchuk L.M. Handbook of Microbiology. Moscow, Akademiya, 2005. 608 p. (In Russian)
  26. Zaborskih Е.I. The antagonistic activity of mesophilic lactic streptococci and their experimental selection. Cand. Biol. Sci. Diss. Irkutsk, 1976. 120 p. (In Russian)
  27. Anikiev B. B., Lukomskaya K.A. Handbook for Practical Training in Microbiology. Moscow, Prosveshchenie, 1977. 128 p. (In Russian)
  28. Chervinets Yu.V., Bondarenko V.M., Shabanova Yu.A., Samoukina A.M., Chervinets V.M. Bacteriocinogenic highly antagonistic strains of lactobacilli. Zh. Microbiol., Epidemiol., Immunobiol., 2006, no. 7, pp. 78–81. (In Russian)
  29. Bukharin O.V., Semenov A.V., Cherkasov S.V. Antagonistic activity of probiotic bacteria during their interaction. Klin. Mikrobiol. Antimikrobn. Khimioter., 2010, vol. 12, no. 4, pp. 347–352. (In Russian)
  30. Semenov A.V., Cherkasov S.V. The impact of associative microorganisms on antagonistic activity of bacteria. Vestn. NGU, Ser. Biol., Klin. Med., 2011, vol. 9, no. 3, pp. 20–26. (In Russian)
  31. Irkitova A.N., Kagan Ya.R., Sokolova G.G. Comparative analysis of methods for determining of the antagonistic activity of lactic bacteria. Izv. Altai. Gos. Univ., 2012, no. 3, pp. 41–44. (In Russian)
  32. Hoitink H.A.J., Fahy P.C. Basis for the control of soilborne plant pathogens with composts. Annu. Rev. Phytopathol., 1986, vol. 24, pp. 93–114.
  33. Vestberg M., Kukkonen S., Rantala S., Prochazka P., Tuohimetsä S., Setala H., Romantschuk M., Kurola J., Yu D., Parikka P. Suppressiveness of Finnish commercial compost against soil borne disease. Acta Hortic., 2011, vol. 891, pp. 59–65. doi: 10.17660/ActaHortic.2011.891.5.
  34. Carrero-Carron I., Trapero-Casas J.L., Olivares-Garcia C., Monte E., Hermosa R., Jimenez-Diaz R.M. Trichoderma asperellum is effective for biocontrol of Verticillium wiltin olive caused by the defoliating pathotype of Verticillium dahlia. Crop Prot., 2016, vol. 88, pp. 45–52. doi: 10.1016/j.cropro.2016.05.009.
  35. Schwartz E., Scow K.M. Repeated inoculation as a strategy for the remediation of low concentrations of phenanthrene in soil. Biodegradation, 2001, vol. 12, no. 3, pp. 201–207.
  36. Gilbert E.S., Crowley D.E. Repeated application of carvone-induced bacteria to enhance biodegradation of polychlorinated biphenyls in soil. Appl. Microbiol. Biotechnol., 1998, vol. 50, no. 4, pp. 489–494.
  37. Newcombe D.A., Crowley D.E. Bioremediation of atrazine-contaminated soil by repeated applications of atrazine-degrading bacteria. Appl. Microbiol. Biotechnol., 1999, vol. 51, no. 6, pp. 877–882.
  38. Myszka K., Schmidt M.T., Olejnik-Schmidt A.K., Leja K., Czaczyk K. Influence of phenolic acids on indole acetic acid production and on the type III secretion system gene trans­cription in food-associated Pseudomonas fluorescens KM05. J. Biosci. Bioeng., 2014, vol. 118, no. 6, pp. 651–656. doi: 10.1016/j.jbiosc.2014.05.029.
  39. Larena I., Vazqueza G., De Cala A., Melgarejo P., Magan N. Ecophysiological requirements on growth and survival of the biocontrol agent Penicillium oxalicum 212 in different sterile soils. Appl. Soil Ecol., 2014, vol. 78, pp. 18–27. doi: 10.1016/j.apsoil.2014.02.003.
  40. Schlatter D.C., Samac D.A., Tesfaye M., Kinkel L.L. Rapid and specific method for evaluating Streptomyces competitive dynamics in complex soil communities. Appl. Environ. Microbiol., 2010, vol. 76, no. 6, pp. 2009–2012. doi: 10.1128/AEM.02320-09.

For citation: Biktasheva L.R., Belonogova N.V., Selivanovskaya S.Y., Galitskaya P.Y. On the efficiency of introduction of microbial strains used for adjusted changes of the compost properties. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2016, vol. 158, no. 4, pp. 493–506. (In Russian)


The content is available under the license Creative Commons Attribution 4.0 License.