2018 11th International Conference on Developments in eSystems Engineering (DeSE)

Development of a Graphical User Interface for a
Crawler Mobile Robot Servosila Engineer

Mavrin Ilya
Intelligent Robotic Systems Laboratory
Kazan Federal University
Kazan, Russia
i.a.mavrin@gmail.com

Abstract—Nowadays some manufacturers in an attempt to
decrease a product price and this way to increase its
competitiveness on the global market offer robots with high-
quality hardware, but with a very basic software. For this reason,
a user often cannot exploit all available functionality of a robot.
These circumstances force users to develop their own software,
aimed to add some new features and fix bugs of the original
software. In this paper we present graphical user interface
development for Russian crawler robot Servosila Engineer.

Keywords—GUI, mobile robot, crawler robot, 3D model, position
control, software development.

1. INTRODUCTION

Nowadays as robots receive a wide spread and gradually turn
from an expensive unique “piece of art” into a mass-product. For
this reason, some manufacturers in an attempt to decrease its
price and this way to increase its competitiveness on the global
market offer robots with high-quality hardware, but do not make
a sufficient effort to develop its software. As a result, a user often
cannot exploit all available functionality of a robot. However,
such drawbacks of manufacturer's original software should not
force every user to purchase a new expensive robot as an
experienced user could re-implement some parts of original
software and to add new functionalities in order to maximize the
hardware usage.

The main complexity that an experienced user, which takes
a challenge of updating and upgrading robot original software on
his/her own risk, immediately faces is the fact that typically
manufacturer’'s software is not an open-source code and the
manufacturer only provides limited documentation of their
application programming interface (API). Thus, a user has to
invent nontrivial solutions to comply his/her own software with
manufacturers API. Moreover, while it takes significant amount
of time to implement such walk-around solutions, some internal
features will be still unreachable for a user.

In our case, we successfully completed the task of
implementing a new graphical user interface (GUI) for Servosila
Engineer crawler robot [14] on a client side in order to send out
remote control packets from user's PC to the robot via Wi-Fi.
Yet, re-implementing a server side is a much more complicated

978-1-5386-6712-5/18/$31.00 ©2018 IEEE
DOI 10.1109/DeSE.2018.00044

Lavrenov Roman
Intelligent Robotic Systems Laboratory
Kazan Federal University
Kazan, Russia
lavrenov@it.kfu.ru

192

Evgeni Magid
Intelligent Robotic Systems Laboratory
Kazan Federal University
Kazan, Russia
magid@it.kfu.ru

task, because its software should interact with motors and
sensors directly. Here we also faced a challenge of implementing
an accurate joint position controller for the robot, which could
accept an absolute angle value for each joint and perform the
corresponding actions of servos.

The rest of the paper is organized as follows. Section II
introduces the original system setup, including both hardware
and software components. Section III overviews a number of
existing GUIs of mobile robots and manipulators. Section IV
presents our own GUI development, including velocity and
position control functionality, 3D model and video streaming
widgets. Finally, we conclude in Section V.

II. ORIGINAL SYSTEM SETUP

A. Robot hardware

Engineer is a crawler-type mobile robot, manufactured by
Russian company Servosila for operating in difficult conditions
(Fig. 1). The robot has a waterproof and dustproof body frame
and radiation proof electronics. Servosila Engineer robot is
tooled with a 5 degree of freedom manipulator with a gripper,
which can grasp objects, open doors and perform various actions
with objects. The robot is featured with a rich pack of cameras
and sensors, including optical zoom camera, a rear camera and
stereo vision cameras. Most of the sensors and CPU are packed
into the robot head, which is located on the end effector of the
manipulator. Unfortunately, it is impossible to get data from an
onboard IMU using the original API. In addition to the original
sensors, we added Hokuyo UTM-30LX-EW laser range finder
[15] to allow laser-based Simultaneous Localization and
Mapping (SLAM) and path planning algorithms integration into
robot upper-level control system.

B. Original software

The original software is built as a client-server architecture.
The server is an application, which starts running on an
embedded computer within the robot head immediately after
switching on the robot. This server controls motors, receives
information from the built-in IMU, sends video from cameras
and a telemetry of some of the servos to a client via Wi-Fi
connection. A client is an application, which starts on a user’s
PC and sends commands to the server. A user can control the

robot using Xbox 360 gamepad, which should be calibrated
before each use.

Gripper (Fingers)

Gripper (Rotation)
—___Gripper (Rotation)

e Meck Joint

Elbows Jaint

Shoulder Joint

Waist Joint

Chassis Drive (Left)
Flippers loint

Chassis Drive {Right)

Fig. 1. Servosila's Engineer robot (courtesy of the manufacturer)

TABLE L REMOTE CONTROL PACKET
Field Size Type
Frame type ID 1 byte uint8
Axis #0 2 bytes intl6
Axis #1 2 bytes int16
Axis #15 2 bytes intl6
Button #0 1 byte uint8
Button #1 1 byte uint8
Button #15 1 byte uint8
Video bit rate
telemetry 8 bytes double
Total size 57 bytes

The original GUI consists of two widgets. The first one is a
video streaming widget, which contains only one feature of
camera selection for video streaming. The second widget is the
robot 3D model demonstration, which has no customizations and
contains a number of obvious drawbacks. For example, a user
cannot rotate the 3D model and in some cases the model may fall
apart after a number of transformations. This software uses a
simple control protocol that consists of two fixed size Telemetry
(Table 1) and Remote control packets (Table 2) and varying size
Video Frame packet (Table 4). The telemetry packet contains
Motor data structures (Table 3) for each motor.

193

TABLE II. TELEMETRY PACKET
Field Size Type
Frame type ID 1 byte uint8
Tick number 8 bytes int64
Number of 1 byte wint8
motors
Motor data #0 24 bytes struct
Motor data #1 24 bytes struct
Motor data #9 24 bytes struct
Not used 25 bytes -
Total size 275 bytes
TABLE IIL MOTOR DATA STRUCTURE
Field Size Type
Device ID 1 byte uint8
Device state 1 byte uint8
Operation .
‘mode 1 byte uint8
Position 4 bytes uint32
Speed 2 bytes intl6
El@ctrlc current 2 bytes intl6
(in amperes)
Status bits 2 bytes intl6
Position 4 bytes uint32
command
Speed .
command 2 bytes intl6
Electric current
command (in 2 bytes int16
amperes)
Total size 24 bytes
TABLE IV. VIDEO FRAME PACKET
Field Size Type
Frame type ;
D 1 byte uint8
JPEG image varying size -
Total size depends on frame size

Remote control packets (RCP) are strongly tied to buttons
and joystick axes of Xbox 360 gamepad. In general, the original
RCP for Servosila Engineer robot just represents a state of a
gamepad. It is a critical limitation, because it is possible to

perform only those commands, which are available through the
Xbox gamepad. RCPs are sent five times per second by the
client. The server receives RCPs and sends back Telemetry
packets to the client. Some packets can get lost during a transfer,
because they are sent via UDP (User Datagram Protocol). If the
server doesn't receive RCPs more than 1 second, the robot stops.
The telemetry packets are aimed to return information about the
robot motors. These packets contain motor data structures, one
structure for each motor. The structure contains data about a
motor, such as its state, position, velocity, electric current etc.
The most useful information is a position of a motor shaft.
Having this information is enough to implement a simple
position controller, which compares current and desired
positions, and activates the motor if needed. Thus, the most
critical drawbacks of the original control protocol include the
following issues:

e The control protocol strongly depends on Xbox360
gamepad. Therefore, any GUI, which uses the protocol
could perform only those commands, which are
allowed by the original GUI using this gamepad, and
this way any GUI that is based on the original protocol

has to emulate an interaction with the gamepad.

Position control can be implemented only on a client
side, because the protocol allows to send only velocity
values to the motors, which decrease the accuracy of
the position controller.

Inability of checking the battery and the headlight
status. In the case of the headlight a user can visually
(i.e., through one of the cameras) check if the light is
switched on/off. In the case of the battery a user should
avoid long lasting remote tasks, because the robot may
suddenly switch off as the result of the battery
depletion. Moreover, if the robot switches off due to the
battery depletion inside a narrow sub-human void (e.g.,
a pipeline or a tunnel [16]), it will be almost impossible
to bring it back or extract it with a help of another robot.
Moreover, to check the battery level a user has to
connect an additional display to the embedded
computer of the robot.

Inability of customizing video quality in wide ranges
(e.g., a video resolution, FPS, a video codec). The
original protocol allows to change only the bitrate.

Inability to rotate the gripper using the original
protocol.

The original protocol does not allow to rotate a waist
joint and a chassis simultaneously. So the robot cannot
rotate the waist while being in motion and has to stop
at first. We assume that it is a side effect of a primitive
restriction-based self-collision avoidance system of the
server.

These drawbacks prevent to implement all features that
should provide a comfortable level of a teleoperation
process. Thus the original protocol should be rewritten and
the server should be re-implemented.

194

III. OVERVIEW OF GRAPHICAL USER INTERFACES

Since our robot combines a mobile crawler chassis with a
manipulator, in this section we overview a number of existing
GUIs of mobile robots as well as static manipulators in order to
analyze the trends and to select potentially interesting solutions
that could be integrated into the new GUI of Servosila Engineer
robot. Due to the lack of space we had to constraint ourselves to
present only a limited number of the existing solutions.

Figure 2 demonstrates a GUI for controlling a mobile robot
with a 3 degrees of freedom (DoF) manipulator, which was
implemented in Matlab environment [1]. It provides basic
functionality for moving the mobile chassis in four directions,
controlling all joints and the gripper, and turning on/off the
torch. Its video features include video streaming, recording, and
saving video data. A useful feature of this GUI is the possibility
to explicitly reset each joint as well as the chassis.

Dstacle plot ="

| .

| 2l
| — |
2 Bl S i :l I
<R A S| i

e — B . - 1 E -
I ,I K== P — =i E -|_ |
T e | B STOP | g e . |

s L
|LaAE T = =

Fig. 3. A GUI for a mobile robot with an obstacle plot [2]

Figure 3 presents a GUI for a mobile robot [2] that has a
number interesting features, including an obstacle plot, a video
streaming widget and “stop all” button. We decided to integrate
“stop all” into our new GUI for Servosila Engineer robot (a
spacebar hotkey) and to add obstacle plot feature as a “to do”
task for the next version of our GUL

MK

Fig. 4. GUI for Android based robot [3]

Figure 4 presents a GUI of an Android based mobile robot
[3] that contains a video streaming widget, sensory data and
motor controllers. It enables selection of a video stream quality,
control of minimal, maximal and default motor velocities as
well as a step size.

P T[4 i W | P | B TS P

Fig. 5. GUI of Helpmate robot [4]

Fig. 6. A “Robot-gui” project [5]

Figure 5 presents a GUI of Helpmate mobile robot [4], which
has a sonar and a lidar widgets, a video streaming widget and a
colored obstacle map. The GUI has a multiple window
interface, but we consider this uncomfortable for a practical use,
because an operator typically utilizes a number of widgets

195

simultaneously, and moving and scaling these windows in an
attempt to arrange them without overlapping should be avoided.

Figure 6 presents a GUI of static 6-joint manipulator [5],
which animates a 3D structure of the robot using OpenGL [6].
This solution inspired us to implement a 3D widget for our
robot. Figure 7 presents a GUI of a differential drive robotic
rover [7], which has a number of useful features, including a 3D
model widget, a radar widget and a 2D arm control widget.

Fig. 7. GUI of a differential drive robotic rover [7]

After GUI review we have decided to add the following
modules and functionality to the first version of our own GUI for
Servosila Engineer robot [8]:

A 3D model widget

e A widget for video from cameras

()

An obstacle map

e A sonar data widget

A lidar data widget

While the first widget was recently integrated into the GUI and
the second widget development is our on-going work, the other
three widgets are left as a part of our future work.

IV. OUR GUI DEVELOPMENT

This section describes the components of our GUI, including
a velocity controller (which sets motors velocities), a position
controller (which sets absolute angles of the motors) and a 3D
model widget (which shows the current state of the robot). We
also describe an on-going development of a video streaming
widget, which can show video from all cameras of the robot.

A. Velocity control

A velocity control module (Fig. 8) sends velocity values for
each robot motor via a Wi-Fi connection [8]. The velocity
controller has different interfaces: to control the robot a user can
use hotkeys, sliders or can print velocity values directly into text
boxes. Also user can define velocities, which will be sending to
robot by pressing a hotkey.

C. 3D model widget

Speod | Pedition A manufacturer kindly shared a high polygonal 3D model
tools of Engineer robot (Fig. 10) with our team, which was further

Flippers stop used for creating a GUI widget that demonstrates a position of

iR each joint (Fig. 11). To implement a render engine, we used

A — Assimp library [9] for 3D model loading and OpenGL for

rendering. As a skeletal animation will be redundant for simple

— transformations, we splitted the robot 3D model into meshes

Settings o (each moveable part of the robot formed a standalone mesh) and

rotated these meshes. Centers of each mesh were set to their

ke apen rotation axis, on a joint connection point. Mesh splitting was

Yarch performed in Blender [10]. The engine required a child-parent
tree structure, because some moveable parts are located on other

moveable parts. Like in forward kinematics, child meshes

should move together with parent meshes. Assimp library

Jpinks provides the child-parent tree with a relative (to the parent)
Ll Fotimel 0 transform matrices for each mesh on load. So the engine should
T Rolation.. {0 traverse the child-parent tree and calculate the absolute
Elbow [0 transform matrices. The mesh (as an array of vertices) and its
—— absolute and relative transformation matrices are stored
R T together in Mesh class. A function, which implements rotation
e B Rt of a joint, simply rotates the desired mesh around its local
g coordinates. Child joints are rotated for the same angle around

Fig. 8. Velocity control module

B. Position control

the desired mesh local coordinates. After a rotation the function
recomputes the absolute transform matrices. At the same time
relative transform matrices are always constant. Mesh

transformation is implemented as applying rotation to each
vertex of the mesh in a cycle. The cycle is parallelized with
OpenMP [12] library for better performance.

A position control module (Fig. 9) allows to control each joint
using its absolute angle value. It can be extremely useful in
integration with ROS. For example, it allows to use inverse
kinematics. Because of some disadvantages of Servosila's
original API it is impossible to send position values directly to
the robot, and GUI is able to send only velocity values. Because
of this reason, position is computed on a user's PC using

telemetry from the robot and a desired angle.

r—]
— Fig. 10. 3D model from Servosila
e D. Video streaming widget

. R R T e e e A video streaming widget in the original software has only
Epertne. 2 ’ i b an ability to select a single camera among the four cameras of
r— PR P o the robot for data streaming. Moreover, Fig. 12 demonstrates

W
gl e

bl

g

Fig. 9. Position control module

e

Franes " =

aaxTeEms

196

that the video has a greenish color palette and suffers from a
fisheye effect [17]. Since such video data does not allow a
comfort teleoperation, we decided to develop new widget that
could show video from all four cameras simultaneously or from
a single selected camera, but in a better quality. For this task we
need to develop our own video server, because using the original
protocol we can obtain a video stream only from a single camera.
Our video server should have frame preprocessing to deal with
greenish color palette and fisheye effect, and to allow a flexible

adjustment of video quality (FPS, resolution, bitrate, video codec
etc.), because a bandwidth of radio channel is usually not enough
to stream video from all four cameras in best available quality
simultaneously, which is our on-going work [11].

Grry e B— ey

Fig. 11. Our GUI with the 3D model widget

Fig. 12. A video from a camera with the original software

V. CONCLUSIONS AND FUTURE WORK

If an original software package that automatically comes
with a newly purchased robot lacks some important features, it
is not always necessary to purchase a new robot as experienced
users could take a challenge and attempt developing their own
software in order to add new features and fix bugs of the original
software. In this paper we presented a graphical user interface
development for Russian crawler robot Servosila Engineer, that
had been caused by our desire to improve the original graphical
user interface and to ease the teleoperation process of the robot.
In particular, we replaced original joystick-only control with a
GUI that contains multiple control options for motor velocities,
position control and 3D widget that demonstrates the current
state of the robot in real-time.

Our on-going efforts deal with implementation of video
streaming widget that will allow to transfer and view video data

197

from all four cameras simultaneously in a real-time. Since our
future projects concentrate on collaboration and path-planning
tasks [13] for Servosila Engineer robot, we are planning to
develop obstacle map widget, which will be updated in real-time,
and a pilot advisory system that will help to keep the robot
balance in order to avoid rollover [18].

ACKNOWLEDGMENT

This work was partially supported by the Investment and
Venture Fund of the Republic of Tatarstan, project ID
13/43/2018. Part of the work was performed according to the
Russian Government Program of Competitive Growth of Kazan
Federal University.

REFERENCES

Chhaniyara K. “GUI for controlling robot”
https://www.mathworks.com/matlabcentral/fileexchange/24239-gui-for-

controlling-robot/

Kerry M., “A layared approach to designing robot software”, in National
Instruments, 2012.

Oros N., Krichmar JL., “Smartphone based robotics: Powerful, flexible
and inexpensive robots for hobbyists, educators, students and
researchers”, in IEEE Robotics & Automation Magazine, 2013.
http://eecs.vanderbilt.edu/CIS/IRL/helpmate.shtml/

Beck M., project “robot-gui” https://github.com/glumb/robot-gui/
OpenGL project, https://www.opengl.org/
Khan A., blog http://aaqilkhan.blogspot.ru/2007/08/

Mavrin, L., Lavrenov, R., Svinin, M., Sorokin, S., & Magid, E. Remote
control library and GUI development for Russian crawler robot Servosila
Engineer. In MATEC Web of Conferences, Vol. 161, p. 03016, EDP
Sciences, 2018.

Assimp library, http://www.assimp.org/
Blender 3D creation suite, https://www.blender.org/

(1

(2]
(3]

[4]
(5]
(6]
(7]
(8]

[9]
[10]
[11] Safin, R., Lavrenov, R., Saha, S. K., & Magid, E. Experiments on mobile
robot stereo vision system calibration under hardware imperfection.
In MATEC Web of Conferences, Vol. 161, p. 03020, EDP Sciences.,
2018.

[12] OpenMP library, http://www.openmp.org/

[13]

Panov A., Yakovlev K. Behavior and path planning for the coalition of
cognitive robots in smart relocation tasks. Robot Intelligence Technology
and Applications 4, pp. 3-20., Springer, Cham, 2017.

[14] Sokolov, M., Afanasyev, L., Lavrenov, R., Sagitov, A., Sabirova, L., &
Magid, E. (2017). Modelling a crawler-type UGV for urban search and
rescue in Gazebo environment. In Artificial Life and Robotics (ICAROB
2017), International Conference on, pp. 360-362, 2017.

Alishev N., Lavrenov R., Gerasimov Y. Russian mobile robot Servosila
Engineer: designing an optimal integration of an extra laser range finder
for SLAM purposes. The 2018 International Conference on Artificial Life
and Robotics, pp. 204-207, 2018.

Murphy, R. R. Human-robot interaction in rescue robotics. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), 34(2), pp. 138-153, 2004.

Dooley, D., McGinley, B., Hughes, C., Kilmartin, L., Jones, E., & Glavin,
M. A blind-zone detection method using a rear-mounted fisheye camera
with combination of vehicle detection methods. IEEE Transactions on
Intelligent Transportation Systems, 17(1), pp. 264-278, 2016.

Magid, E., Tsubouchi, T., Koyanagi, E., & Yoshida, T. Static balance for
rescue robot navigation: Losing balance on purpose within random step
environment. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ
International Conference on, pp. 349-356, 2010.

[13]

[16]

[17]

[18]

