A.R. Gilmullina a*, P.Y. Galitskaya a**, A.A. Saveliev a***, Y.V. Kuzyakov a, b****, S.Y. Selivanovskaya a*****

a Kazan Federal University, Kazan, 420008 Russia

b University of Göttingen, Göttingen, 37073 Germany

E-mail: *gilmullinaar@mail.ru, **gpolina33@yandex.ru, ***Anatoly.Saveliev.aka.saa@gmail.com, ****kuzyakov@gwdg.de, *****svetlana.selivanovskaya@kpfu.ru

Full text PDF

Abstract

The effects of glucose and cadmium addition, as well as their combination on the CO2 efflux from soils, which differed by the total organic carbon content and texture, were studied. Glucose (10 g/kg) addition induced an increase in the CO2 efflux from soil and a decrease in the content of dissolved organic carbon. The intensity of this effect reduced in samples with the low total organic carbon content. Cadmium (300 mg/kg) addition alone did not affect the studied parameters. In case of combined addition of glucose and cadmium, the mineralization activity of microbial community was mainly determined by glucose amendment.

Keywords: soil respiration, cadmium, glucose, carbon mineralization, ecology of soil microorganisms

Acknowledgments. This study was supported by the Russian Foundation for Basic Research (project no. 15-04-04520).

Figure Captions

Fig. 1. Changes in the content of dissolved organic carbon (DOC) during the incubation of the soil sampled at different horizons (0–20, 20–40, and 40–60 cm) upon the treatment with cadmium and glucose.

Fig. 2. Changes in the respiration activity of microbial communities of the soil sampled at different horizons (0–20, 20–40, and 40–60 cm) upon the treatment with cadmium and glucose. Solid line is the mean value of the parameter, dotted line is the standard error.

References

  1. Kuzyakov Y. Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol. Biochem., 2006, vol. 38, no. 3, pp. 425–448.
  2. Scharlemann J.P.W., Tanner E.V.J., Hiederer R., Kapos V. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manage., 2014, vol. 5, no. 1, pp. 81–91. doi: 10.4155/cmt.13.77.
  3. Stockmann U., Adams M.A., Crawford J.W., Field D.J., Henakaarchchi N., Jenkins M., Minasny B., McBratney A.B., Courcelles V.D.R.D., Singh K., Wheeler I., Abbott L., Angers D.A., Baldock J., Bird M., Brookes P.C., Chenu C., Jastrow J.D., Lal R., Lehmann J., O'Donnell A.G., Parton W.J., Whitehead D., Zimmermann M. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric., Ecosyst. Environ., 2013, vol. 164, pp. 80–99.
  4. Grover M., Maheswari M., Desai S., Gopinath K.A., Venkateswarlu B. Elevated CO2: Plant associated microorganisms and carbon sequestration. Appl. Soil Ecol., 2015, vol. 95, pp. 73–85.
  5. Schutter M.E., Sandeno J.M., Dick R.P. Seasonal, soil type, and alternative management influences on microbial communities of vegetable cropping systems. Biol. Fertil. Soils, 2001, vol. 34, no. 6, pp. 397–410. doi: 10.1007/s00374-001-0423-7.
  6. Bastida F., Kandeler E., Moreno J.L., Ros M., García C., Hernández T. Application of fresh and composted organic wastes modifies structure, size and activity of soil microbial community under semiarid climate. Appl. Soil Ecol., 2008, vol. 40, no. 2, pp. 318–329.
  7. Xue D., Huang X. The impact of sewage sludge compost on tree peony growth and soil microbiological, and biochemical properties. Chemosphere, 2013, vol. 93, no. 4, pp. 583–589. doi: 10.1016/j.chemosphere.2013.05.065.
  8. Anderson T.-H., Domsch K.H. The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as ph, on the microbial biomass of forest soils. Soil Biol. Biochem., 1993, vol. 25, no. 3, pp. 393–395. doi: 10.1016/0038-0717(93)90140-7.
  9. Wu Z., Dijkstra P., Koch G.W., Peñuelas J., Hungate B.A. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Global Change Biol., 2011, vol. 17, no. 2, pp. 927–942. doi: 10.1111/j.1365-2486.2010.02302.x.
  10. Liu Y., Liu Sh., Wan Sh., Wang J., Luan J., Wang H. Differential responses of soil respiration to soil warming and experimental throughfall reduction in a transitional oak forest in central China. Agric. For. Meteorol., 2016, vol. 226, pp. 186–198. doi: 10.1016/j.agrformet.2016.06.003.
  11. Salazar-Villegas A., Blagodatskaya E., Dukes J.S. Changes in the size of the active microbial pool explain short-term soil respiratory responses to temperature and moisture. Front. Microbiol., 2016, vol. 7, art. 524, pp. 1–10. doi: 10.3389/fmicb.2016.00524.
  12. Schlesinger W.H., Andrews J.A. Soil respiration and the global carbon cycle. Biogeochemistry, 2000, vol. 48, no. 1, pp. 7–20. doi: 10.1023/A:1006247623877.
  13. Abaye D.A., Brookes P.C. Relative importance of substrate type and previous soil management in synthesis of microbial biomass and substrate mineralization. Eur. J. Soil Sci., 2006, vol. 57, no. 2, pp. 179–189. doi: 10.1111/j.1365-2389.2005.00727.x.
  14. De Nobili M., Contin M., Mondini C., Brookes P.C. Soil microbial biomass is triggered into activity by trace amounts of substrate. Soil Biol. Biochem., 2001, vol. 33, no. 9, pp. 1163–1170.
  15. Khan S., Cao Q., Hesham A.El-L., Xia Y., He J.Z. Soil enzymatic activities and microbial community structure with different application rates of Cd and Pb. J. Environ. Sci. (China), 2007, vol. 19, no. 7, pp. 834–840.
  16. Zoghlami R.I., Hamdi H., Mokni-Tlili S., Khelil M.N., Aissa N.B., Jedidi N. Changes in light-textured soil parameters following two successive annual amendments with urban sewage sludge. Ecol. Eng., 2016, vol. 95, pp. 604–611. doi: 10.1016/j.ecoleng.2016.06.103.
  17. Healy M.G., Ryan P.C., Fenton O., Peyton D.P., Wall D.P., Morrison L. Bioaccumulation of metals in ryegrass (Lolium perenne L.) following the application of lime stabilised, thermally dried and anaerobically digested sewage sludge. Ecotoxicol. Environ. Saf., 2016, vol. 130, pp. 303–309. doi: 10.1016/j.ecoenv.2016.04.026.
  18. Landi L., Renella G., Moreno J.L., Falchini L., Nannipieri P. Influence of cadmium on the metabolic quotient, L- :D-glutamic acid respiration ratio and enzyme activity : microbial biomass ratio under laboratory conditions. Biol. Fertil. Soils, 2000, vol. 32, no. 1, pp. 8–16. doi: 10.1007/s003740000205.
  19. Dar G.H. Effects of cadmium and sewage-sludge on soil microbial biomass and enzyme activities. Bioresour. Technol., 1996, vol. 56, nos. 2–3, pp. 141–145. doi: 10.1016/0960-8524(95)00186-7.
  20. Vig K., Megharaj M., Sethunathan N., Naidu R. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review. Adv. Environ. Res., 2003, vol. 8, no. 1, pp. 121–135. doi: 10.1016/S1093-0191(02)00135-1.
  21. Bewley R.J.F., Stotzky G. Effects of cadmium and zinc on microbial activity in soil; influence of clay minerals. Part I: Metals added individually. Sci. Total Environ., 1983, vol. 31, no. 1, pp. 41–55. doi: 10.1016/0048-9697(83)90055-4.
  22. Moreno J.L, Hernández T., Pérez A., Garcı́a C. Toxicity of cadmium to soil microbial activity: effect of sewage sludge addition to soil on the ecological dose. Appl. Soil Ecol., 2002, vol. 21, no. 2, pp. 149–158. doi: 10.1016/S0929-1393(02)00064-1.
  23. Morel J.L., Chavanon M., Sagnard M., Berthelin J., Guckert A. Developments in Geochemistry. Vol. 6: Diversity of Environmental Biogeochemistry. Effect of Metals on the Biodegradation of Root Exudates by a Rhizosphere Microbiota. J. Berthelin (Ed.). Amsterdam: Elsevier, 1991, pp. 427–434.
  24. Renella G., Mench M., Landi L., Nannipieri P. Microbial activity and hydrolase synthesis in long-term Cd-contaminated soils. Soil Biol. Biochem., 2005, vol. 37, no. 1, pp. 133–139. doi: 10.1016/j.soilbio.2004.06.015.
  25. Galitskaya P.Yu., Saveliev A.A., Selivanovskay S.Yu. Response of soil microbial community to the simultaneous influence of metals and an organic substance. Contemp. Probl. Ecol., 2015, vol. 8, no. 6, pp. 780–788. doi: 10.1134/S1995425515060062.
  26. Hattori H. Influence of cadmium on decomposition of sewage sludge and microbial activities in Soils. Soil Sci. Plant Nutr., 1989, vol. 35, no. 2, pp. 289–299.
  27. Kızılkaya R., Aşkın T., Bayraklı B., Sağlam M. Microbiological characteristics of soils contaminated with heavy metals. Eur. J. Soil Biol., 2004, vol. 40, no. 2, pp. 95–102. doi: 10.1016/j.ejsobi.2004.10.002.
  28. Hassan Dar G., Mishra M.M. Influence of cadmium on carbon and nitrogen mineralization in sewage sludge amended soils. Environ. Pollut., 1994, vol. 84, no. 3, pp. 285–290.
  29. Giller K.E., Witter E., McGrath S.P. Heavy metals and soil microbes. Soil Biol. Biochem., 2009, vol. 41, no. 10, pp. 2031–2037. doi: 10.1016/j.soilbio.2009.04.026.
  30. State Standard 26423-85. Methods for determination of specific electric conductivity, pH, and solid residue of water extract. Moscow, Izd. Stand., 1985. 7 p. (In Russian)
  31. ISO 14235:1998. Soil quality – determination of organic carbon by sulfochromic oxidation. 1998. 5 p.
  32. ISO 11261:1995. Soil quality – determination of total nitrogen – modified Kjeldahl method. 1995. 4 p.
  33. ISO 14240-2:1997. Soil quality – determination of soil microbial biomass – part 2: Fumigation-extraction method. 1997. 12 p.
  34. ISO 13320:2009. Particle size analysis – laser diffraction methods. 2009. 51 p.
  35. ISO 16072: Soil quality – laboratory methods for determination of microbial soil respiration. 2002. 19 p.
  36. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Available at: https://www.R-project.org/.
  37. Rumpel C., Kögel-Knabner I. Deep soil organic matter – a key but poorly understood component of terrestrial C cycle. Plant Soil, 2011, vol. 338, no. 1, pp. 143–158. doi: 10.1007/s11104-010-0391-5.
  38. Mganga K.Z., Kuzyakov Y. Glucose decomposition and its incorporation into soil microbial biomass depending on land use in Mt. Kilimanjaro ecosystems. Eur. J. Soil Biol., 2014, vol. 62, pp. 74–82. doi: 10.1016/j.ejsobi.2014.02.015.
  39. Agnelli A., Ascher J., Corti G., Ceccherini M.T., Nannipieri P., Pietramellara G. Distribution of microbial communities in a forest soil profile investigated by microbial biomass, soil respiration and DGGE of total and extracellular DNA. Soil Biol. Biochem., 2004, vol. 36, no. 5, pp. 859–868. doi: 10.1016/j.soilbio.2004.02.004.
  40. Chen Y., Chen G., Robinson D., Yang Z., Guo J., Xie J., Fu Sh., Zhou L., Yang Y. Large amounts of easily decomposable carbon stored in subtropical forest subsoil are associated with r-strategy-dominated soil microbes. Soil Biol. Biochem., 2016, vol. 95, pp. 233–242. doi: 10.1016/j.soilbio.2016.01.004.
  41. Tejada M. Application of different organic wastes in a soil polluted by cadmium: Effects on soil biolo­gical properties. Geoderma, 2009, vol. 153, no. 1, pp. 254–268. doi: 10.1016/j.geoderma.2009.08.009.

For citation: Gilmullina A.R., Galitskaya P.Y., Saveliev A.A., Kuzyakov Y.V., Seliva­novskaya S.Y. Changes in mineralization activity of microbial communities depending on physico-chemical properties of soils and cadmium contamination. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2016, vol. 158, no. 3, pp. 440–454. (In Russian)


The content is available under the license Creative Commons Attribution 4.0 License.