
МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ
РОССИЙСКОЙ ФЕДЕРАЦИИ

ФГАОУ ВО «Казанский (Приволжский) федеральный университет»

Институт математики и механики им. Н.И. Лобачевского

Кафедра теории функций и приближений

Периодические обобщённые функции. Анализ и синтез Фурье.
Техника ядер. Гипоэллиптичность

Учебное пособие

Казань 2019



Утверждено на заседании
учебно-методической комиссии

Института математики и механики
им. Н. И. Лобачевского КФУ

Протокол № от

Составители: доц. Салехов Л.Г., доц. Агачев Ю.Р., асп. Гуськова А.В.,
асп. Яхина М.М.

Учебное пособие по курсу по выбору для магистров второго года обучения.
Рассматриваются темы: периодические обобщённые функции в пространстве
Rn, анализ и синтез Фурье, техника ядер, гипоэллиптичность.

Учебное пособие является естественным продолжением концепции обобщённых
функций, положенной в основу изложения курса "Уравнения с частными
производными" для математиков.

Первые две темы, из вышеуказанных, обобщают соответствующие темы
классического анализа на случай пространства размерности n и рассматриваются
в пространствах обобщённых функций посредством введения понятий периодического
разложения единицы в пространстве пробных функций и периодического пре-
образования обобщённых функций.

Раздел "Техника ядер" служит естественным продолжением теории уравнений
в частных производных с постоянными коэффициентами, излагаемой в курсе
«Уравнения с частными производными» для математиков.

Важная "теорема Лорана Шварца о регулярности" даёт практический
критерий определения гипоэллиптичности операторов в частных производных
с постоянными коэффициентами.

Рецензент: д.ф.-м.н, профессор, зав. кафедрой математического анализа Ин-
ститута математики и механики им. Н. И. Лобачевского КФУ Насыров С.Р.

2



Содержание
1 Определение и свойства периодических обобщённых функций 4

1.1 Определение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Свойства . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Периодическое преобразование обобщённой функции с компактным носителем 5

1.3.1 Свойства . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Периодическое разложение единицы в D(Rn) . . . . . . . . . . . . 7
1.3.3 Лемма о сюръективности . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Дуальность между P(Tn) и L(Tn) . . . . . . . . . . . . . . . . . . . . . . 7
1.4.1 Теорема о дуальности . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.2 Выражение дуальности между L(Tn) и P(Tn) . . . . . . . . . . . 8

2 Суммируемые семейства в топологических
векторных пространствах 9
2.1 Определения . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Общие свойства . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Нормально суммируемые семейства . . . . . . . . . . . . . . . . . . . . . 10

3 Пространства последовательностей 11
3.1 Пространства lp(Zn), 1 ≤ p ≤ +∞ . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Быстрое убывание . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Медленный рост . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Ряды Фурье 14
4.1 Определения . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Теорема о взаимности для L2(Tn) и l2(Zn) . . . . . . . . . . . . . . . . . . 14
4.3 Представление в гильбертовом пространстве . . . . . . . . . . . . . . . . 15
4.4 Теорема о взаимности для P(Tn) и S(Zn) . . . . . . . . . . . . . . . . . . 16
4.5 Теорема о взаимности для P ′(Tn) и S ′(Zn) . . . . . . . . . . . . . . . . . 17
4.6 Дополнение к периодическим обобщённым функциям . . . . . . . . . . . 18

5 Техника ядер 19
5.1 Напоминание . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Определения из теории ядер . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3 Фундаментальные ядра оператора в частных

производных . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.4 Гипоэллиптичность. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6 Некоторые задачи 34

3



1 Определение и свойства периодических обобщённых
функций

Для определённости мы будем рассматривать лишь периодические функции с периодом 1
в пространстве Rn.

Через D(Rn) всюду далее обозначаем множество бесконечно дифференцируемых
на Rn функций ϕ(x) с компактными носителями supp ϕ в Rn, где

supp ϕ := {x ∈ Rn
∣∣ϕ(x) 6= 0}.

Обобщенная функция на Rn есть линейный непрерывный функционал на D(Rn),
т.е. элемент из D′(Rn). Значение обобщенной функции f ∈ D′(Rn) на пробной функции
ϕ ∈ D(Rn) задается формулой

〈f, ϕ〉 :=

∫
Rn

f(x)ϕ(x) dx (∀ϕ ∈ D(Rn)), если f — регулярна.

1.1 Определение

Обобщённая функция F называется периодической с периодом 1, если τλF = F
(∀λ ∈ Zn), где τλϕ := ϕ(x− λ), то есть τλ — оператор сдвига в точку x = λ.

Периодические функции с периодом 1 индуцируют функции на торе Tn :=
(R
Z
)n,

поэтому будем отождествлять их и обозначать множество периодических функций
через L(Tn). Оно, очевидно, представляет собой подмножество из D′(Rn).

Положим
P(Tn) := L(Tn) ∩ E(Rn),

где E(Rn) — множество бесконечно дифференцируемых на Rn функций. Ясно, что
всякий элемент из P(Tn) есть не что иное, как бесконечно дифференцируемая периоди-
ческая функция.

1.2 Свойства

Приведем важные свойства введенных множеств.

1. Множество P(Tn) замкнуто в пространстве E(Rn).
Действительно, для любого λ из Zn оператор τλ замкнут на E(Rn). Следовательно,
ядро оператора (τλ−I), где I — тождественный оператор из E(Rn), есть замкнутая
часть из E(Rn). Но

P(Tn) = ∩
λ∈Zn

Ker(τλ − I),
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что и требовалось доказать.

2. Множество L(Tn) замкнуто в D′(Rn), где D′(Rn) снабжено слабой топологией.

R: В курсе "Уравнения с частными производными" говорится о том, что
в дуальном (сопряжённом) пространстве, вообще говоря, действуют две
топологии: слабая (поэлементная) и сильная (сходимость на компактах).
Нами, в согласии с учебником Владимирова В.С., используется слабая топология.

Отметим, что при доказательстве используется факт, что оператор τλ непрерывен
на D′(Rn), будучи транспонированным к оператору τ−λ в D(Rn).

1.3 Периодическое преобразование обобщённой функции с компактным
носителем

Пусть ϕ ∈ D(Rn). Полагаем:

ω̃ϕ :=
∑
λ∈Zn

τλϕ =
∑
λ∈Zn

(δλ ∗ ϕ),

где δλ := δ(x− λ).

Заметим, что сумма содержит только конечное число слагаемых. Функция ω̃ϕ
называется периодическим преобразованием функции ϕ. Очевидно, что ω̃ϕ есть периоди-
ческая функция из класса C∞, причем для любых ϕ и ψ из D(Rn) имеем:

〈ω̃ψ, ϕ〉 = 〈ψ, ω̃ϕ〉.

Пусть, далее T ∈ E ′(Rn), где E ′(Rn) — пространство обобщённых функций с компактными
носителями в Rn. Положим

〈ω̃T, ϕ〉 := 〈T, ω̃ϕ〉, ϕ ∈ D(Rn).

Линейный функционал ω̃T , определённый наD(Rn), называется периодическим преобра-
зованием обобщённой функции T .

1.3.1 Свойства

1. Линейное отображение ω̃ переводит непрерывно D(Rn) в E(Rn) и E ′(Rn) в D′(Rn).

Действительно, для любого компактаK ⊂ Rn отображение ω̃ переводит множество
бесконечно дифференцируемых на K ⊂ Rn функций DK(Rn) в E(Rn), так как
ω̃ есть конечная сумма линейных непрерывных отображений. Следовательно, ω̃
непрерывно отображает D(Rn) в E(Rn).
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Формула
〈ω̃T, ϕ〉 = 〈T, ω̃ϕ〉, T ∈ E ′(Rn), ϕ ∈ D(Rn),

показывает, что ω̃T есть обобщённая функция на D(Rn) и отображение T y ω̃T
есть линейное непрерывное из E ′(Rn) вD′(Rn) (снабженные слабыми топологиями)
в силу топологических свойств транспонированного отображения.

2. Для любого T ∈ E ′(Rn) обобщённая функция ω̃T является периодической, то
есть ω̃(τλT ) = τλ(ω̃T ) = ω̃T (∀λ ∈ Zn).
Действительно, для любой функции ϕ ∈ D(Rn) имеем

τλ(ω̃ϕ) = ω̃(τλϕ) = ω̃ϕ, ∀λ ∈ Zn.

Отсюда, в силу понятия транспонированного отображения, вытекает

ω̃(τ−λT ) = τ−λ(ω̃T ) = ω̃T (∀λ ∈ Zn,∀T ∈ E ′(Rn)),

что и требовалось доказать.

3. Для любых F ∈ L(Tn) и ψ ∈ D(Rn)

ω̃(ψF ) = Fω̃(ψ);

для любых f ∈ P(Tn) и T ∈ E ′(Rn)

ω̃(fT ) = f(ω̃T ).

Действительно, прежде всего заметим, что для всех T ∈ E ′(Rn) и ϕ ∈ D(Rn)

〈ω̃T, ϕ〉 =
∑
λ∈Zn

〈τλT, ϕ〉,

так как сумма справа конечна. Это соотношение запишем так:

ω̃T =
∑
λ∈Zn

τλT (равенство в смысле обобщённых функций).

Но, если F периодическая, имеем

τλ(ψF ) = τλψτλF = Fτλψ.

Отсюда
ω̃(ψF ) =

∑
λ∈Zn

τλ(ψF ) = F
∑
λ∈Zn

τλψ = Fω̃ψ.

Тем более, если f периодическая, то τλ(fT ) = fτλT . Поэтому

ω̃(fT ) =
∑
λ∈Zn

τλ(fT ) = f
∑
λ∈Zn

τλT = f(ω̃T ),

что и требовалось доказать.
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1.3.2 Периодическое разложение единицы в D(Rn)

Определение. Функция θ ∈ D(Rn) такая, что ω̃θ = 1, называется периодическим
разложением единицы.

Утверждение. Существует по крайней мере одно периодическое разложение
единицы.

Действительно, пусть ψ — положительная функция на Rn, отличная от нуля на
(2I)n, где I есть открытый интервал с концами −1/2 и + 1/2, и принадлежащий
D(Rn).

R: Отметим, что по лемме об отделимости типа Урысона такая функция существует.

Так как ω̃ψ > 0, положим θ :=
ψ

ω̃ψ
. Очевидно, что θ ∈ D(Rn).

С другой стороны, ω̃ψ периодическая, и, следовательно,

ω̃θ =
1

ω̃ψ
ω̃(ψ) = 1.

1.3.3 Лемма о сюръективности

Всякая периодическая функция класса C∞ является периодическим преобразованием
функции класса C∞ с компактным носителем. Всякая периодическая обобщённая
функция есть периодическое преобразование обобщённой функции с компактным носителем.

Доказательство. Пусть f ∈ P(Tn). Положим ϕ = θf . Тогда ϕ ∈ D(Rn) и ω̃ϕ =
ω̃(fθ) = fω̃θ = f .

Если F ∈ L(Tn), то, полагая T = θF , будем иметь: T ∈ E ′(Rn) и ω̃T = Fω̃θ = F ,
что и требовалось доказать.

N.B. Посредством той же схемы доказательства можно показать, что:

всякая периодическая обобщённая функция порядка, меньшего k ∈ N (соответ-
ственно мера Радона, функции из класса Ck) является периодическим преобразованием
обобщённой функции конечного порядка k (соответственно мера Радона, функция
класса Ck) с компактным носителем. Всякая периодическая функция из Lp(Rn) является
периодическим преобразованием функции из Lp(Rn) с компактным носителем.

1.4 Дуальность между P(Tn) и L(Tn)

Обозначим через P ′(Tn) множество линейных непрерывных функционалов на
P(Tn).

Величину функционала L ∈ P ′(Tn) в точке f ∈ P(Tn) будем обозначать через
〈L, f〉Tn. Пусть P ′(Tn) снабжено слабой или сильной дуальной топологией.

7



1.4.1 Теорема о дуальности

Векторные топологические пространства P ′(Tn) и L′(Tn) изоморфны (алгебраически
и топологически).

Доказательство.

1. Отображение ω̃ непрерывно отображает D(Rn) в P(Tn). Его транспонирование
tω̃ определяется формулой 〈tω̃L, ϕ〉 := 〈L, ω̃ϕ〉Tn, где L ∈ P ′(Tn) и ϕ ∈ D(Rn).
Это транспонированное отображение непрерывно отображает P ′(Tn) в D′(Rn).
Легко доказать, что tω̃L есть периодическая обобщённая функция с периодом 1.
Следовательно, tω̃ непрерывно отображает P ′(Tn) в L′(Tn).

2. С другой стороны, пусть θ естьD-периодическое разложение единицы. Отображение
f y θf непрерывно отображает E(Rn) в D(Rn). Обозначим через θ сужение
этого отображения на P(Tn). Тогда θ непрерывно отображает P(Tn) в D(Rn).
Следовательно, его транспонированное отображение tθ непрерывно отображает
D′(Rn) в P ′(Tn).

Напомним, что tθ определяется по формуле

〈 tθU, f〉 := 〈U, θf〉Tn,

где U ∈ D′(Rn), f ∈ P(Tn),
Рассмотрим сужение tθ на L(Tn). Обозначим его снова через tθ. Тогда tθ непрерывно
отображает L′(Tn) в P ′(Tn).

3. Покажем, что tω̃ и tθ два обратных отображения между P ′(Tn) и L′(Tn).
Действительно, с одной стороны, очевидно, что ω̃ ◦ θ есть тождество в P(Tn).
Через транспонирование следует, что (tθ ◦ tω̃) есть тождество в P ′(Tn).
С другой стороны, для любого F ∈ L′(Tn) и любой ϕ ∈ D(Rn) имеем:

〈 tω̃( tθF ), ϕ 〉 = 〈 tθF, ω̃ϕ 〉Tn = 〈 F, θ(ω̃ϕ) 〉 =

= 〈 θF, ω̃ϕ 〉 = 〈 ω̃(θF ), ϕ 〉 = 〈 F, ϕ 〉.
Это соотношение показывает, что tω ◦ tθ есть тождество в L′(Tn).

1.4.2 Выражение дуальности между L(Tn) и P(Tn)

Предложение. Если отождествить L(Tn) и P ′(Tn), то дуальность между
L(Tn) и P ′(Tn) выражается формулой:

〈F, f〉Tn = 〈T, f〉, F ∈ L(Tn), f ∈ P ′(Tn),
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где T есть обобщённая функция с компактным носителем, периодическое преобразование
которого равно F .

Доказательство. Отождествляя, по-прежнему, L(Tn) с P ′(Tn) через ранее рассмотренный
изоморфизм tθ, имеем

〈F, f〉Tn = 〈F, θf〉,
где F ∈ L(Tn), f ∈ P(Tn).

Пусть T ∈ E(Rn) такая, что ω̃T = F . Тогда имеем:

〈ω̃T, θf〉 = 〈T, ω̃(θf)〉 = 〈T, f〉,

что и требовалось доказать.
N.B.

1. Поскольку всякая периодическая обобщённая функция F может всегда
рассматриваться как периодическое преобразование некоторой обобщённой
функции с компактным носителем, то, согласно лемме о сюръективности,
предпочтительнее записывать:

〈ω̃T, f〉Tn = 〈T, f〉.

2. Если F есть периодическая локально интегрируемая функция, то можно
брать T = 1InF . Тогда

〈F, f〉Tn =

∫
In

F (x)f(x)dx.

2 Суммируемые семейства в топологических
векторных пространствах

ПустьX — хаусдорфово топологическое векторное пространство. Рассмотрим семейство
(xi)i∈I элементов изX. Обозначим через J множество конечных частей из I. Очевидно,
множество J упорядочено посредством вложения. Для каждого j ∈ J положим Sj =∑
i∈j
xi.

2.1 Определения

Пусть S ∈ X. Говорят, что семейство (xi)i∈I суммируемо к S, если обобщённая
последовательность (Sj)j∈J сходится к S. Тогда S называется суммой семейства.
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Говорят, что семейство (xi)i∈I удовлетворяет критерию Коши, если обобщённая
последовательность (Sj)j∈J есть последовательность Коши. Иначе говоря, для каждой
окрестности V нуля существует j0 ∈ J такой, что для каждого k ∈ J , не пересекающего
j0, имеет место Sk ∈ V .

2.2 Общие свойства
1. Сумма суммируемого семейства единственна.

2. Суммируемое семейство удовлетворяет критерию Коши.

3. Если X полное, то каждое семейство в X, удовлетворяющее критерию Коши,
является суммируемым.

4. Пусть f некоторое линейное отображение из X в другое топологическое векторное
пространство Y . Если семейство (xi) суммируемо к S, то семейство f(xi) суммируемо
к f(S).

Заметим, что доказательство этих утверждений дается в курсе топологии.

2.3 Нормально суммируемые семейства

Пусть X локально выпуклое отделимое, P – базис полунорм, непрерывных на X.
Говорят, что семейство (ai)i∈I нормально суммируемо, если для каждой p ∈ P

семейство (p(ai))i∈I суммируемо в R.

Предложение. В полном, отделимом, локально выпуклом пространстве X всякое
нормально суммируемое семейство является суммируемым.

Доказательство. Пусть j и j′ два элемента из J . Имеем для каждой полунормы
p ∈ P

p(Sj − Sj′) ≤ p(
∑
i∈j×j′

ai) ≤
∑
i∈j×j′

p(ai)

Суммируемость семейства (p(ai))i∈I показывает, что для всякого ε > 0 существует
j0 ∈ J такое, что j0 ⊂ j, j′ влечёт

∑
i∈j×j′

p(ai) < ε.

Следовательно, обобщённая последовательность (p(Sj − Sj′)) стремится к 0, а это
показывает, что обобщённая последовательность (Sj−Sj′) −→ 0. Полнота пространства
завершает доказательство.

N.B. Если X конечной размерности, то всякое суммируемое семейство является
нормально суммируемым.
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3 Пространства последовательностей

3.1 Пространства lp(Zn), 1 ≤ p ≤ +∞
Комплексная функция, определённая на Zn, называется последовательностью и

обозначается (aλ)λ∈Zn, или (aλ), или a.
Множество последовательностей, суммируемых со степенью p, обозначается lp(Zn).
Норма в lp(Zn) обозначается ‖·‖p (1 ≤ p ≤ +∞). В частности,

a ∈ l1(Zn)⇔ ‖a‖1 =
∑
λ∈Zn

|aλ| < +∞,

a ∈ l2(Zn)⇔ ‖a‖2 =

√∑
λ∈Zn

|aλ|2 < +∞,

a ∈ l∞(Zn)⇔ ‖a‖∞ = sup
λ∈Zn

|aλ| < +∞.

Очевидно,
l1(Zn) ⊂ l2(Zn) ⊂ C0(Zn) ⊂ l∞(Zn),

где C0(Zn) – пространство последовательностей, сходящихся к нулю на бесконечности,
снабжённое топологией, индуцированной из l∞(Zn). Можно рассматривать lp(Zn) как
Lp(Zn, µ), где µ есть мера, определённая через µ({λ}) = 1 для λ ∈ Zn.

3.2 Быстрое убывание
Определение. Последовательность (aλ) называется быстро убывающей, если

она удовлетворяет одному из четырёх эквивалентных условий:

1. ∀α ∈ Nn последовательность (λαaλ) есть элемент из l∞(Zn);

2. ∀α ∈ Nn последовательность (λαaλ) есть элемент из l1(Zn);

3. ∀k ∈ Nn последовательность ((1 + |λ|2)kaλ) есть элемент из l∞(Zn);

4. ∀k ∈ Nn последовательность ((1 + |λ|2)kaλ) есть элемент из l1(Zn).

Эквивалентность этих четырёх утверждений легко проверить. Утверждение 2) влечёт
1). Также утверждение 4) влечёт, очевидно, 3). Эквивалентность между 1) и 3) и между
2) и 4) вытекает из следующего утверждения.

Лемма. Пусть k ∈ N. Существует положительная константа c, зависящая
от k и от β, такая, что ∀λ ∈ Cn имеет место

c(1 + |λ|2)k ≤ sup
|β|≤k
|λβ|2 6 sup

|β|≤2k

|λβ| 6 (1 + |λ|2)k.

11



Утверждение 4) вытекает из 3) и факта, что последовательность
(

1

(1 + |λ|2)n

)
λ∈Zn

есть элемент из l1(Zn).
Множество быстро убывающих последовательностей обозначим через S(Zn). Его

структурируют в отделимое, локально выпуклое топологическое векторное пространство
через следующее семейство полунорм:

qα(a) = sup
λ∈Zn

|λαaλ|, α ∈ Nn,

q∗α(a) =
∑
λ∈Zn

|λαaλ|, α ∈ Nn,

|a|k = sup
λ∈Zn

(1 + |λ|2)k|aλ|, k ∈ N,

|a|∗k =
∑
λ∈Zn

(1 + |λ|2)k|aλ|, k ∈ N.

Имеет место следующий результат (его примем без доказательства).

Теорема о плотности. Множество конечных последовательностей C(Zn) всюду
плотно в S(Zn).

3.3 Медленный рост
Определение. Последовательность (aλ)λ∈Z называется последовательностью

медленного роста, если функция λy aλ является функцией медленного роста, иначе
говоря, если существует положительное k такое, что последовательность

(
1

(1+|λ|2)k

)
λ∈Zn

будет элементом из l1(Zn).
Множество последовательностей медленного роста будем временно обозначать через

σ(Zn).

Теорема об изоморфизме. Существует биекция между пространством
σ(Zn) последовательностей медленного роста и пространством S ′(Zn), дуальным
топологическим к пространству S(Zn).

Если отождествить последовательность медленного роста с линейным непрерывным
функционалом на S(Zn), то дуальность между σ(Zn) и S(Zn) выражается формулой

〈b, a〉 :=
∑
λ∈Zn

bλaλ, b ∈ σ(Zn), a ∈ S(Zn).

Доказательство.
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1) Пусть b — последовательность медленного роста. Существуют k ∈ N и M > 0
такие, что ∑

λ∈Zn

|bλ|
(1 + |λ|2)k

≤M.

Следовательно, последовательность (bλaλ)λ∈Z есть (абсолютно) суммируемая и

|
∑
λ∈Zn

bλaλ| ≤
∑
λ∈Zn

|bλaλ| ≤M |a|k,

где
|a|k = sup

λ∈Zn

(1 + |λ|2)k|aλ|.

Функционал a y
∑
λ∈Zn

bλaλ существенно непрерывен на S(Rn). С другой стороны,∑
λ∈Zn

bλaλ = 0 (∀a ∈ S(Rn)) влечёт b = 0 (достаточно взять в качестве a последовательность

δξ). Иначе говоря, σ(Zn) вкладывается в S ′(Zn).
2) Обратно, пусть a′ непрерывный линейный функционал на S(Zn). Из непрерывности

a′ следует, что существует k ∈ N и C > 0 такие, что

|〈a′, a〉| 6 C|a|k для любой a ∈ S(Zn).

Так как множество {δξ, ξ ∈ Zn} тотально в S(Zn), то линейный функционал a′

характеризуется своими значениями в точках δξ, ξ ∈ Zn. Иначе говоря, a′ может быть
представлено через последовательность (a′λ)λ∈Zn.

Покажем, что последовательность (a′λ) является медленно растущей. Согласно до-
казательству теоремы об изоморфизме, для каждой a ∈ S(Rn) семейство

∑
λ∈Zn

aλδ
λ

суммируется к a по топологии S(Rn).
Следовательно, семейство

∑
λ∈Zn

〈a′, δλ〉aλ =
∑
λ∈Zn

a′λaλ является суммируемым к 〈a′, a〉

(в силу непрерывности функционала a′). Следовательно, имеем∣∣∣∣∣∑
λ∈Zn

a′λaλ

∣∣∣∣∣ ≤ C sup
λ∈Zn

(1 + |λ|2)k|aλ| для всякой a ∈ S(Zn).

Тогда при a = δξ, где ξ ∈ Zn, получаем

|a′ξ| ≤ C(1 + |ξ|2)k,

что завершает доказательство.
В дальнейшем отождествляем S ′(Zn) и σ(Zn).
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4 Ряды Фурье

4.1 Определения
Определим два отображения H и Y , которые назовём соответственно анализ Фурье и
синтез Фурье.

Анализ Фурье. Пусть U периодическая обобщённая функция с периодом 1. Для

каждого λ ∈ Zn положим Ûλ := 〈U, χ̄λ〉Tn, где χλ(x) = exp(2πiλx), λx =
n∑
k=1

λkxk.

Последовательность Û = (Ûλ)λ∈Z называется последовательностью коэффициентов
Фурье периодической обобщённой функции U .

Отображение H : U y Û переводит P ′(Tn) в пространство последовательностей
C(Zn) и называется анализом Фурье.

Синтез Фурье. Для каждой последовательности a = (aλ)λ∈Zn рассмотрим ряд∑
λ∈Zn

aλχλ. Если этот ряд суммируем по некоторой топологии к некоторой периодической

обобщённой функции U , то говорят, что синтез Фурье последовательности a возможен
по этой топологии и отображение Y : a y U называется синтезом Фурье.

4.2 Теорема о взаимности для L2(Tn) и l2(Zn)

Пусть L2(Tn) множество (классов) функций, определённых на Rn, периодических
с периодом 1, локально интегрируемых на Rn:

L2(Tn) := P ′(Tn) ∩ Lloc(Rn).

Снабдим L2(Tn) топологией, индуцируемой из Lloc(Rn). Эта топология, очевидно,
эквивалентна топологии, определяемой скалярным произведением

Cf(g)Tn :=

∫
Tn

f(x)g(x)dx.

Утверждение. Снабжённое этой предгильбертовой структурой, пространство
L2(Tn) является полным.

Доказательство. Поскольку L2
loc(Rn) полно, достаточно доказать, что L2(Tn)

замкнуто в L2(Rn). Пусть L2(Tn) его замыкание в L2
loc(Rn) по топологии L2

loc(Rn).
Так как эта топология более тонкая, чем топология D′(Rn), и так как P ′(Tn)

замкнуто в D′(Rn), имеем L2(Tn) ⊂ P ′(Tn). Следовательно,

L2(Tn) ⊂ P ′(Tn) ∩ L2
loc(Rn) = L2(Tn),
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что и требовалось доказать.

Теорема о взаимности.

1. Анализ ФурьеH есть изометрический изоморфизм из L2(Tn) на l2(Zn). В частности,
для каждой U ∈ L2(Tn) имеем∫

Tn

|U(x)|2dx =
∑
λ∈Zn

|Ûλ|2

(соотношение Парсеваля).

2. Синтез Фурье Y каждой последовательности a ∈ l2(Zn) возможен по топологии
L2(Tn) и Y есть изометрический изоморфизм из l2(Zn) на L2(Tn).

3. H и Y являются обратными изоморфизмами между L2(Tn) и l2(Zn).

Доказательство. Согласно теореме Стоуна–Вейерштрасса множество {χλ, λ ∈
Zn} является тотальным в пространстве L2(Tn). С другой стороны, это множество
образует ортонормированную систему. Тогда теорема вытекает из результатов о представлении
в гильбертовом пространстве. Напомним этот результат в следующем пункте.

4.3 Представление в гильбертовом пространстве

1. Пусть (ei)i∈I – ортонормированное семейство в предгильбертовом, отделимом
пространстве H . Тогда следующие утверждения эквивалентны:

(a) Семейство (ei)i∈I тотально.

(b) Для всякого x ∈ H семейство (x/ei)ei суммируемо в H и

x =
∑
i∈I

(x/ei)ei.

(c) Для всякого x ∈ H имеем

‖x‖2 =
∑
i∈I

|(x/ei)|2.

2. Пусть (ei)i∈I — гильбертовый базис (то есть семейство тотальное и ортонормированное)
в гильбертовом пространстве H . Тогда для каждой (λ = λi)i∈I ∈ l2(I) семейство
(λiei)i∈I суммируемо в H к элементу x ∈ H , и (x/ei) = λi.
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4.4 Теорема о взаимности для P(Tn) и S(Zn)

1. Анализ Фурье H есть топологический изоморфизм из P(Tn) в σ(Zn).

2. Синтез Фурье Y возможен на S(Zn) по топологии P(Tn). При этом Y есть
изоморфизм из S(Zn) на P(Tn).

3. H и Y есть два взаимнообратных изоморфизма.

Доказательство.

1. H отображает непрерывно P(Tn) в S(Zn). Используя регулярность и периодичность
U и интегрируя по частям, имеем ∀α ∈ Nn:

(2πiλ)αÛλ =

∫
L2(Tn)

(DαU) exp(−2πiαx) dx = (̂DαU)λ.

Отсюда следует, что

‖λαÛλ‖l∞ 6 ‖DαU‖L2(Tn) 6 ‖DαU‖L∞(Tn),

а это показывает, что Û ∈ S(Zn) и что H непрерывно отображает P(Tn) в S(Zn).

2. Y непрерывно отображает S(Zn) в P(Tn). Вначале заметим, что для любой a ∈
l1(Zn) синтез Фурье возможен только по топологии C(Rn). Иначе говоря, ряд∑
λ∈Zn

aλχλ суммируем по топологии C(Rn) к некоторой функции U ∈ C(Rn), если

a ∈ l1(Zn). С другой стороны, для любого α ∈ Nn последовательность (λαaλ)λ∈Zn

также принадлежит l1(Zn). Следовательно,
∑
λ∈Zn

Dλ(aλχλ) суммируем по топологии

C(Rn) к DαU .
Окончательно, ряд

∑
λ∈Zn

(aλχλ) хорошо суммируем по топологии E(Rn) к U . Непрерывность

отображения Y : a y U тогда вытекает из неравенства

‖DαU‖L∞(Tn) 6 ‖(λαUλ)‖l1(Zn),

что и требовалось доказать.

3. Остаётся показать, что Y есть обратное к H, то есть

YHU = U для любого U ∈ P(Tn),

HYa = a для любой a ∈ S(Zn).

Но по предыдущей теореме о взаимности L2(Rn) эти два соотношения справедливы
даже для U ∈ L2(Tn) и a ∈ l2(Zn).

16



4.5 Теорема о взаимности для P ′(Tn) и S ′(Zn)

1. Анализ Фурье H есть топологический изоморфизм из P ′(Tn) на S ′(Zn).

2. Синтез Фурье Y возможен на S ′(Zn) по топологии P ′(Tn) и является изоморфизмом
из S ′(Zn) на P ′(Tn).

3. H и Y есть два взаимных изоморфизма.

N.B. В этой теореме P ′(Tn) и S ′(Zn) снабжены или слабыми или сильными дуальными
топологиями.

Доказательство. Рассмотрим ко-анализ Фурье H, определяемый формулой

(Hf)λ := 〈f, χλ〉Tn, f ∈ P(Tn).

Согласно предыдущей теореме это топологический изоморфизм из P(Tn) на S(Zn).
Обратный изоморфизм, называемый ко-синтезом Фурье Y , определяется формулой

Ya :=
∑
λ∈Zn

aλχλ.

Обозначим через tH и tY соответственно транспонированные для H и Y .
Согласно общим свойствам транспонирования tH есть топологический изоморфизм

из S ′(Zn) на P ′(Tn), а tY есть топологический изоморфизм из P ′(Tn) на S ′(Zn) и
tH и tY являются обратными. Следовательно, теорема будет доказана, если удастся
показать, что tY = H и tH = Y .

Для упрощения записи обозначим 〈· , ·〉 вместо 〈· , ·〉Tn.

Доказательство, что tY = H: Для любого U ∈ P ′(Tn) и a ∈ S(Zn) имеем

〈tYU, a〉 = 〈U,Ya〉 = 〈U,
∑
λ∈Zn

aλχλ〉.

Суммируемость по топологии P(Tn) ряда
∑
λ∈Zn

aλχλ и непрерывность линейного

функционала U на P(Tn) позволяет записать

〈U,
∑
λ∈Zn

aλχλ〉 =
∑
λ∈Zn

〈U, aλχλ〉 =
∑
λ∈Zn

〈U, χλ〉aλ = 〈HU, a〉,

что и доказывает, что tY = H.

Доказательство, что tH = Y : Пусть a′ ∈ S(Zn) и f ∈ P(Tn). Имеем

〈 tHa′, f〉 = 〈a′,Hf〉 =
∑
λ∈Zn

a′λ〈f, χλ〉.
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Второе равенство есть не что иное, как дуальность между S(Zn) и S ′(Zn). Но

〈f, χλ〉 =

∫
Tn

f(x)χλ(x)dx = 〈χλ, f〉.

Следовательно,
〈 tHa′, f〉 =

∑
λ∈Zn

a′λ〈χλ, f〉.

Это равенство показывает, что для каждого f ∈ P(Tn) ряд
∑
λ∈Zn

a′λ〈χλ, f〉 суммируем

к 〈 tHa′, f〉. Отсюда следует, что ряд
∑
λ∈Zn

a′λχλ суммируем по топологии слабой дуальной

на P ′(Tn) к tHa′. Следовательно, Y = tH.
Следствие (теорема единственности). Если все коэффициенты Фурье обобщённой

функции есть нули, то эта обобщённая функция есть нуль.

4.6 Дополнение к периодическим обобщённым функциям

Можно уточнить последнюю теорему о взаимности. А именно, имеет место следующая

Теорема.

1. Синтез Фурье Y всегда возможен на S ′(Zn) по топологии S ′(Rn).

2. Всякая периодическая обобщённая функция является обобщённой функцией медленного
роста и представляет производную (определённого порядка) от некоторой
ограниченной непрерывной периодической функции (теорема о структуре).
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Доказательство.

1. Пусть a′ ∈ S ′(Zn) . Тогда существует k ∈ N такое, что последовательность
a′λ

(1+|λ2|)k

есть элемент из l1(Zn) . Положим aλ =
a′λ

(1+|λ2|)k
и рассмотрим ряд

∑
λ∈Zn

aλχλ.

Так как a ∈ l1(Zn) и C(Rn) полно, то этот ряд суммируем по топологии C(Rn) к
функции f ∈ C(Rn). Очевидно, f есть периодическая, а следовательно, ограниченная.

Впрочем, суммируемость ряда к f равномерная на Rn (в силу периодичности), а
равномерная сходимость на Rn влечет сходимость по сильной дуальной топологии
(и тем более слабой) в S ′(Rn). Поэтому ряд

∑
aλχλ суммируем к f по сильной

дуальной топологии из S ′(Rn). Поскольку оператор
(

1− ∆

4π2

)k
непрерывен на

S(Rn), имеем(
1− ∆

4π2

)k
f =

∑
λ

aλ

(
1− ∆

4π2

)k
χλ =

∑
λ

aλ(1+|λ|2)kχλ

или (
1− ∆

4π2

)k
f =

∑
λ

a′λχλ,

то есть ряд суммируем по сильной дуальной топологии пространства S ′(Tn).

2. Всякая периодическая обобщенная функция, согласно только что доказанному,
есть синтез Фурье определенной последовательности (a′λ)λ∈Z из S ′(Zn). Следовательно,
всякая периодическая обобщенная функция U может быть записана в виде

U =

(
1− ∆

4π2

)k
f,

где f – ограниченная, периодическая непрерывная функция.

5 Техника ядер

5.1 Напоминание

Пусть P

(
x,

∂

∂x

)
≡
∑
α≤m

cα(x)Dα, где cα(x) ∈ E(Ω), линейный оператор в частных

производных с коэффициентом из класса C∞ на открытом множестве Ω ⊂ Rn.
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Уравнение вида:

P

(
x,

∂

∂x

)
u = f на Ω,

где f — заданная обобщенная функция на Ω, а u(x) ∈ D′(Ω) есть искомая обобщенная
функция, является линейным уравнением в частных производных в Ω порядка m.

Когда коэффициенты cα константы, уравнение есть уравнение сверток, ранее изученное.

Оператор tP

(
x,

∂

∂x

)
, определяемый по формуле

tP

(
x,

∂

∂x

)
u =

∑
α≤m

(−1)|α|Dα(cα(x)u),

называется формально транспонированным оператором для P

(
x,

∂

∂x

)
.

Уравнение P

(
x,

∂

∂x

)
u = f эквивалентно уравнению

〈u, tPϕ〉 = 〈f, ϕ〉, ∀ϕ ∈ D(Ω).

Уравнение tPu = 0 иногда называется транспонированным уравнением к уравнению

P

(
x,

∂

∂x

)
u = f .

Имеет место
Утверждение. Решения уравнения P

(
x,

∂

∂x

)
u = f образуют замкнутое линейное

многообразие в пространстве D′(Ω). В частности, решения однородного уравнения
образуют замкнутое векторное подпространство в D′(Ω).

Утверждение вытекает из линейности и непрерывности оператора P

(
x,

∂

∂x

)
в

топологическом векторном пространствеD′(Ω) (снабженном, например, слабой дуальной
топологией).

Следствие. Пусть (uj)j∈N – последовательность классических обобщенных решений
уравнения. Если (uj)j∈N сходится равномерно к u(x) на компакте из Ω и если u(x) ∈
C∞(Ω), то u есть классическое решение класса C∞(Ω).

Доказательство следует из того, что компактная сходимость в Ω влечет сходимость
в смысле обобщенных функций на Ω.

5.2 Определения из теории ядер
1. Общие свойства.

Пусть X — открытое множество из Rm, а Y — открытое множество из Rn.
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(a) Определения.
Любая обобщенная функция на X × Y называется ядром на X × Y .
Пусть K ядро на X ×Y . Ядро

←→
K на Y ×X называют ядром, симметричным

к ядру K, если оно определяется формулой

〈
←→
K ,Θ〉 := 〈K,

←→
Θ 〉, ∀ Θ ∈ D(X × Y ),

где
←→
Θ (x, y) := Θ(y, x), x ∈ X, y ∈ Y .

Когда X = Y , говорят также ядро на X (вместо на X ×X).
Если, кроме того, K =

←→
K , то ядро K называется симметрическим.

(b) Преобразования, порождаемые ядром.
Пусть K ядро на X × Y и пусть ψ ∈ D(Y ). Для ∀ϕ ∈ D(X) полагают:

〈Kψ, ϕ〉 := 〈K,ϕ⊗ ψ〉,

что определяет функционал (линейный)Kψ наD(X). Этот функционал непрерывен
наD(X), так как представляет композицию отображения ϕy ϕ⊗ψ, непрерывного
изD(X) вD(X×Y ), и функционала Θ y< K,Θ >, непрерывного наD(X×Y ).
Следовательно, Kψ есть обобщенный функционал на X.
Таким образом, определили преобразование K : ψ y Kψ, переводящее D(Y ) в
D′(X). Легко заметить, что это преобразование линейное и непрерывное.

N.B. Верно и обратное утверждение:
Теорема Л. Шварца о ядре.
ЕслиK есть линейное и непрерывное отображение изD(Y ) вD(X), то существует
единственное ядро K на X × Y , такое, что

〈Kψ, ϕ〉 = 〈K,ϕ⊗ ψ〉, ∀ϕ ∈ D(X), ∀ψ ∈ D(Y ).

Далее, очевидно, можно также определить ядро
←→
K . Преобразование

←→
K , порождаемое

этим ядром, отображает D(X) в D(Y ).
Заметим, что

〈
←→
K ϕ, ψ〉 = 〈K,ϕ⊗ ψ〉, ϕ ∈ D(X), ∀ψ ∈ D(Y ),

откуда
〈
←→
K ϕ, ψ〉 = 〈Kψ, ϕ〉, ϕ ∈ D(X),∀ψ ∈ D(Y ).

Если X = Y и если K ядро симметрическое, то K и
←→
K идентичны.
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(c) Примеры.

i. Пусть S ∈ D′(X) и T ∈ D′(Y ). Тогда K = S ⊗ T есть ядро на X × Y .
Симметричное ядро есть T ⊗ S.
Отображение K тогда определяется по формуле:

〈Kψ, ϕ〉 := 〈S, ϕ〉〈T, ψ〉,

то есть
Kψ = 〈T, ψ〉S.

Очевидно, отображение
←→
K определяется по формуле

←→
K ϕ = 〈S, ϕ〉T.

ii. Пусть K ∈ L1
loc(X × Y ). Согласно теореме Фубини имеем для почти всех

x ∈ X
(Kψ)(x) =

∫
Y

K(x, y)ψ(y)dy, ψ ∈ D(Y ),

и для почти всех y ∈ Y

(
←→
K ϕ)(y) =

∫
X

K(x, y)ϕ(x)dx, ϕ ∈ D(X).

Если K(x, y) = exp(−2πixy), то K =
←→
K и получаем преобразование Фурье

при X = Y = Rn.

2. Регулярные ядра.

Напомним, что преобразование K определено только на D(Y ). В общем, оно не
продолжимо на E ′(Y ).

(a) Определения.
Ядро K называется полурегулярным слева, если отображение K непрерывно
отображает D(Y ) в E(X).
Ядро K называется полурегулярным справа, если отображение

←→
K отображает

непрерывно D(X) в E(Y ).
Ядро K называется регулярным, если оно полурегулярно слева и справа.

(b) Преобразования, порождаемые регулярными ядрами.

Теорема. Пусть K полурегулярное слева ядро. Тогда
←→
K продолжимо до

линейного, непрерывного отображения из E ′(X) в D′(Y ). Это продолжение
есть не что иное, как преобразование tK, транспонированное для K. Пусть K
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— полурегулярное справа ядро. ТогдаK продолжимо до линейного непрерывного
отображения из E ′(Y ) в D′(X). Это продолжение есть не что иное, как
преобразование t←→K , транспонированное для

←→
K .

N.B. Согласно этой теореме, еслиK есть ядро регулярное, то можно отождествлять←→
K =t K и t←→K = K.
Доказательство. ЕслиK — полурегулярно слева, тоK отображает непрерывно
D(Y ) в E(X). Следовательно, к нему транспонированное, т.е. tK, отображает
непрерывно E ′(X) в D′(Y ).
Напомним, что tK определяется по формуле:

〈S,Kϕ〉 = 〈 tKS, ϕ〉, S ∈ E ′(x), ϕ ∈ D(Y ).

В частности, для ψ ∈ D(X) имеем:

〈ψ,Kϕ〉 = 〈 tKψ, ϕ〉,

что и показывает: tK продолжает
←→
K .

Случай, когда K полурегулярно справа, доказывается аналогично.

(c) Контрпример и пример.

i. Ядро K = S ⊗ T , где S ∈ D′(X) и T ∈ D′(Y ), не является, очевидно,
регулярным.

ii. Утверждение.
Пусть T ∈ D′(Rn). Пусть K ядро на Rn, определяемое формулой

〈K,ϕ⊗ ψ〉 = 〈T ∗ ψ, ϕ〉.

Тогда K есть ядро, регулярное на Rn.
Действительно, прежде всегоK, очевидно, линейный непрерывный функционал
на D(Rn)⊗D(Rn) и, следовательно, на D(Rn×Rn), т.е. K есть ядро на Rn.
Далее, очевидно, что Kψ = T ∗ ψ и

←→
K = T̊ ∗ ψ, ψ ∈ D(Rn). Поскольку

отображение ψ y T ∗ ψ — линейное и непрерывное из D(Rn) в E(Rn), то
ядро K есть регулярное, что и требовалось доказать.
Легко проверить, что ∀S ∈ E ′(Rn) имеем: KS = T × S и tKS = T × S.
N.B. Предположим, что T ∈ L1

loc(Rn). Тогда

〈T ∗ ψ, ϕ〉 =

∫
Rn×Rn

T (x− y)ϕ(x)ψ(y) dx dy.

Следовательно, имеем: K(x, y) = T (x− y).
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N.B. Для сокращения обозначений, когда T есть обобщенная функция,
ядро K обозначается также T (x− y) и 〈K,Φ〉 записывается в интегральной
символике: ∫

Rn×Rn

T (x− y)Φ(x, y) dx dy (∀ Φ ∈ D(Rn × Rn)).

3. Регуляризующие ядра.

(a) Определение.
Пусть K — регулярное ядро. Говорят, что K есть регуляризующее ядро, если K
непрерывно отображает E ′(Y ) в E(X) и если tK непрерывно отображает E ′(X)
в E(Y ).

(b) Пример.
Утверждение.
Пусть K ∈ C∞(X × Y ). Тогда K есть регуляризующее ядро.
Доказательство. Действительно, имеем:

(Kψ)(x) =

∫
Y

K(x, y)ψ(y)dy, ψ ∈ D(Y ).

Согласно теореме о дифференцировании под знаком интеграла Лебега,Kψ есть
функция из класса C∞(X). Легко показать, что отображение K непрерывно
отображаетD(Y ) в E(X), а

←→
K непрерывно отображаетD(X) в E(Y ). Следовательно,

ядро K — регулярное.
С другой стороны,

〈 tKS, ψ〉 = 〈,Kψ〉 =

∫
X

S(x)


∫
Y

K(x, y)ψ(y) dy

 dx =

= 〈S ⊗Ψ, K〉 =

∫
Y


∫
X

S(x)K(x, y) dx

ψ(y) dy.

Из этого равенства видим, что

( tKS)(y) =

∫
X

S(x)K(x, y)dx = 〈S,K( · , y)〉, S ∈ E(X).

Согласно топологическому свойству транспонированного отображения функция
tKS ∈ C∞(Y ). Отсюда следует, что tK непрерывно отображает E ′(X) в E(Y ),
что и требовалось доказать.
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4. Сильно регулярные ядра.

(a) Определение.
Регулярное ядро на X называется сильно регулярным на X, если оно обладает
следующими двумя свойствами:
• ∀S ∈ E ′(X) обобщенная функция KS есть функция класса C∞(Ω) (из X),
где S из класса C∞(Ω).
• Сходимость S → 0 в топологии в E ′(X), а сходимость S|Ω → 0 по
топологии в E(Ω) влечет сходимость KS|Ω → 0 по топологии в E(Ω).

N.B.

Очевидно, регуляризующее ядро на X есть сильно регулярное на X.
(b) Пример сильно регулярного ядра.

Теорема.
Пусть K регулярное ядро, сужение которого на дополнение к диагонали для
X ×X есть функция из класса C∞. Тогда K есть сильно регулярное ядро.
Доказательство. Пусть S ∈ E ′(X). Рассмотрим открытое множество Ω из
X, где S есть функция из класса C∞. Покажем, что сужение KS на Ω есть
функция из класса C∞(Ω).
Для этого достаточно показать, что сужениеKS на каждое открытое множество
U b Ω есть функция из класса C∞(U).
Пусть η ∈ D(X) равна 1 в окрестности U и имеет компактный носитель в Ω
(такая функция, согласно лемме об отделимости типа Урысона, существует).
Поскольку ядро K полурегулярно справа по гипотезе, то KS, K(1 − η)S и
K(ηS) хорошо определены и имеет место равенство

KS = K(ηS) +K(1− η)S.

Но ηS ∈ D(X), следовательно,K(ηS) ∈ E(X), ибоK является полурегулярным
слева.
С другой стороны, пусть H есть сужение для K на U ×V , где V = {XU . Тогда
H ∈ C∞(U × V ) и, следовательно, является регуляризующим ядром, согласно
предыдущему утверждению.
Пусть T = (1 − η)S|V . Тогда T ∈ E ′(V ). Следовательно, HT ∈ E(U). Но
HT = K[(1− η)S]|U , поэтому KS ∈ C∞(U).
Пусть (Sj)j∈N — последовательность из E ′(X), сходящаяся к 0 и такая, что
последовательность (Sj|Ω) → 0 в топологии E(Ω). Тогда, с одной стороны,
(K(ηSj))→ 0 в топологии в E(X), так как K полурегулярно слева.
С другой стороны, Tj = (1 − η)Sj → 0 в топологии E ′(V ). Следовательно,
HTj → 0 в топологии в E(U), так как K — регуляризующее ядро.

25



Окончательно, (KSj|U)→ 0 в топологии в E(U). А так как U — произвольное,
то (KSj|Ω)→ 0 в топологии в E(Ω), что и требовалось доказать.

5.3 Фундаментальные ядра оператора в частных
производных

Концепция фундаментальных ядер операторов в частных производных заменяет
теорию элементарных решений операторов в частных производных с постоянными
коэффициентами.

1. Определения.

Пусть P(x, ∂∂x) оператор в частных производных с коэффициентами из класса C∞
на открытом множестве X ⊂ Rn.

Ядро K на X называется фундаментальным слева для оператора P(x, ∂∂x), если
∀ϕ ∈ D(X) имеет место соотношение

KPϕ = ϕ.

ЯдроK наX есть фундаментальное справа для P(x, ∂∂x), если ∀ϕ ∈ D(X) выполняется
соотношение

PKϕ = ϕ.

Очевидно, если K ядро, фундаментальное справа для P(x, ∂∂x), то
←→
K есть ядро,

фундаментальное слева для tP.

2. Случай ядер, полурегулярных справа.

Утверждение. Пусть K ядро, полурегулярное справа на X.

(a) Если K ядро, фундаментальное слева для оператора P, то имеет место
равенство

K(PS) = S (∀S ∈ E ′(X)).

(b) Если K ядро, фундаментальное справа для P, то ∀S ∈ E ′(X) имеет место
равенство

P(KS) = S.

Доказательство. Достаточно использовать плотностьD(X) в E ′(X). Заметим,
что эта плотность классически известна, если X = Rn.
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3. Применение фундаментальных ядер.

Утверждение.

Если оператор P обладает фундаментальным ядром слева, то P инъективен
из D(X) в D(X), и если, кроме того, это ядро полурегулярное справа, то P
инъективен из E ′(X) в E ′(X). Если оператор P обладает фундаментальным
ядром справа, то P сюръективен из D(X) в D(X) и, если, кроме того, это ядро
полурегулярное справа, то P сюръективен из D′(X) на E ′(X).

Доказательство. Рассмотрим уравнение Pϕ = ψ, где ϕ, ψ ∈ D(X). Если P
обладает ядром K, фундаментальным слева, то необходимо следует ϕ = Kψ.
Отсюда следует единственность решения.

Рассмотрим уравнение PT = ψ, где T ∈ D′(X) и ψ ∈ D(X). Если P обладает
ядром K, фундаментальным справа, то Kψ есть решение. Следовательно, в этом
случае существует решение.

В обоих случаях, если K – полурегулярное справа, то рассуждения остаются спра-
ведливыми, если заменить D(X) на E ′(X).

4. Соотношения между фундаментальными ядрами и элементарными
решениями.

(a) Случай операторов с постоянными коэффициентами.

Утверждение. Пусть P линейный оператор в частных производных с пос-
тоянными коэффициентами в Rn. Пусть E — элементарное решение оператора
P, а K — ядро на Rn, определяемое формулой

〈K,ϕ⊗ ψ〉 := 〈E ∗ ψ, ϕ〉, ∀ϕ, ψ ∈ D(Rn).

Тогда регулярное ядро K есть фундаментальное ядро, двустороннее (т.е.
справа и слева) для P.

Доказательство. ∀ ϕ ∈ D(Rn) имеем:

KPϕ = E ∗ (Pϕ) = E ∗ (Pδ ∗ ϕ) = (E ∗ Pδ) ∗ ϕ = ϕ,

т.е. K — ядро, фундаментальное слева для P.
С другой стороны, ∀ ϕ ∈ D(Rn) имеем:

P(Kϕ) = P(E ∗ ϕ) = Pδ ∗ (E ∗ ϕ) = (Pδ ∗ E) ∗ ϕ = ϕ,

т.е. K — ядро, фундаментальное справа для P.
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(b) Случай операторов с переменными коэффициентами.

Введем новое понятие.
Определение.
Пусть P (x, ∂∂x) с коэффициентами из C∞(X), X ⊂ Rn. Пусть a ∈ X. Всякая
обобщенная функцияEa наX, удовлетворяющая уравнению PEa = δa, называется
элементарным решением в точке a оператора P(x, ∂∂x).
Иначе говоря, ∀ϕ ∈ D(X) имеет место равенство:

〈Ea,
tPϕ〉 = ϕ(a), a ∈ X.

Утверждение. Пусть P(x, ∂∂x) с коэффициентами из C∞(X), где X ⊂ Rn.
Предположим, что в каждой точке a ∈ X существует элементарное решение
для P(x, ∂∂x) (соответственно для tP(x, ∂∂x)) и что функция K : (x, a) →
Ea(x) является локально интегрируемой на X×X. Тогда ядроK (соответственно
←→
K ) есть фундаментальное справа (соответственно слева) для P.

Доказательство. Имеем (Kψ)(x) =
∫
X

K(x, a)ψ(a) da. Отсюда ∀ϕ ∈ D(X)

следует, что

〈PKψ, ϕ〉 = 〈Kψ, tPϕ〉 =

∫
X×X

K(x, a)ψ(a) tP(x,
∂

∂x
)ϕ(x) da dx =

=

∫
X

ψ(a)

∫
X

K(x, a) tP(x,
∂

∂x
)ϕ(x) dx da.

По гипотезе Ea есть элементарное решение в точке a для P(x, ∂∂x).
Следовательно,∫

X

K(x, a) tP(x,
∂

∂x
)ϕ(x) dx = 〈Ea,

tPϕ〉 = ϕ(a).

Таким образом,

〈PKψ, ϕ〉 =

∫
X

ψ(a)ϕ(a) da = 〈ψ, ϕ〉,

что и показывает, что K есть фундаментальное ядро справа для P.
ЕслиK — ядро, фундаментальное справа для tP, то

←→
K — ядро, фундаментальное

слева для P, что и требовалось доказать.
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5.4 Гипоэллиптичность.
ПустьX — открытое множество изRn, P(x, ∂∂x) — линейный оператор с коэффициентами
из класса C∞(X).

1. Определение.

Оператор P(x, ∂∂x) называют гипоэллиптичным наX, если он обладает следующими
свойствами:

(a) ∀ Ω ⊂ X и ∀ T ∈ D′(X) свойство PT ∈ C∞(Ω) влечет T ∈ C∞(Ω).

(b) Сходимость (Tj)j∈J → 0 по топологии D′(X) и (PTj|Ω)→ 0 по топологии E(Ω)
влечет сходимость (Tj|Ω)→ 0 по топологии E(Ω).

2. Предложение.

Пусть P(x, ∂∂x) гипоэллиптичен на X и пусть Ω — открытое множество в
X. Тогда множество N решений однородного уравнения PT = 0 на Ω есть
замкнутое векторное подпространство из E(Ω). Топологии, индуцируемые из
D′(Ω) и E(Ω) на N , идентичны. Множество N , снабжённое топологией из D′(Ω),
есть пространство Фреше.

Доказательство. Известно (см. начало пособия), что N есть замкнутое подпро-
странство из D′(Ω). Согласно свойству (a) определения гипоэллиптичности, N
включено в E(Ω). Пусть (Tj)j∈J → 0 по топологии D′(Ω). Поскольку PTj = 0, то
свойство (b) показывает, что (Tj)j∈J → 0 по топологии E(Ω).

Обе топологии из E(Ω) и D′(Ω) на N идентичны. Следовательно, N замкнуто в
E(Ω). Так как E(Ω) — пространство Фреше, то N есть пространство Фреше.

3. Теорема Л. Шварца о регулярности.

Пусть X — открытое множество на Rn и пусть P(x, ∂∂x) — оператор с коэффи-
циентами из C∞(X), имеющий фундаментальное слева ядроK, сильно регулярное
на X. Тогда P(x, ∂∂x) есть гипоэллиптичный оператор на X.

Доказательство.

(a) Пусть T ∈ D′(X),PT |Ω, где Ω ⊂ X, есть функция класса C∞(Ω).

i. Предположим сначала, что T ∈ E ′(X). Так какK — ядро, фундаментальное
слева, полурегулярное справа, то имеем T = K(PT ). Из того, что K —
сильно регулярное наX, следует, чтоK(PT ) из класса C∞(Ω). Таким образом,
T ∈ C∞(Ω).

ii. Рассмотрим общий случай, когда T /∈ E ′(X). Пусть U — открытое множество,
относительно компактное с замыканием, содержащимся в Ω (U b Ω). Рассмо-
трим функцию η ∈ D(X) с носителем, содержащимся в Ω, равную 1 в
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окрестности U . Тогда ηT ∈ E ′(X). Так как P(ηT ) = P(T ) на U , то P(χT ) ∈ C∞(Ω).
Следовательно, согласно пункту i, ηT ∈ C∞(U). А так как ηT = T на U , то
T ∈ C∞(U). Отсюда, в силу произвольности множества U из Ω, следует,
что T ∈ C∞(Ω).

(b) Предположим, что (Tj)→ 0 в D′(X) и что (PTj|Ω)→ 0 в E(Ω). Тогда (ηTj)→ 0
в E ′(X) и (P(ηTj)|U) → 0 в E(U). Так как K сильно регулярное, то
KP(ηTj)|U → 0 в E(U). Поскольку Tj|U = ηTj|U = KP(ηTj)|U , последовательность
(Tj|U) → 0 в E(U). А так как U — произвольное, то отсюда, в свою очередь,
следует, что (Tj|Ω)→ 0 в E(Ω), что и требовалось доказать.
Следствие (случай операторов с постоянными коэффициентами).
Пусть P( ∂

∂x) — оператор с постоянными коэффициентами. Предположим, что у
P элементарное решение E ∈ C∞(Rn\{0}). Тогда P( ∂

∂x) есть гипоэллиптичный
оператор.
Доказательство. Пусть K — ядро, определенное формулой

〈K,ϕ⊗ ψ〉 := 〈E ∗ ψ, ϕ〉.

Ранее мы получили, что K есть регулярное ядро и что KPϕ = PKϕ = ϕ, где
ϕ ∈ D(Rn). Можно проверить, что на дополнении к диагонали Rn × Rn ядро
K задается формулой

K(x, y) = E(x− y).

Так как на этом дополнении эта функция из класса C∞, то, как было ранее
показано, ядро K есть двустороннее фундаментальное для P.

4. Применение теоремы Л. Шварца.

(a) Гипоэллиптичность регулярных обыкновенных дифференциальных
операторов с коэффициентами из класса C∞.
Пусть P(x, ddx) — дифференциальный оператор порядка m с коэффициентами
из класса C∞(R). Предполагаем, что P регулярный, т.е. коэффициент при
старшей производной равен 1. Можно легко найти элементарное решение Ea в
точке a ∈ R. Достаточно взять Ea = (τaY )ua, где Y — функция Хевисайда, а
ua есть решение в классическом смысле задачи

P (x,
d

dx
)u(x) = 0,

u(a) = u′(a) = · · · = um−2(a) = 0, um−1(a) = 1.

Покажем, что K(x, y) = Ea(x) = Y (x − a)ua(x) есть ядро класса C∞ на
дополнении к диагонали R× R.
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Пусть u1, u2, . . . , um сутьm независимых решений дифференциального уравнения
Pu = 0; пусть U — их вронскианова матрица. Тогда

ua(x) = c1(a)u1(x) + · · ·+ cm(a)um(x),

где вектор −→c (a) = (c1(a), . . . , cm(a)) определяется формулой

−→c (a) = [U(a)]−1−→e

и −→e = (0, 0, . . . , 0, 1).
Так как функции u1, u2, . . . , um ∈ C∞(R) (классический результат), то их
вронскианова матрица U ∈ C∞(R).
Поскольку U(a) есть обратимая матрица, detU(a) не равен нулю. Поэтому
функция ay U−1(a) есть функция класса C∞(R). Отсюда следует, что (x, a) y
ua(x) ∈ E(R)⊗ E(R) ⊂ E(R× R), что и требовалось доказать.

(b) Гипоэллиптичность оператора Лапласа (лемма Вейля).

Покажем, что оператор Лапласа ∆ =
n∑
k=1

∂2

∂x2
k

обладает элементарным решением

E и что это элементарное решение есть функция класса C∞ на дополнении к
началу.
Применим метод без использования преобразования Фурье.
Ищем радиальную гармоническую функцию (т.е. решение уравнения ∆u = 0)
в дополнении к началу. Полагая v(r) = u(|x|), имеем:

∆u =
d2v

dr2
+
n− 1

r

dv

dr
.

Отсюда следует, что

u(x) =
an
|x|n−2

+ bn, если n 6= 2;

u(x) = a2 ln
1

|x|
+ b2, если n = 2,

где an и bn — комплексные числа.

Поскольку локально интегрируемая функция x y
1

|x|n−2
(x y ln

1

|x|
, если

n = 2) обладает одной особенностью в начале, то должны ожидать, что её
лапласиан в смысле обобщённых функций на Rn есть ненулевая обобщённая
функция, носитель которой есть {0}.
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Утверждение. Локально интегрируемая функция E, определённая (почти
всюду) на Rn формулой

E(x) =


1

(n− 2)ωn|x|n−2
, если n ≥ 0 (n 6= 2),

1

2π
ln|x|, если n = 2,

есть элементарное решение оператора Лапласа.
Напомним, что ωn — площадь единичной сферы размерности (n− 1) в Rn:

ωn =
2π

n
2

Γ(n2 )
,

где Γ — гамма-функция.
Доказательство. Пусть ϕ ∈ D(Rn). Имеем:

〈∆E,ϕ〉 = 〈E,∆ϕ〉 = lim
ε→0

∫
|x|>ε

E(x)(∆ϕ)(x) dx.

Далее, формула Грина даёт∫
|x|>ε

E(x)(∆ϕ)(x) dx =

∫
|x|>ε

(∆E)(x)ϕ(x) dx+

+

∫
|x|=ε

∂E

∂v
(x)ϕ(x) ds(x)−

∫
|x|=ε

E(x)
∂ϕ

∂v
(x) ds(x),

где v обозначает внешнюю нормаль сферы {|x| = ε}.
Первый интеграл справа равен нулю, так как E — гармоническая функция на
множестве Rn \ {0}. Третий интеграл стремится к нулю, когда ε→ 0, так как
он мажорируется константой, умноженной на εn−1ε2−n (соответственно ε ln ε
для n = 2).
Остаётся показать, что второй интеграл сходится к ϕ(0). Здесь рассмотрим
лишь более содержательный случай n > 2.
Действительно, имеем∣∣∣∣ ∫
|x|=ε

∂E

∂v
(x)ϕ(x) ds(x)− ϕ(0)

∣∣∣∣ =

=
1

ωnεn−2

∣∣∣∣ ∫
|x|=ε

[ϕ(x)− ϕ(0)] ds(x)

∣∣∣∣ ≤ ε sup
x∈Rn

∑
1≤i≤n

∣∣∣∣ ∂ϕ∂xi
∣∣∣∣ .
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(c) Гипоэллиптичность оператора теплопроводности.

Утверждение. Оператор теплопроводности
∂

∂t
−∆ размерности n обладает

элементарным решением E медленного (умеренного) роста:

E(t, x) =
Y (t)

(
√

4πt)n
exp

{
−|x|2

4t

}
,

где Y (t) — функция Хевисайда.

Доказательство. Имеется несколько доказательств этого утверждения. Дадим
наиболее короткое.
Используем преобразование Фурье в Rn. Обозначим через ξ → Ê(t, ξ) образ
Фурье для x→ E(t, x), где t — фиксировано.
Имеем

Ê(t, ξ) = Y (t) exp(−4π2t|ξ|2), (t, ξ) ∈ Rn+1 .

Отсюда следует, что
∂Ê

∂t
= −4π2t|ξ|2Ê + δR ⊗ 1,

где δR — мера Дирака в R.

Очевидно,
∂Ê

∂t
=

∂̂E

∂t
. Поэтому, применяя копреобразование Фурье в S ′(R),

имеем
∂E

∂t
−∆E ≡ δ, где δ — мера Дирака в Rn+1.

(d) Негипоэллиптичность оператора Даламбера размерности 1
в пространстве R2.

Пусть Ψ — автоморфизм пространства R2, определяемый формулой:

x =
1√
2

(u+ v); y =
1√
2

(u− v).

Тогда преобразование T → Ψ(T ) из D′(R2) в себя продолжает преобразование
f y f ◦Ψ, определенное на L1

loc(R2).
Имеем ∀ ϕ ∈ D(R2):

∂2

∂u∂v
(ϕ ◦ ψ) =

1

2
(�2ϕ),

где �2 =
∂2

∂x2
− ∂2

∂t2
— оператор Даламбера в R2.

Отсюда следует, что

∂2[Ψ(T )]

∂u∂v
=

1

2
(�2T ),∀ T ∈ D′

(R2).
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Но общее решение уравнения
∂2S

∂u∂v
= 0 есть:

S = A⊗ 1 + 1⊗B,

где A ∈ D′
(R) и B ∈ D′

(R).
Следовательно, общее решение уравнения �2T = 0 есть

T = A⊗ 1 + 1⊗B,

где обобщенная функция A зависит только от (x + y) и обобщенная функция
B зависит только от (x− y).

Таким образом, решение T имеет вид:

T (x, y) = A(x+ y) +B(x− y),

что и требовалось доказать.

6 Некоторые задачи
1. Пусть f ∈ C(Rn) есть периодическая функция с периодом 1. Показать, что если

её ряд Фурье равномерно сходится, то его сумма S равна f .

2. Пусть
∑
λ∈Zn

aλχλ суммируем по топологииD′(Rn). Показать, что (aλ)λ∈Zn — последовательность

медленного (умеренного) роста.

3. Пусть L1(Tn) — пространство функций, определенных наRn с периодом 1, локально
интегрируемых на Rn, т.е.

L1(Tn) = P ′(Tn) ∩ L1
loc(Rn),

и это пространство снабжено топологией, индуцируемой из L1
loc(Rn).

(a) Показать, что L1(Tn) полно.
(b) Показать, что P(Tn) всюду плотно в L1(Tn) (воспользоваться периодическим

разбиением единицы).
(c) Показать, что анализ Фурье непрерывно отображает L1(Tn) в C0(Zn).

4. Пусть S — обобщенная функция на Rn, периодическая с периодом 1. Пусть (aλ)λ∈Zn

— последовательность её коэффициентов Фурье, а (bλ)λ∈Zn — последовательность
коэффициентов Фурье для DβS (β ∈ Nn).

Показать, что ∀λ ∈ Zn
bλ = (2πiλ)βaλ .
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5. Пусть H1(T) = {f ∈ L2(T) | f ′ ∈ L2(T)}.

(a) Показать, что анализ Фурье отображает H1(T) в l1(Z).

(b) Отсюда вывести, что:

i. элемент из H1(T) представим через непрерывную периодическую функцию
(теорема вложения Соболева С.Л.);

ii. если f непрерывная и принадлежитH1(T), то ее ряд Фурье сходится равномерно
на R к f .

6. Формула суммирования Пуассона.

Пусть δ — мера Дирака на Rn, а ω̃δ — периодическое преобразование с периодом 1.

(a) разложить периодическую функцию (ω̃δ) в ряд Фурье;

(b) используя это разложение, вычислить образ Фурье для (ω̃δ) ;

(c) отсюда вывести, что ∀ϕ ∈ S(Rn)∑
λ∈Zn

ϕ(λ) =
∑
λ∈Zn

(Fϕ)(λ).
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