K.G. Giniyatullin a*, S.S. Ryazanov a, B.R. Grigor'yan b, I.V. Shakirzyanov c, R.V. Shakirzyanov a, E.S. Vaganova a, A.G. Galiullina a

a Kazan Federal University, Kazan, 420008 Russia

b Institute for Problems of Ecology and Mineral Wealth Use, Tatarstan Academy of Sciences, Kazan, 420087 Russia

с AO “Atameken Agro”, Kokshetau, 020000 Republic of Kazakhstan

E-mail: *ginijatullin@mail.ru

Full text PDF

Abstract

The agrochemical properties (humus content; available forms of nitrogen, phosphorus, and potassium; pH; and specific electrical conductivity of water extract) of two tracts (1468 and 1378 ha) of the arable land from Petropavlovsk region of Northern Kazakhstan have been studied. The research shows that these tracts can be considered as belonging to the same type according to the average values and variability of their agrochemical properties. However, the analysis of experimental variograms indicates that the fields are significantly different from each other by spatial variability of the agrochemical properties. It has been demonstrated that interpolated cartograms of availability of the chemical elements in the fields require differential selection of methods for data interpolation that correspond to the results of variogram approximation.

Keywords: arable soils of Northern Kazakhstan, agrochemical properties, spatial variability, geostatistical analysis

Acknowledgments. This study was performed as part of the Russian-Kazakh SR project “Estimating variability of the main agrochemical properties of arable lands in the TOO Michurinskii”.

Figure captions

Fig. 1. Experimental variograms of the soil properties and adjusted models. Dots designate experimental variograms of tract no. 1, dashed line shows its model; triangles are experimental variograms of tract no. 2, line is adjusted model.

Fig. 2. Interpolated cartograms showing the availability of nitrogen, phosphorus, and potassium compounds in the tracts of the studied arable land.

References

  1. Methodical Instructions on Agrochemical Inspection of Soils of Agricultural Lands. Moscow, Tsentr Nauchno-Tekh. Inf., Propagandy, Relamy, 1994. 96 р. (In Russian)
  2. Methodical Instructions on Complex Monitoring of Soil Fertility of Agricultural Lands. Derzhavin L.M., Bulgakov D.S. (Eds.). Moscow, FGNU “Rosinformagrotech”, 2003. 240 p. (In Russian)
  3. State Standard 28168-89. Soils. Sampling. Moscow, Standartinform, 2008. 6 p. (In Russian)
  4. Gebbers R, de Bruin S. Application of geostatistical simulation in precision. Geostatistical Applications for Precision Agriculture. Oliver M.A. (Ed.). Springer Science+Business Media B.V., 2010, pp. 269–304.
  5. Yakushev V.V. Information-technological basis of precision crop production. Extended Abstract of Doctoral Agric. Sci. Diss. St. Petersburg, 2013. 50 p. (In Russian)
  6. State Standard 26213-91. Soils. Methods for determination of organic matter. Moscow, Izd. Standartov, 1992. 9 p. (In Russian)
  7. Methodical Instructions on Determination of Alkali-Hydrolyzed Nitrogen in Soil Using Cornfield's Method. Мoscow, МSKh SSSR, 1985. 9 p. (In Russian)
  8. State Standard 26205-91. Soils. Determination of mobile compounds of phosphorus and potassium by the Machigin method in the modification of the TIN. Moscow, Izd. Standartov, 1992. 9 p. (In Russian)
  9. State Standard 26423-85 Soils. Methods for determination of specific electrical conductivity, pH, and solid residue of water extract. Moscow, Izd. Standardtov, 1985. 7 p. (In Russian)
  10. Pebesma E. Multivariable geostatistics in S: the gstat package. Comput. Geosci., 2004, vol. 30, no. 7, pp. 683–691. doi: 10.1016/j.cageo.2004.03.012.
  11. Zimovets B.A. Ecology and Reclamation of Soils in the Dry Steppe Zone. Moscow, GosNITI, 1991. 249 p. (In Russian)
  12. Vasenev I.I., Meshalkina Yu.L., Grachev D.A. Geoinformation Systems in Soil Science and Ecology. Мoscow, Izd. RGAU-МSKhA, 2010. 212 p. (In Russian)
  13. Kozlovskii F.I. Theory and Methods of Studying the Soil Cover. Moscow, GEOS, 2003. 536 p. (In Russian)
  14. Dmitriev E.A. Mathematical Statistics in Soil Science. Moscow, Izd. Mosk. Univ., 1972. 292 p. (In Russian)
  15. Matheron J. Fundamentals of Applied Geostatistics. Мoscow, Mir, 1968. 408 p. (In Russian)
  16. Dmitriev E.A. Patterns of spatial heterogeneity of the composition and properties of soils. Extended Abstract of Doctoral Biol. Sci. Diss. Moscow, 1985. 51 p. (In Russian)
  17. Kozlovskii F.I. Soil individual and methods for its identification. Zakonomernosti prostranstvennogo var'irovaniya svoistv pochv i informatsionno-statisticheskie metody ikh izucheniya [Patterns of Spatial Variation in the Soil Properties and Information-Statistical Methods of Their Investigation]. Moscow, Nauka, 1970. pp. 42–59. (In Russian)
  18. Ivannikova L.A., Mironenko E.V. The theory of regionalized variables in the study of spatial variability of agrochemical properties of soils. Pochvovedenie, 1988, no. 5, pp. 113–120.
  19. Webster R., Oliver M.A. Spatial Dependence in Statistical Methods in Soil and Land Resource Survey. Oxford, Oxford Univ. Press, 1990. 307 p.
  20. Samsonova V.P., Meshalkina Yu.L., Dmitriev E.A. Spatial variability patterns of the main agrochemical properties of plowed soddy-podzolic soils. Eurasian Soil Sci., 1999, vol. 32, no. 11, pp. 1214–1220.
  21. Samsonova V.P. Spatial Variability of Soil Properties: The Example of Sod-Podzolic Soils. Мoscow, Izd. LKI, 2008. 156 p. (In Russian)
  22. Kuzyakova I.F., Romanenkov V.A., Kuzyakov Y.V. Application of geostatistics in processing the results of soil and agrochemical studies. Pochvovedenie, 2001, no. 11, pp. 1365–1376. (In Russian)
  23. Geostatistics and Soil Geography. Krasil'nikov P.V. (Ed.). Moscow, Nauka, 2007. 175 p. (In Russian)
  24. Savel'ev A.A. Mukharamova S.S., Pilyugin A.G., Chizhikova N.A. Geostatistical Data Analysis in Ecology and Environmental Management (Using the R Package). Kazan, Kazan. Univ., 2012. 120 p. (In Russian)
  25. Cambardella C.A., Moorman T.B., Novak J.M., Parkin T.B., Karlen D.L., Turco R.F., Konopka A.E. Field-scale variability of soil properties in central Iowa soils. Soil Sci. Soc. Am. J., 1994, vol. 58, no. 5, pp. 1501–1511.
  26. Webster R., Oliver M.A. Sample adequately to estimate variograms of soil properties. J. Soil Sci., 1992, vol. 43, no. 1, pp. 177–192. doi: 10.1111/j.1365-2389.1992.tb00128.x.
  27. Kerry R., Oliver V.A., Frogbrook Z.L. Sampling in precision agriculture. Geostatistical Applications for Precision Agriculture. Oliver M.A. (Ed.). Springer Science+Business Media B.V., 2010, pp. 35–64.
  28. Goovaerts P., Kerry R. Using ancillary data to improve prediction of soil and crop attributes in precision agriculture. Geostatistical Applications for Precision Agriculture. Oliver M.A. (Ed.). Springer Science+Business Media B.V., 2010, pp. 167–194.
  29. Brus D.J., Heuvelink G.B.M. Optimization of sample patterns for universal kriging of environmental variables. Geoderma, 2007, vol. 138, nos. 1–2, pp. 86–95. doi: 10.1016/j.geoderma.2006.10.016.
  30. Laslett G.M., McBratney A.B., Pahl P.J., Hutchinson, M.F. Comparison of several spatial prediction methods for soil pH. J. Soil Sci., 1987, vol. 38, no. 2, pp. 325–341. doi: 10.1111/j.1365-2389.1987.tb02148.x.
  31. Goovaerts P. Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties. Biol. Fertil. Soils, 1998, vol. 27, no. 4, pp. 315–334. doi: 10.1007/s003740050439.
  32. Brus D.J., Spätjens L.E.E.M., de Gruijter J.J. A sampling scheme for estimating the mean extractable phosphorus concentration of fields for environmental regulation. Geoderma, 1999, vol. 89, nos. 1–2, pp. 129–148. doi: 10.1016/S0016-7061(98)00123-2.
  33. Brus D.J., de Gruijter J.J. Random sampling or geostatistical modelling? Choosing between design-based and model-based sampling strategies for soil (with discussion). Geoderma, 1997, vol. 80, nos. 1–2, pp. 1–44. doi: 10.1016/S0016-7061(97)00072-4.
  34. Walvoort D.J.J., Brus D.J., de Gruijter J.J. An R package for spatial coverage sampling and random sampling from compact geographical strata by k-means. Comput. Geosci., 2010, vol. 36, no. 10, pp. 1261–1267. doi: 10.1016/j.cageo.2010.04.005.
  35. Verordnung über die Anwendung von Düngemitteln, Bodenhilfsstoffen, Kultursubstraten und Pflanzenhilfsmitteln nach den Grundsätzen der guten fachlichen Praxis beim Düngen (Düngeverordnung – DüV). Bundesgesetzblatt, 2007, T. I, Nr. 7, S. 221. (In German)
  36. Johnston K., Ver Hoef J.M., Krivoruchko K., Lucas N. Using ArcGISTM Geostatistical Analyst. Redlands, CA, ESRI Press, 2001. 306 p.
  37. Li J., Heap A. A Review of Spatial Interpolation Methods for Environmental Scientists. Record 2008/023. Canberra, Geoscience Australia, 2008. 154 p.
  38. Van Meirvenne M. Is the soil variability within the small fields of Flanders structured enough to allow precision agriculture? Precis. Agric., 2003, vol. 4, no. 2, pp. 193–201. doi: 10.1023/A:1024561406780.

For citation: Giniyatullin K.G., Ryazanov S.S., Grigor'yan B.R., Shakirzyanov I.V., Shakirzyanov R.V., Vaganova E.S., Galiullina A.G. Using geostatistical methods for characterization of variations in the agrochemical properties (based on the study of arable lands in Northern Kazakhstan). Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2016, vol. 158, no. 2, pp. 259–276. (In Russian)


The content is available under the license Creative Commons Attribution 4.0 License.