L.P. Khokhlova

Kazan Federal University, Kazan, 420008 Russia

E-mail: Ludmila.Khokhlova@kpfu.ru

Full text PDF

Abstract

Molecular biomarkers of plant resistance to both individual and combined action of high temperatures (42 ?C) and drought have been identified. For this purpose, correlation between gene expression of four stress proteins (non-photosynthetic malic enzyme (TaNADP-ME2), serine-threonine kinase (W55a), dehydrin (DHN14), and lipocalin (TaTIL)) and resistance of eight spring wheat cultivars has been    determined for the first time. Gene expression has been studied using the RT-PCR method based on the content of trans­cripts on electrophoregrams. The absence of species-specific responses of two genes, TaNADP-ME2 and W55a, the gene activity of which did not depend on the resistance of cultivars to heat shock and water deficit, has been shown. However, gene expression of two other genes, DHN14 and TaTIL, was genotypically determined and positively correlated with the high resistance of particular cultivars. It has been concluded that the activities of DHN14 and TaTIL are potential molecular markers of heat and drought resistance in spring wheat and, therefore, can be used in transgenic selection technologies to create new phenotypes of agricultural crops that would be better adapted to the environmental conditions.

Keywords: Triticum aestivum, various cultivars (genotypes), hyperthermia, water deficit, stress proteins, gene expression

Figure captions

Fig. 1. Electrophoregram of trans­cripts of TaNADP-ME2, malic enzyme, in leaves of different wheat cultivars: C – control (23 ?С); 1 – heat shock, HS (38 ?С – 30 min, 40 ?С – 30 min, 42 ?С – 2 h); 2 – preadaptation (45 ?С – 15 min + 23 ?С – 2 h) and HS; 3 – drought and HS; 4 – drought, preadaptation, and HS.

Fig. 2. Electrophoregram of trans­cripts of W55a, serine-threonine kinase, in leaves of different wheat cultivars: C – control (23 ?С); 1 – heat shock, HS (38 ?С – 30 min, 40 ?С – 30 min, 42 ?С – 2 h); 2 – preadaptation (45 ?С – 15 min + 23 ?С – 2 h) and HS; 3 – drought and HS; 4 – drought, preadaptation, and HS.

Fig. 3. Electrophoregram of trans­cripts of DHN14, dehydrin, in leaves of different wheat cultivars: C – control (23 ?С); 1 – heat shock, HS (38 ?С – 30 min, 40 ?С – 30 min, 42 ?С – 2 h); 2 – preadaptation (45 ?С – 15 min + 23 ?С – 2 h) and HS; 3 – drought and HS; 4 – drought, preadaptation and HS.

Fig. 4. Electrophoregram of trans­cripts of TaTIL, lipocalin, in leaves of different wheat cultivars: C – control (23 ?С); 1 – heat shock, HS (38 ?С – 30 min, 40 ?С – 30 min, 42 ?С – 2 h); 2 – preadaptation (45 ?С – 15 min + 23 ?С – 2 h) and HS; 3 – drought and HS; 4 – drought, preadaptation, and HS.

References

  1. Alexandrov V.Ya., Kislyuk I.M. Cell response to heat shock. Physiological aspect. Fiziol. Rast., 1994, vol. 36, no. 1, pp. 43–49. (In Russian)
  2. Kolupaev Yu.E., Karpets Yu.V. Formation of Plants Adaptive Reactions to Abiotic Stressors Influence. Kiev, Osnova, 2010. 350 p. (In Russian)
  3. Wahid A., Gelani S., Ashraf M., Fooland M.R. Heat tolerance in plants: an overview. Environ. Exp. Bot., 2007, vol. 61, no. 3, pp. 199–223. doi: 10.1016/j.envexpbot.2007.05.011.
  4. Genkel P.A. About connected and convergent resistance of plants. Fiziol. Rast., 1979, vol. 26, no. 5, pp. 921–924. (In Russian)
  5. Kuznetsov Vl.V., Rakitin V.Yu., Opoku L., Zholkevich V.N. The interaction of heat shock and water stress in plants. 1. The effect of heat shock and subsequent soil drought on water regime and resistance of cotton. Fiziol. Rast., 1997, vol. 44, no. 1, pp. 54–58. (In Russian)
  6. Titov A.F., Talanova V.V. Stability of Plants and Phytohormones. Petrozavodsk, Karel. Nauch. Tsentr Ross. Akad. Nauk, 2009. 206 p. (In Russian)
  7. Sung D.V., Kaplan F., Lee K.J., Guy C.L. Acquired tolerance to temperature extremes. Trends Plant Sci., 2003, vol. 8, no. 4, pp. 179–187. doi: 10.1016/S1360-1385(03)00047-5.
  8. Ionova N.E., Khokhlova L.P., Valiullina R.N., Ionov E.F. The role of individual organs in the production process of spring wheat of different ecologo-geographical origin. S-kh. Biol., 2009, no. 1, pp. 60–67. (In Russian)
  9. Marcum K. Cell membrane thermostability and whole – plant heat tolerance of Kentucky bluegrass. Crop. Sci., 1998, vol. 38, no. 5, pp. 1214–1218. doi: 10.2135/cropsci1998.0011183X003800050017x.
  10. Khokhlova L.P., Valiullina R.N., Mider D.R., Akberova N.I. Membrane thermostability and gene expression of small heat-shock protein (sHSP) in wheat shoots exposed to elevated temperatures and water deficiency. Biol. Membr., 2015, vol. 32, no. 1, pp. 59–71. doi: 10.7868/S0233475515010065.
  11. Blum A., Klueva N., Nquyen H.T. Wheat cellular thermotolerance is related to yield under heat stress. Euphytica, 2001, vol. 117, no. 2, pp. 117–123. doi: 10.1023/A:1004083305905.
  12. Liu S., Cheng Y., Zhang X., Guan Q., Nishiuchi S., Hase K., Takano T. Expression of an NADP-malic enzyme gene in rice (Oryza sativa. L) is induced by environmental stresses; over-expression of the gene in Arabidopsis confers salt and osmotic stress tolerance. Plant Mol. Biol., 2007, vol. 64, nos. 1–2, pp. 49–58. doi: 10.1007/s11103-007-9133-3.
  13. Morris E.R., Walker J.C. Receptor-like protein kinases: the keys to response. Curr. Opin. Plant Biol., 2003, vol. 6, no. 4, pp. 339–342. doi: 10.1016/S1369-5266(03)00055-4.
  14. Xu Z.S., Liu L., Ni Z.Y., Liu P., Chen M., Li L.C., Chen Y.F., Ma Y.Z. W55a encodes a novel protein kinase that is involved in multiple stress responses. J. Integr. Plant Biol., 2009, vol. 51, no. 1, pp. 58–66. doi: 10.1111/j.1744-7909.2008.00776.x.
  15. Mao X., Zhang H., Tian S., Chang X., Jing R. TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis. J. Exp. Bot., 2010, vol. 61, no. 3, pp. 683–696. doi: 10.1093/jxb/erp331.
  16. Dure L. III, Crouch M., Harada J., Ho T.H., Mundy J., Quatrano R., Thomas T., Sung Z.R. Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol. Biol., 1989, vol. 12, no. 5, pp. 475–486. doi: 10.1007/BF00036962.
  17. Close T.J. Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol. Plant., 1996, vol. 97, no. 4, pp. 795–803. doi: 10.1111/j.1399-3054.1996.tb00546.x.
  18. Close T.J. Dehydrins: a commonality in the response of plants to dehydration and low temperature. Physiol. Plant., 1997, vol. 100, pp. 291–296.
  19. Mayhew M., Hartl F.U. Molecular chaperone proteins. Escherichia coli and Salmonella: Cellular and Molecular Biology. Neidhardt F.C., Curtiss III R., Ingraham J.L., Lin E.C.C., Low K.B. Jr., Magasanik B., Reznikoff W.S., Riley M., Schaechter M., Umbarger H.E. (Eds.). Washington, DC, Am. Soc. Microbiol., 1996, pp. 922–937.
  20. Lopez C.G., Banowetz G.M., Peterson C.J., Kronstad W.E. Dehydrin expression and drought tolerance in seven wheat cultivars. Crop Sci., 2002, vol. 43, no. 2, pp. 577–582. doi: 10.2135/cropsci2003.5770.
  21. Flower D.R. The lipocalin protein family: structure and function. Biochem. J., 1996, vol. 318, pt. 1, pp. 1–14.
  22. Frenette-Charron J.B., Breton G., Badawi M., Sarhan F. Molecular and structural analyses of a novel temperature stress-induced lipocalin from wheat and Arabidopsis. FEBS Lett., 2002, vol. 517, nos. 1–3, pp. 129–132. doi: 10.1016/S0014-5793(02)02606-6.
  23. Clouse S.D., Sasse J.M. Brassinosteroids: essential regulators of plant growth and development. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1998, vol. 49, pp. 427–451. doi: 10.1146/annurev.arplant.49.1.427.
  24. Murata N., Los D.A. Membrane fluidity and temperature perception. Plant Physiol., 1997, vol. 115, no. 3, pp. 875–879.
  25. Bishop R.E., Penfold S.S., Frost L.S., Höltje J.V., Weiner J.H. Stationary phase expression of a novel Escherichia coli outer membrane lipoprotein and its relationship with mammalian apolipoprotein D. Implications for the origin of lipocalins. J. Biol. Chem., 1995, vol. 270, no. 39, pp. 23097–23103.
  26. Los D.A. Fatty Acid Desaturases. Moscow, Nauch. Mir, 2014. 372 p. (In Russian)
  27. Finka A., Cuendet A.F.H., Maathuis F.J.M., Saidi Y., Goloubinoff P. Plasma membrane cyclic nucleotide gated calcium channels control land plant thermal sensing and acquired thermotolerance. Plant Cell, 2012, vol. 24, no. 8, pp. 3333–3348. doi: 10.1105/tpc.112.095844.
  28. Gao F., Han X., Wu J., Zhang S., Shang Z., Sun D., Zhou R., Li B. A heat-activated calcium-permeable channel – Arabidopsis cyclic nucleotide-gated ion channel 6 – is involved in heat shock responses. Plant J., 2012, vol. 70, no. 6, pp. 1056–1069. doi: 10.1111/j.1365-313X.2012.04969.x.

For citation: Khokhlova L.P. Gene expression of stress proteins and identification of molecular markers of plant resistance to high temperatures and drought. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 2016, vol. 158, no. 2, pp. 225–238. (In Russian)


The content is available under the license Creative Commons Attribution 4.0 License.