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Введение 
Дескрипционные или описательные логики (Description Logics, DL) 
относятся к языкам представления знаний, позволяющим описывать 
понятия предметной области в формализованном виде . 
Дескрипционные логики служат для: 
- формального определения понятий (классов); 
- определения отношений между понятиями; 
- организации иерархий (подкласс – суперкласс); 
- определения свойств и атрибутов понятий и ограничений на их 
значения. 
Дескрипционные логики нашли широкое применение в различных 
аналитиче ских и поисковых системах . До стоинство 
дескрипционных логик заключается в том, что с их помощью 
эксперты описывают термины и определения понятий предметной 
области, формируют базу знаний предметной области, а затем  
специальная программа reasoner, основанная на алгоритмах поиска 
логического вывода в DL, осуществляет контроль корректности 
определений и реализацию различных запросов к базе знаний. 

Выделяют следующие этапы развития DL 

Этап 0 (1965–1980): Пред-DL период. В это время были предложены 
семантические сети и фреймы как специальные подходы к 
структурированному представлению знаний. 

Этап 1 (1980–1990): Разработка систем. Этот этап сосредоточен на 
реализации систем KL-ONE, K-REP, KRYPTON, BACK и LOOM. 

Этап 2 (1990–1995): Табличные алгоритмы. На этом этапе 
появились табличные алгоритмы, которые работали с полными по 
булевой логике DL и являлись полными даже для некоторых 
выразительных логик. 

Этап 3 (1995–2000): Поддержка выразительных DL. На этой стадии 
были разработаны эффективные процедуры вывода для очень 
выразительных DL, основанные на табличных методах. 
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Этап 4 (с 2000-х годов — по настоящее время): Индустриальные 
DL-системы. Результаты предыдущих этапов были использованы для 
создания промышленных DL- систем, поддерживающих очень 
выразительные DL и ориентированных на применения в таких 
важнейших областях: 
• Семантическая паутина (Semantic Web) 
• Медицинская информатика 
• Биоинформатика 

1. Дескриптивные логики и базы знаний
Дескриптивные логики являются общим классом логик специально 
спроектированных для представления знаний о предметных областях. 
Они определяют формальный язык для определения понятий и 
отношений (называемых ролями). На этом языке можно выражать 
утверждения о свойствах индивидов предметной области и 
формулировать различные запросы, включая выполнимость 
(satisfiability) понятий и  включение (subsumption) понятий друг в 
друга.  
Элементами этого языка являются: концепт - понятие, которое 
представляет класс, категорию или сущность;  роль, которая является 
бинарным отношением между концептами.  Конструкторы 
(операции) языка позволяют определять сложные концепты  через 
более простые и роли. 
Системы, построенные с помощью дескриптивной логики, 
используются для создания Баз Знаний (БЗ), которые представляются 
в виде пары Tbox и Abox.  
Tbox ( terminological knowledge) это набор утверждений , 
описывающих набор классов, их свойства и отношения между ними 
(интенсиональные знания);  
Abox (assertional knowledge) представляет собой реализацию схемы 
классов в виде набора экземпляров, содержащих утверждения об 
экземплярах понятий (экстенсиональные знания).  
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По существу Tbox является моделью того, что должно быть 
истинным, а Abox является моделью того, что в настоящее время 
является истинным. 
В DL любой запрос сводится к определению выполнимости 
(satisfiability) БЗ (т. е. ее логической согласованности). То есть для 
ответа на запрос Q, обычно нужно доказать, что «not Q» является 
невыполнимым (т. е. текущая БЗ не может предполагать not Q, 
противоречит not Q) , что в этом случае приводит к заключению, что 
Q должно быть истинным. Понятно, что этот метод может быть менее 
эффективен, чем более простые. Преимуществом использования этого 
универсального метода вывода является то, что он может 
использоваться даже в тех случаях, когда БЗ 
является не полностью определенной. 

2. Логика ALC 
ALC (Attributive Language with Complement) является одной из 
базовых DL, на основе которой строятся многие другие DL для 
работы с базами знаний и онтологиями в различных предметных 
областях. Собственно ALC – это не одна логика, а язык и правила 
построения логик, с помощью которых создано целое семейство 
логик, где каждая отличается набором множеств атомарных 
концептов и ролей. 

2.1. Синтаксис и семантика логики ALC 
Синтаксис любой дескрипционной логики задает правила в виде 
допустимых конструкций составных концептов. 
Чтобы сформулировать синтаксис какой-либо DL, необходимо задать 
непустые (и обычно конечные) множества символов, так называемых 
атомарных концептов и атомарных ролей, из которых будут строиться 
выражения языка данной логики. DL характеризуется набором 
конструкторов и индуктивным правилом, с помощью которого 
составные концепты данной логики строятся из атомарных концептов 
и атомарных ролей, используя эти конструкты. 
Типичными конструктами для построения составных концептов 
являются: 
• пересечение (или конъюнкция) концептов, обозначается как C ⊓ D; 
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• объединение (или дизъюнкция) концептов, обозначается как C ⊔ D; 
• дополнение (или отрицание) концепта, обозначается как ¬ C; 
• ограничение на значения роли (или ограничение квантором 
всеобщности), обозначается как ∀ R.C ); 
• экзистенциальное ограничение (или ограничение квантором 
существования), обозначается как ∃ R.C; 
• численные ограничения на значения роли, например: ≤ n R, ≥ n R.C, 
задающие количество R–последователей, удовлетворяющих 
отношению R, и другие. 
Существуют дескрипционные логики, в которых имеются также 
составные роли, строящиеся из простых ролей с помощью операций: 
инверсии, пересечения, объединения, дополнения, композиции ролей, 
транзитивного замыкания и других. 

Синтаксис ALC. Множество концептов логики ALC задается 
следующим индуктивным правилом: 
• всякий атомарный концепт является концептом; 
• выражения ⊤ и ⊥ являются концептами (истина и ложь); 
• если С есть концепт, то его дополнение ¬ С является концептом; 
• если C и D есть концепты, то их пересечение C ⊓ D и объединение  
C ⊔ D являются концептами; 
• если C есть концепт, а R есть роль, то выражения ∀R.C и ∃R.C 
являются концептами, задающими общее ограничение на значения. 

Семантика логики ALC – это интерпретация  I = (∆ᴵ, ·ᴵ),  где              
∆ᴵ — непустое множество (область интерпретации ) , а 
интерпретирующая функция  ·ᴵ  ставит в соответствие каждому 
концепту все удовлетворяющие ему экземпляры (индивиды) по 
следующим правилам: 
• Aᴵ ⊆ ∆ᴵ, для каждого атомарного концепта A; 
• rᴵ ⊆ ∆ᴵ × ∆ᴵ, для каждой роли r; если r(a,b) справедливо, то b 
называют r-последователем a; 

• ⊤ᴵ = ∆ᴵ; 
• ⊥ интерпретируется как пустое множество: ⊥ᴵ = ∅
• дополнение концепта интерпретируется как дополнение множества: 
(¬C)ᴵ = ∆ᴵ \ Cᴵ ; 

 7



• пересечение концептов интерпретируется как пересечение 
множеств:   (C ⊓ D)ᴵ = Cᴵ ∩ Dᴵ; 

•  объединение концептов интерпретируется как объединение 
множеств:   (C ⊔ D)ᴵ = Cᴵ ∪ Dᴵ ; 

• выражение ∀ r.C интерпретируется как множество тех индивидов, у 
которых все r-последователи принадлежат интерпретации концепта 
C. Формально: 
(∀r.C)ᴵ = {x ∈ ∆ᴵ | для всех y ∈ ∆ᴵ, если (x, y) ∈ rᴵ, то y ∈ Cᴵ} 
• выражение ∃ r.C интерпретируется как множество тех индивидов, у 
которых имеется r-последователь, принадлежащий интерпретации 
концепта C. Формально: 
 (∃r.C)ᴵ = {x ∈ ∆ᴵ | существует y ∈ ∆ᴵ, такое что (x, y) ∈ rᴵ и y ∈ Cᴵ} 

Упражнение (для самопроверки). 
Пусть I = (∆ᴵ,), где 
∆ᴵ = {a, b, c, d, e, f }; 
Personᴵ= {a, b, c, d, f }    Femaleᴵ= {a, b, c, e}; 
hasChildᴵ= {(a, b), (b, c), (d, e), (f, f )}. 
Вычислить: 
• (Person ⊓ Female)ᴵ 
• (Person ⊓ ∃hasChild.Person)ᴵ 
• (Person ⊓ ∃hasChild.(Person ⊓ Female)ᴵ 
• (Person ⊓ ∃hasChild.Person ⊓ Female)ᴵ 
• (Person ⊓ ∃hasChild.⊤)ᴵ 
• (Person ⊓ ∃hasChild.∃hasChild.⊤)ᴵ 

Определения 
• Общее включение концептов (GCI) имеет вид C ⊑ D, где C и D — 
концепты ALC. 

• TBox - это конечное множество GCI, которые будут называться 
аксиомами; 

• Интерпретация I является моделью GCI C ⊑ D, если Cᴵ ⊆ Dᴵ;  
• I является моделью TBox T, если она является моделью каждого GCI 
в T. 

• Обозначение C ≡ D := C ⊑ D и D ⊑ C;  
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• Аксиома вида A ≡ C, где A – имя концепта, называется определением 
А; 

• TBox T называется определяющим, если он содержит только 
определения с дополнительными ограничениями: 

(i) T содержит не более одного определения для каждого имени 
концепта и 
(ii) T ацикличен, то есть определения любого концепта A в T не 
ссылаются (прямо или косвенно) на A самого. 
• Утверждающие аксиомы имеют формы: 
(i) Аксиома x : C — индивид x принадлежит концепту C; 
(ii) Аксиома (x, y) : r — пара индивидов принадлежит роли r; 
• ABox — конечное множество утверждающих аксиом;
• Интерпретация I является моделью аксиомы x : C, если xᴵ ∈ Cᴵ, и 
моделью аксиомы (x, y) : r, если (xᴵ,yᴵ) ∈ rᴵ;  

• I является моделью ABox A, если она является моделью всех аксиом 
в A. 

Еще ряд важных определений 
• База знаний (БЗ) — это пара (T, A), где T — TBox, а A — ABox.  
• Интерпретация I является моделью базы знаний K = (T, A), если I 
является моделью T и моделью A. 

• Выражение  I ⊨ K (соответственно, I ⊨ T, I ⊨ A, I ⊨ a), будет 
обозначить, что I является моделью базы знаний K (соответственно, 
TBox T, ABox A, аксиомы a). 

Пусть дана база знаний K = (T, A), где T — TBox, а A — ABox.Тогда: 

•   K называется согласованной, если у неё есть модель. 
• Концепт C называется выполнимым относительно K, если 
существует модель I базы знаний K, такая что Cᴵ ≠ ∅. Такая 
интерпретация называется моделью C относительно K. 

• Концепт D подчиняет концепт C относительно K (обозначается K ⊨ 
C ⊑ D), если для всех моделей I базы знаний K выполняется Cᴵ ⊆ Dᴵ. 
• Концепты C и D эквивалентны относительно K (обозначается  
K ⊨ C ≡ D), если они  подчиняют друг друга относительно K. 
• Индивид a является экземпляром концепта C относительно K 
(обозначается K ⊨ a :C), если aᴵ ∈ Cᴵ для всех моделей I базы знаний K. 
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• Пара индивидов (a, b) является экземпляром роли r относительно K 
(обозначается K ⊨ (a, b) : r), если (aᴵ, bᴵ) ∈ rᴵ для всех моделей I базы 
знаний K. 
Пример 1. Описания в ALC основных понятий предметной 
области "семья". 
Базовые понятия (базовые свойства объектов, атомарные 
концепты, базовые концепты):  
Человек,  женский род 
Определяемые понятия (определяемые свойства объектов, 
определяемые концепты, составные концепты): 
Женщина, Мужчина, Мать,  Отец, Родитель, Бабушка,  
МногодетнаяМать,  МатьБезДочери, Жена 
Отношения между объектами (роли): 

иметьДетей (х,у),  иметьМужа (х,у) 
Определения сложных концептов с помощью формул ALC 

TBox: 
Женщина ≡ Человек ⊓ женскийРод 

Мужчина ≡ Человек ⊓ ¬женскийРод 

Мать ≡ Женщина ⊓ ∃ иметьДетей.Человек 

Отец ≡ Мужчина ⊓ ∃ иметьДетей.Человек 

Родитель ≡ Мать ⊔ Отец 

Бабушка ≡ Мать ⊓ ∃ иметьДетей.Родитель 

МногодетнаяМать ≡ Мать ⊓ ≥3иметьДетей 

МатьБезДочери ≡ Мать ⊓ ∀ иметьДетей.¬Женщина 

Жена ≡ Женщина ⊓ ∃ иметьМужа.Мужчина 

ABox:
МатьБезДочери (МАРИЯ)  
Отец (ПЕТР) 
иметьДетей (МАРИЯ, ПЕТР)  
иметьДетей (ПЕТР, ИВАН) 
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иметьДетей (МАРИЯ, СЕМЕН) 

Пример 2.    SNOMED CT 
• Терминология медицинских терминов насчитывающая около 
400000 определений (400000 имен концептов в 60 имен ролей) 
• Принадлежит (и поддерживается) некоммерческой организации 

IHSTDO (International Health terminology Standards Development 
Organisation). 

• IHSTDO имеет 9 членов (бесплатное членство для 49 
развивающихся стран) 
• Цель: обеспечение обмена информацией между медиками, 
исследователями и пациентами по всему миру. 

Приведем два коротеньких фрагмента ТBox онтологии SNOMED CT 

Фрагмент 1 (устройство бедренной кости): 

EntireFemur ⊑ StructureOfFemur 

FemurPart ⊑ StructureOfFemur ⊓ ∃part_of.EntireFemur 

BoneStructureOfDistalFemur ⊑ FemurPart 

EntireDistalFemur ⊑ BoneStructureOfDistalFemur 

DistalFemurPart ⊑ BoneStructureOfDistalFemur ⊓ 

∃part_of.EntireDistalFemur 

StructureofDistalEpiphysisOfFemur ⊑ DistalFemurPart 

EntireDistalEpiphysisOfFemur ⊑ StructureOfDistalEpiphysisOfFemur 

Фрагмент 2 (кардиология): 

Pericardium ⊑ Tissue ⊓ ∃cont_in.Heart 

Pericarditis ⊑ Inflammation ⊓ ∃has_loc.Pericardium 

Inflammation ⊑ Disease ⊓ ∃acts_on.Tissue 

Disease ⊓ ∃has_loc.∃cont_in.Heart ⊑ Heartdisease ⊓ NeedsTreatment 
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Мы видим, что в качестве языка представления знаний в 
SNOMED CT используется очень простая дескриптивная логика, 
называемая EL, в которой допускаются только два конструкта ⊓ и 
∃r.C.  
Пример 3.  Описание произвольной предметной области. 
В терминологической части, называемой TBox, описываются понятия 
предметной области, их свойства и взаимосвязи — это аналог схемы в 
базах данных. Например, 
• HappyMan ≡ Human ⊓ ¬Female ⊓ (∃married.Doctor) ⊓ (∀hasChild.

(Doctor ⊔ Professor)) 
(Счастливый человек это мужчина, женатый на докторе, и все дети 
которого — либо доктора, либо профессора); 
• Person ⊓ ∀hasChild.Male  
(класс людей, у которых все дети мужского пола); 
• ∃interested_in.Computer_Science ⊓ ¬∃interested_in.Philosophy  
(класс объектов интересующихся информатикой, но с интересом в 
философии); 
• Living_being ⊓ ¬Human_being  
(живые существа не являющиеся людьми); 
• Student⊓¬∃interested_in.Mathematics  
(студенты, не интересующиеся математикой); 
• Student ⊓ ∀drinks.tea  
(студенты, которые пьют только чай); 
• Person ⊓ ∀hasChild.(Male ⊓ ∃hasChild.⊤)  
(класс объектов, у которых все дети мужского пола, имеющие 
собственных детей). 
В TBox можно указывать общие аксиомы, например: 
∃hasChild.Human ⊑ Human 
«Только человек может иметь детей, которые тоже являются людьми». 

Утверждающая часть базы знаний, называемая ABox, используется 
для описания конкретной ситуации путём указания свойств индивидов 
— это аналог данных в базе данных. Пример ABox: 
• HappyMan (Bob) 
• hasChild (Bob, Mary)   
• ¬Doctor (Mary)  
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3. Запросы к базе знаний и логический вывод 
Запросы к базе знаний K = (T, A), где T — TBox, а A — ABox бывают 
нескольких типов. 
  Определить, является ли данный индивидуум а экземпляром 
заданного концепта С? Т.е. необходимо проверить, выполнимость 
K ⊨ a :C ? Отвечает на этот запрос алгоритм экземпляров. 
   Определить, является ли один концепт С подмножеством другого 
концепта D ? Т.е. необходимо проверить, выполнимость 
K ⊨ C⊑D ? Отвечает на этот запрос алгоритм подчинения. 
   Определить, является ли база знаний К согласованной? Отвечает на 
этот запрос алгоритм согласованности.  Запросы этого типа являются 
самыми общими, к ним сводятся запросы остальных типов. 
Все эти алгоритмы опираются на общий алгоритм табличного вывода 
для логики ALC,  изложению которого посвящен следующий 
параграф.  

4.Табличный алгоритм для ALC 
Сосредоточимся на задаче проверки согласованности базы знаний, 
поскольку она является наиболее общей задачей, к которой можно 
свести многие другие. Например, для базы знаний K = (T, A), концепт 
C подчинён концепту D относительно K (K ⊨ C ⊑ D) тогда и только 
тогда, когда  база знаний                      
 K'=(T, A ∪ {x : (C ⊓ ¬D)}) — несогласованна, где x — новое имя 
индивидуума (то есть, не встречающееся в K). 

4.1.Приведенная нормальная форма 
  Концепт находится в приведенной нормальной форме, ПНФ 
(Negation Normal Form, NNF) если отрицание находится только 
перед именами концептов. 
Каждый ALC-концепт может быть трансформирован в 
эквивалентный концепт в ПНФ при помощи следующих правил: 

¬⊤ ≡ ⊥ 
¬⊥ ≡ ⊤ 
¬¬C ≡ C 
¬(C ⊓ D) ≡ ¬C ⊔ ¬D (закон де Мограна) 
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¬(C ⊔ D) ≡ ¬C ⊓ ¬D (закон де Моргана) 
¬∀R.C ≡ ∃R.¬C 

Пример 4. 
Преобразуем концепт 
¬∃R.(A ⊓ ¬B) ⊔ ¬∀R.(¬A ⊔ ¬B) 
в ПНФ: 
¬∃R.(A ⊓ ¬B) ⊔ ¬∀R.(¬A ⊔ ¬B) ≡ (используя ¬∃R.D ≡ ∀R.¬D) 
∀R. ¬(A ⊓ ¬B) ⊔ ¬∀R.(¬A ⊔ ¬B) ≡ (используя ¬(A ⊓ D) ≡ ¬A ⊔ ¬D) 
∀R.(¬A ⊔ ¬¬B ) ⊔ ¬∀R.(¬A ⊔ ¬B) ≡ (используя ¬¬B ≡ B) 
∀R.(¬A ⊔ B) ⊔ ¬∀R.(¬A ⊔ ¬B) ≡ (используя ¬∀R.D ≡ ∃R.¬D) 
∀R.(¬A ⊔ B) ⊔ ∃R. ¬(¬A ⊔ ¬B) ≡ (используя ¬(C ⊔ D) ≡ ¬C ⊓ ¬D) 
∀R.(¬A ⊔ B) ⊔ ∃R.(¬¬A ⊓ ¬¬B ) ≡ (используя ¬¬C ≡ C) 
 ∀R.(¬A ⊔ B) ⊔ ∃R.(A ⊓ B) 

Если база знаний К=(T, A) содержит концепты, мы предполагаем, что 
они записаны в приведенной нормальной форме ПНФ, то есть 
отрицания применяются только к атомарным концептам. 

4.2. Предварительные соображения  
Пусть мы рассматриваем задачу проверки выполнимости вложения 
концептов: для концептов С, D проверить, верно ли что C ⊑ D ?
Вместо того, чтобы непосредственно проверять вложения 
описанных концептов,  табличный алгоритм использует отрицание 
для сведения вложения концептов к (не) выполнимости некоторого 
другого концепта:  C ⊑ D iff  C ⊓ ¬D невыполним. 
Прежде чем более глубоко и более формально описать табличный 
алгоритм выполнимости  для ALC, мы проиллюстрируем основные 
идеи простым примером.  
Пример 5.  Пусть A, B - имена концептов, а R - имя роли.  
В качестве примера предположим, что мы хотим знать, включается 
ли концепт (∃R.A) ⊓ (∃R.B) в  концепт ∃R.( А ⊓ Б).  
 Это означает, что мы должны проверить, является ли концепт  
C = (∃R.A) ⊓ (∃R.B) ⊓ ¬(∃R.(A ⊓ B))  невыполнимым. 
Сначала мы продвинем все отрицания вглубь описания  концепта, 
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используя правила де Моргана и правила для кванторов. В 
результате мы получим описание 
C0 = (∃R.A) ⊓ (∃R.B) ⊓ ∀R.(¬A ⊔ ¬B), 
которое находится в предваренной нормальной форме, где все 
отрицания стоят только непосредственно перед именами концептов. 
Затем мы постараемся построить конечную интерпретацию I такую, 
что  C0

I ≠ ∅.  

Это значит, что должен существовать объект в ∆I который являлся 
бы элементом C0

I.  Алгоритм генерирует такой объект, назовем его 

b, и налагает на b ограничение b ∈ C0
I . Так как C0 есть конъюнкция 

описаний концептов,  то  b должен удовлетворять следующим трем 
ограничениям:  
b ∈ (∃R.A)I, b ∈ (∃R.B)I, and b ∈ (∀R.(¬A ⊔ ¬B))I . 
Из  b ∈ (∃R.A)I мы заключаем, что должен существовать объект  c, 
такой что (b,c) ∈ RI и c ∈ AI. Аналогично, b ∈ (∃R.B)I  влечет 
существование объекта d с ограничениями  (b, d) ∈ RI и d ∈ BI . В 
этой ситуации мы не можем считать объекты c и d одинаковыми, так 
как это было бы дополнительным и не обоснованным ограничением 
на сгенерированный объект b. 
 Таким образом для любого экзистенциального ограничения 
алгоритм вводит новый объект в качестве последователя роли, и 
этот объект должен удовлетворять требованиям, данного 
ограничения. 
Так как b должен удовлетворять ограничению ∀R.(¬A ⊔ ¬B), и 
объекты c, d были введены  как R-последователи b, мы получим 
дополнительные ограничения  
c ∈ (¬A ⊔ ¬B)I и d ∈ (¬A⊔¬B)I.  
Таким образом алгоритм порождает новые ограничения на объекты, 
полученные в результате анализа рассмотренных ранее ограничений 
ролей. 
Теперь  c ∈ (¬A⊔¬B)I означает, что  c ∈ (¬A)I   или c ∈ (¬B)I, и мы 
должны выбрать одну из этих возможностей. Если мы предположим 
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c ∈ (¬A)I , то это будет противоречить другому ограничению c ∈ AI . 
Поэтому мы должны выбрать  c ∈ (¬B)I. Аналогично мы должны 
выбрать d ∈ (¬A)I чтобы удовлетворить ограничение d ∈ (¬A ⊔ ¬B)I 

и избежать противоречия с ограничением d ∈ BI .  
Таким образом для дизъюнктных ограничений алгоритм должен 
рассмотреть обе возможности удовлетворить эти ограничения. Если 
одна из возможностей приводит к противоречию, он должен 
рассмотреть и другую возможность. 

Мы теперь выполнили все ограничения, не сталкиваясь с 
очевидными противоречиями. Это показывает, что C0  является 
выполнимым, и, следовательно, концепт (∃R.A) ⊓ (∃R.B) не 
включается в концепт  ∃R.(A⊓B). Алгоритм сгенерировал 
интерпретацию I как обоснование этого факта:   

∆I = {b,c,d};  RI  = {(b,c), (b,d)};  AI  = {c} и BI  = {d}. 

Для этой интерпретации b ∈ C0
I . Это означает, что b ∈ ((∃R.A) ⊓ 

(∃R.B))I, но b∉ (∃R.(A ⊓ B))I. 

4.3. Общая схема табличного алгоритма для ALC 
Мы попытаемся доказать согласованность базы знаний K = (T, A), 
строя (представление) модели этой базы знаний. 
Начинаем с конкретной ситуации, описанной в A, и явно добавляем 
дополнительные ограничения, вытекающие из концептов и аксиом T. 
Чтобы алгоритм был решающим, он должен строить конечные 
деревья, представляющие (возможно бесконечные) деревья в модели 
(при условии, что модель существует). 
Для построения такого конечного представления алгоритм использует 
структуру данных, называемую лесом завершения (completion forest). 
Она представляет собой направленный граф с метками, каждая 
вершина которого является корнем дерева завершения. Каждая 
вершина x помечается множеством концептов L(x), а каждое ребро   
⟨x,y⟩ помечается множеством имён ролей L(⟨x, y⟩). 
Если ⟨x, y⟩ — ребро в лесу завершения, то мы говорим, что x - предок 
y (и y -  потомок x). 
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Если метка ребра содержит имя роли r, то x — r-предок y, а y — r-
потомок x. 
Когда алгоритм запускается с базой знаний (T, A), он инициализирует 
лес завершения FA следующим образом: 
• Для каждого имени индивида a, встречающегося в A, создаётся 
корневая вершина xₐ с меткой L(xₐ) = {C | a : C ∈ A} 
• Для каждой пары (a, b) таких, что (a, b) : r ∈ A, создаётся ребро       

⟨xₐ, xb⟩ с меткой:  L(⟨xₐ, xb⟩) = {r}. 
Алгоритм применяет правила расширения (expansion rules), которые 
синтаксически декомпозируют концепты, указанные в метках вершин, 
тем самым: 
либо добавляя новые ограничения для вершины, 
-либо расширяя дерево согласно этим ограничениям. 

4.4. Правила табличного алгоритма для ALC 

(⊓)-Правило (конъюнкция) 
Если концепт C₁ ⊓ C₂ содержится в L(x), и ни C₁, ни C₂ не содержатся 
в L(x), то добавить C₁ и C₂ в L(x). 

(⊔)-Правило (дизъюнкция) 
Если концепт C₁ ⊔ C₂ содержится в L(x), и ни C₁, ни C₂ не содержатся 
в L(x), то недетерминированно выбрать одно из: 
• добавить C₁ в L(x), 
• добавить C₂ в L(x).

(∀)-Правило (универсальное ограничение) 
Если концепт ∀r.C содержится в L(x), и существует r-потомок y такой, 
что C ∉ L(y), то добавить C в L(y). 

(∃)-Правило (экзистенциальное ограничение) 
Если концепт ∃r.C содержится в L(x), и x не имеет r-потомка y с C ∈ 
L(y), то создать новую вершину y с L(y) = {C} и добавить ребро ⟨x, y⟩ 
с меткой {r}. 

Алгоритм продолжает применять эти правила, пока: 
• ни одно правило больше не применимо 
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• возникает конфликт. 
Конфликт возникает в вершине x, если: 
• ∃ концепт A, такой что A ∈ L(x) и ¬A ∈ L(x), 
• ⊥ ∈ L(x). 
В случае конфликта дерево считается несогласованным. 
Если лес завершения можно расширить так, что в результате не будет 
конфликтов, то исходная база знаний согласована. 
Если все возможные расширения леса завершаются конфликтом, то 
база знаний не согласована. 

Пример 6. Пусть дан концепт: 
C:=∃R.A⊓∃R.(B⊔¬A)⊓∀R.¬B 
Мы хотим проверить его выполнимость, то есть существует ли 
модель, в которой C интерпретируется как непустое множество. 
Шаг 1 (инициализация):  
Создается вершина x₀  с меткой L(x₀ )={∃R.A, ∃R.(B⊔¬A), ∀R.¬B} 
Шаг 2: Применим ∃-правило к ∃R.A∈L(x₀,) 
Создаем вершину x₁, L(x₁) = {A}, L(⟨x₀, x₁⟩) = {R} 
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Шаг 1 (инициализация):

L(x0 )={∃R.A, ∃R.(B⊔¬A), ∀R.¬B}

Шаг 2: Применим ∃-правило к ∃R.A∈L(x0)

Создаем вершину x₁, L(x₁) = {A}, L(⟨x₀, x₁⟩) = {R}

x0
L(x0 )={∃R.A,
∃R.(B⊔¬A),
∀R.¬B}

x1
L(x1)={A}

{R}



Шаг 3: Применим ∃-правило к ∃R.(B ⊔ ¬A) ∈ L(x₀) 
Создаем вершину x₂, L(x₂) = {B ⊔ ¬A}, L(⟨x₀, x₂⟩) = {R} 
Шаг 4: Применим ∀-правило к ∀R.¬B ∈ L(x₀) 
Добавляем ¬B в метки всех R-потомков x₀ 
L(x₁) := {A, ¬B}, L(x₂) := {B ⊔ ¬A, ¬B} 
Действия этого шага выделены красным 

Шаг 5: Применим (⊔)-правило к B ⊔ ¬A ∈ L(x₂) 
Недетерминированно выбираем один из вариантов: 
Ветка 1: выбрать B 
⇒ L(x₂) := {B, ¬B} — возникает конфликт, ветка закрывается 
Ветка 2: выбрать ¬A 
⇒ L(x₂) := {¬A, ¬B} — конфликтов нет, ветка допустима 
⇒Концепт выполним 
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Шаг 3: Применим ∃-правило к ∃R.(B ⊔ ¬A) ∈ L(x₀)

Создаем вершину x₂, L(x₂) = {B ⊔ ¬A}, L(⟨x₀, x₂⟩) = {R}

Шаг 4: Применим ∀-правило к ∀R.¬B ∈ L(x₀)

Добавляем ¬B в метки всех R-потомков x₀

L(x₁) := {A, ¬B}, L(x₂) := {B ⊔ ¬A, ¬B}

Действия этого шага выделены красным

x0
L(x0 )={∃R.A,
∃R.(B⊔¬A),
∀R.¬B}

x1
L(x1)={A, 

¬B}

x2
L(x2)={B ⊔ ¬A, 

¬B}

{R} {R}



Из допустимого леса завершения строим модель - интерпретацию I: 
Область ∆ᴵ = {x₀, x₁, x₂} 
 Интерпретация имен концептов: 
Aᴵ = {x₁} 
Bᴵ = ∅ (¬B принадлежит всем вершинам) 
3) Интерпретация роли: 
Rᴵ = { (x₀, x₁), (x₀, x₂) } 
4) Проверим, что x₀ ∈ Cᴵ: 
- x₀ имеет R-последователя x₁ ∈ Aᴵ , следовательно x₀ ∈ ∃R.A  
- x₀ имеет R-последователя  x₂,  и x₂ ∈ {¬A, ¬B}, 
следовательно, x₂ ∈ B ⊔ ¬A, а значит x₀ ∈ ∃R.(B ⊔ ¬A) выполнено; 
- видим, что для всех R-последователей x₁ и x₂ выполняется ¬B , 
следовательно,  x₀ ∈ ∀R.¬B выполнено; 
Тогда x₀ ∈ Cᴵ , что и требовалось показать. 

Отметим две важных черты табличного алгоритма для ALC: 
1) Табличный алгоритм является недетерминированным:  (⊔) - правила 
дизъюнкции требуют рассмотрения альтернатив;  
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Шаг 5: Применим (⊔)-правило к B ⊔ ¬A ∈ L(x₂)
Недетерминированно выбираем один из вариантов:

Ветка 1: выбрать B
⇒ L(x₂) := {B, ¬B} — возникает конфликт, ветка закрывается

Ветка 2: выбрать ¬A
⇒ L(x₂) := {¬A, ¬B} — конфликтов нет, ветка допустима

⇒Концепт выполним

x0
L(x0 )={∃R.A,
∃R.(B⊔¬A),
∀R.¬B}

x1
L(x1)={A, 

¬B}

x2
L(x2)={B ⊔ ¬A, 

¬B}

{R} {R}

x2
L(x2)={B, 

¬B}

x2
L(x1)={¬ A, 

¬B}



2) ∃-правило может порождать новые вершины, что может привести к 
бесконечности числа шагов построения леса (см. пример ниже). 
Для обеспечения конечности построения леса используется техника 
“свёртки (blocking)”: 
• Если во время построения появляется вершина y, которая “повторяет” 
метку ранее появившейся вершины x, и y — потомок x, то дальнейшее 
расширение из y прекращается. 
Пример 7. Рассмотрим табличный алгоритм для ALC с 
блокированием вершины. 
Пусть дан концепт: 
C ≡ A ⊓ ∃r.(B ⊓ ∃r.C) 
Проверим его выполнимость. 
Начнем с вершины x₀, где L(x₀) = {C} 
Применим правила: 
1. C = A ⊓ ∃r.(B ⊓ ∃r.C) 
⇒ по (⊓)-правилу: добавить A и ∃r.(B ⊓ ∃r.C) в L(x₀) 
2. ∃r.(B ⊓ ∃r.C) ∈ L(x₀) 
⇒ по (∃)-правилу: создать x₁, 
L(x₁) = {B ⊓ ∃r.C}, L(⟨x₀, x₁⟩) = {r} 
3. B ⊓ ∃r.C ∈ L(x₁) 
⇒ по (⊓)-правилу: добавить B и ∃r.C в L(x₁) 
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Пусть дан концепт:

C = A ⊓ ∃r.(B ⊓ ∃r.C)
Проверим его выполнимость. 

Начнем с вершины x₀, где L(x₀) = {C}

Применим правила:

1. C = A ⊓ ∃r.(B ⊓ ∃r.C)
⇒ по (⊓)-правилу: добавить A и ∃r.(B ⊓ ∃r.C) в L(x₀)

2. ∃r.(B ⊓ ∃r.C) ∈ L(x₀)
⇒ по (∃)-правилу: создать x₁, 
L(x₁) = {B ⊓ ∃r.C}, L(⟨x₀, x₁⟩) = {r}

3. B ⊓ ∃r.C ∈ L(x₁)
⇒ по (⊓)-правилу: добавить B и ∃r.C в L(x₁)

x0
L(x0 )={C, A, 

∃r.(B ⊓ ∃r.C)}

x1
L(x1)={B ⊓

∃r.C}

{r}

x1
L(x1)={B, 

∃r.C}



4. ∃r.C ∈ L(x₁) 
⇒ по (∃)-правилу: создать x₂, L(x₂) = {C}, L(⟨x₁, x₂⟩) = {r} 

5. C ∈ L(x₂), повторяется как в x₀ 
⇒ если L(x₂) = L(x₀), то x₂ блокируется по x₀ 
Таким образом, получаем конечное дерево, и можно развернуть 
модель, удовлетворяющую C ⇒ концепт выполним. 

Из построенного допустимого леса завершения строим модель - 
интерпретацию I: 
1) Область ∆ᴵ = {x₀, x₁, x₂, …} (теоретически бесконечна) 
2) Интерпретация имен концептов: 
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Табличный алгоритм для ALC

4. ∃r.C ∈ L(x₁)
⇒ по (∃)-правилу: создать x₂, L(x₂) = {C}, L(⟨x₁, x₂⟩) = {r}

5. C ∈ L(x₂), повторяется как в x₀
⇒ если L(x₂) = L(x₀), то x₂ блокируется по x₀

Таким образом, получаем конечное дерево, и можно 
развернуть модель, удовлетворяющую C ⇒ концепт 
выполним.

x0
L(x0 )={C, A, 

∃r.(B ⊓ ∃r.C)}

x1
L(x1)={B ⊓

∃r.C}

{r}

x1
L(x1)={B, 

∃r.C}

x2
L(x2)={C}

{r}



Aᴵ = {x0, x3, x6, …} 
Bᴵ = {x1, x4, x7, …} 
Cᴵ = {x0, x2, x5, …} 
3) Интерпретация роли: 
rᴵ = { (x₀, x₁), (x₀, x₂), (x2, x3), …} 
4) Проверим, что x₀ ∈ Cᴵ: 
A ∈ L(x₀) ⇒ x₀ ∈ Aᴵ 
∃r.(B ⊓ ∃r.C) ∈ L(x₀): x₀ связан с x₁ через r, x₁ ∈ Bᴵ и ∃r.C выполняется, 
так как есть x2: r(x1, x2) и  x2 ∈ Cᴵ. 

5. Важные расширения ALC 
С точки зрения языка для представления знаний логика ALC была 
расширена не сколькими возможностями , важными для 
онтологических языков, включая: 
• (качественные) числовые ограничения; 
• обратные роли; 
• транзитивные роли; 
• иерархии ролей (подроли); 
• конкретные домены; 
• номиналы. 

Числовые ограничения позволяют описывать количество отношений 
определённого типа, в которых могут участвовать индивиды. 
Например, мы можем захотеть указать, что человек может быть женат 
не более чем на одном человеке. Это можно выразить формулой 
Person ⊑ ≤1 married. 
Мы можем также расширить определение HappyMan из примера 3, 
включив в него, что у него должно быть от двух до четырёх детей: 
HappyMan ≡ Human ⊓ ¬Female ⊓ (∃married.Doctor) ⊓ (∀hasChild.
(Doctor ⊔ Professor)) ⊓ ≥2 hasChild ⊓ ≤4 hasChild 
С качественными числовыми ограничениями можно указать тип 
индивидов, которые учитываются в числовом ограничении. Например, 
мы можем далее уточнить, что у HappyMan по меньшей мере два 
ребёнка  должны быть докторами: 
HappyMan ≡ Human ⊓ ¬Female ⊓ (∃married.Doctor) ⊓ (∀hasChild.
(Doctor ⊔ Professor)) ⊓ ≥2hasChild.Doctor ⊓ ≤4 hasChild 
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С помощью обратных ролей, транзитивных ролей и иерархий 
ролей мы можем,  
помимо роли hasChild, использовать её обратную роль hasParent,  
указать, что что роль hasParent — подроль роли hasAncestorhas,  и что  
роль hasAncestor — транзитивна. 
Конкретные домены интегрируют DL с конкретными множествами, 
такими как действительные числа, целые числа или строки, а также с 
конкретными предикатами, определёнными на этих множествах, 
например: 
• числовые сравнения (например, ≤), 
• строковые сравнения (например, isPrefixOf), 
• сравнения с константами (например, ≤17). 
Конструктор номинала позволяет использовать имена индивидов 
внутри описаний концептов:  
если a — имя индивида, то {a} — это концепт, называемый 
номиналом, который интерпретируется как одноэлементное 
множество.  
Например, используя индивидуум Turing, мы можем описать всех 
учёных в области компьютерных наук, которые встречались с 
Тьюрингом, так: 
CScientist ∧ ∃hasMet.{Turing} 
Так называемый конструктор "one-of" расширяет номиналы до 
конечного множества индивидов.  
В присутствии дизъюнкции он может быть выражен через номиналы: 
{a₁,..., aₙ} эквивалентно {a₁} ⊔ ... ⊔ {aₙ}. Заметим однако, что наличие 
номиналов может радикально повлиять на сложность алгоритмов 
вывода. 

На сегодняшний день разработаны многочисленные расширения 
логики ALC дополнительными конструктами для построения 
концептов, ролей, а также дополнительными видами аксиом в TBox . 
Имеется неформальное соглашение об именовании получающихся при 
этом логик — обычно путём добавления к имени логики букв, 
отвечающих добавленным в язык конструктам. Наиболее известными 
расширениями являются: 
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Например, логика ALC, расширенная инверсными ролями, 
номиналами и ограничениями кардинальности ролей , 
обозначается как ALCIOQ . 

Буква S не добавляется к имени логики, а замещает в нём буквы 
ALC . Так, например, логика ALC, расширенная инверсными 
ролями (буква I), качественными ограничениями кардинальности 

Расширение языка конкретными доменами (типами данных)

Составные аксиомы вложенности ролей в TBox 
( ,  ) с условием ацикличности, 
где   есть композиция ролей

Ограничения кардинальности ролей: концепты вида  , 
означающие: существует не более    -последователей

Транзитивные роли: в TBox 
допускаются аксиомы транзитивности вида 

Обратные роли: если   есть роль, то   тоже является 
ролью, означающей обращение бинарного отношения

Номиналы: если   есть имя объекта, то   есть концепт, 
означающий одноэлементное множество

Иерархия ролей: в TBox допускаются аксиомы вложенности 
ролей 

Качественные ограничения кардинальности ролей: 
концепты вида  , означающие: существует не 
более    -последователей в 
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ролей (буква Q ), транзитивными ролями (буква S) и иерархией 
ролей (буква H), имеет название SHIQ. Происхождение всех букв 
понятно из английских названий конструктов; буква  же была 
выбрана из-за тесной связи получающейся DL с модальной 
логикой S4  (хотя в последней буква S означает просто system, саму 
же логику S4  выделяет среди других модальных логик именно 
цифра 4). 

Рассматриваются также дескрипционные логики, в которых можно 
строить составные роли с помощью операций объединения, 
пересечения, дополнения, инверсии, композиции, транзитивного 
замыкания и других. Кроме того, исследованы DL, в которых 
имеются многоместные роли (обозначающие n-арные отношения). 

6. Связь DL и логики предикатов 

Рассматривая имена ролей как бинарные отношения, а имена 
концептов как унарные отношения, мы определим две функции 
трансляции — πₓ и πᵧ, которые индуктивно отображают концепты ALC 
в формулы логики первого порядка с одной свободной переменной 
x или y: 

πₓ(A) = A(x), πᵧ(A) = A(y) 
πₓ(C ⊓ D) = πₓ(C) ∧ πₓ(D),    πᵧ(C ⊓ D) = πᵧ(C) ∧ πᵧ(D) 
πₓ(C ⊔ D) = πₓ(C) ∨ πₓ(D),    πᵧ(C ⊔ D) = πᵧ(C) ∨ πᵧ(D) 
πₓ(∃r.C) = ∃y. r(x, y) ∧ πᵧ(C),  
πₓ(∀r.C) = ∀y. r(x, y) → πᵧ(C),  
πᵧ(∃r.C) = ∃x. r(y, x) ∧ πₓ(C) 
πᵧ(∀r.C) = ∀x. r(y, x) → πₓ(C) 

Используя формулы выше, мы можем преобразовать TBox T и ABox A 
следующим образом (ψ[x/a] означает формулу ψ с заменой всех 
свободных вхождений x на a): 
π(T) = ∧_{C ⊑ D ∈ T} ∀x. (πₓ(C) → πₓ(D)) 
π(A) = ∧_{a:C ∈ A} πₓ(C)[x/a] ∧ ∧_{(a,b):r ∈ A} r(a, b) 
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Теорема.  Пусть (T, A) — база знаний ALC, C и D — (возможно, 
сложные) концепты ALC, a — имя  индивида. Тогда: 
1. (T, A) согласована ⟺ формула π(T) ∧ π(A) выполнима 
2. (T, A) ⊨ C ⊑ D ⟺ π(T) ∧ π(A) ⊨ π(C ⊆ D) 
3. (T, A) ⊨ a : C ⟺ π(T) ∧ π(A) ⊨ π(a : C) 

Преобразование более выразительных DL может быть простым или 
сложным в зависимости от дополнительных конструктов. Например: 
• обратные роли можно выразить в двухпеременном фрагменте, 
просто поменяв местами переменные: 
πₓ(∃R⁻.C) = ∃y. R(y, x) ∧ πᵧ(C) 
• числовые ограничения можно выразить с помощью (не)равенства 
или так называемых кванторов подсчёта (counting quantifiers). 
Известно, что двухпеременный фрагмент с кванторами подсчёта также 
разрешим за NEXPTIME. 
• транзитивные роли не могут быть выражены формулами только с 
двумя переменными. А известно, что фрагмент логики предикатов с 
тремя переменными — неразрешим. 

7. Модификации табличного алгоритма для 
расширений ALC 

Табличный алгоритм для расширений ALC с числовыми 
ограничениями. 
Расширение  ALCN.  В таких логиках допускаются числовые 
ограничения (Number restrictions) и используются конструкты вида     
≥ n r,    ≤ n r. 
Для индивидов этих концептов  при применении соответствующего 
правила создаются n разных r-потомков, которые в дальнейшем могут 
либо дублироваться,  либо объединяться (сливаться). 

≥-Правило: Если L(x) содержит (≥ n r) и x нет отдельных r-потомков z1, . . 
. , zn, то создать r-потомков y1,…,yn с новыми индивидуальными именами, 
не встречающимися в L(x). 

≤-Правило: Если x имеет r-потомков  y1, . . . , yn+1 такие, yi ≠ yj не 
находится в L(x) для некоторых i≠ j , то для каждой пары yi, yj такой, что i 
> j и yi ≠ yj не в L(x), отождествим вхождения yi и yj. 
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Расширение ALCQ. Допускаются качественные числовые ограничения 
(Qualified number restrictions) и используются конструкты вида  ≥ n r.C, 
≤ n r.C. Для индивидов этих концептов создаются n разных r-потомков 
с  С в их метках. В дальнейшем они могут либо дублироваться,  либо 
объединяться (сливаться). 

≥-Q Правило: Если L(x) содержит (≥ n r.С) и у х нет отдельных r-потомков 
z1, . . . , zn таких  что L(zi) содержит  С (1≤i≤n), то создать r-потомков 
y1,…,yn с новыми индивидуальными именами, не встречающимися в L(x) 
и поместить С в L(yi). 

≤-Q Правило: Если L(x) содержит (≤ n r.С) и x имеет r-потомков  y1, . . . , 
yn+1 такие что С содержится в L(yi), yi ≠ yj не находится в L(x) для 
некоторых i≠ j , то для каждой пары yi, yj такой, что i > j и yi ≠ yj не в L(x), 
отождествим вхождения yi и yj. 

Пример (Продолжение примера 5).  
 В этом примере мы добавим численное ограничение к первому концепту 
приведенного выше примера 5, т.е. теперь мы хотим знать, включается ли 
концепт (∃R.A) ⊓ (∃R.B) ⊓ ≤ 1 R в концепт ∃R.( А ⊓ B).  
Интуитивно понятно, что ответ теперь должен быть «да», так как ≤1 R 
в первом концепце гарантирует, что R-последователь в A совпадает с R-
последователем в B, и, таким образом, является R-последователем в  
A⊓B. Алгоритм сначала выполняется, как было указано выше, с 
единственной разницей в том, что есть дополнительное ограничение 
 b ∈ (≤1 R)I .  Для того, чтобы удовлетворить это ограничение два R-
последователя объекта b объекты c и d должны быть идентичными  (по  
≤-правилу). Назовем этот объект cd. 
В примере объект cd должен принадлежать как AI, так и BI, что вместе 
с cd  ∈ (¬A ⊔ ¬B)I всегда приводит к противоречию. Таким образом, 
поиск контрпримера к вложению концептов терпит неудачу, и алгоритм 
приходит к выводу, что (∃R.A) ⊓ (∃R.B) ⊓ ≤1R ⊑ ∃R.( А ⊓ B). 
Таким образом, если численное ограничение в  ≤- правиле на 
количество последователей нарушено, алгоритм должен отождествить 
разные последователи.

Табличный алгоритм для расширений ALC с обратными ролями. 

 28



Расширение ALCI или SHI. Используются обратные роли (Inverse 
roles, r⁻). Если в метке вершины x имеется конструкт ∀r⁻.C,  то 
применяется следующее 
Правило ∀r⁻.C применяется к r-предку x: 
если y ∈ r-предки(x), и ∀r⁻.C ∈ L(x), то добавить C в L(y) 
Правило ∃r⁻.C создаёт r-предка у вершины х. 

Пример табличного алгоритма для расширения ALC с 
транзитивными ролями. 
Расширение: S, логика S(H)I. Используются транзитивные роли 
(Transitive roles). Если r — транзитивная, то:∀r.C должно выполняться 
не только у r-потомков, но и у r-потомков их r-потомков, и 
т.д. 
Правило: если ∀r.C ∈ L(x),  x →r y,  y→r z, то C ∈ L(z) . 

 Пусть роль hasAncestor объявлена транзитивной и задан концепт: 
C ≡ Person ⊓ ∃hasAncestor.(Human ⊓ ∃hasAncestor.¬Human) ⊓ 
∀hasAncestor.Human 
Проверим его выполнимость. 
                                                                                   
Шаг 1:П (инициализация): L(x0) = {Person, ∃hasAncestor.(Human ⊓
∃hasAncestor.¬Human), ∀hasAncestor.Human} 
                                                                                
Шаг 2: Применим ∃-правило к  
∃hasAncestor.(Human ⊓ ∃hasAncestor.¬Human) 
Создаем вершину x1, L(x1) = {Human, ∃hasAncestor.¬Human}, 
L(⟨x₀, x1⟩) = { hasAncestor} 

Шаг 3: Применим ∃-правило к ∃hasAncestor.¬Human 
Создаем вершину x2, L(x2) = {¬Human}, L(⟨x1, x2⟩) = {hasAncestor} 

Шаг 4: Применим ∀-правило к ∀hasAncestor.Human ∈ L(x₀) 
По правилу транзитивных ролей добавляем Human во все 
hasAncestor-потомки x0 L(x2) = { ¬Human, Human} – конфликт, 
следовательно, невозможно построить модель, в которой данный 
концепт был бы выполним. 
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Отметим, что модификации табличного алгоритма для различных 
расширений логики ALC могут быть очень изощренными и 
достаточно сложными. 

8. Диаграммы сложности решений задач в расширениях 
логики ALC 

Ниже проводятся 6 диаграмм  сложности решений задач 
выполнимости концепта и непротиворечивости ABox в трех 
вариантах (при пустом TBox, при ацикличном TBox, при 
произвольном TBox) для различных дескриптивных логик. 
В овалах приводятся названия логик стрелками обозначается 
вложимость соответствующих логик. 

Напомним определения классов сложности, к которым относятся 
задачи для указанных логик. 
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Шаг 3: Применим ∃-правило к ∃hasAncestor.¬Human

Создаем вершину x2, L(x2) = {¬Human}, L(⟨x1, x2⟩) = {hasAncestor}

Шаг 4: Применим ∀-правило к ∀hasAncestor.Human ∈ L(x₀)

По правилу транзитивных ролей добавляем Human во все 
hasAncestor-потомки x0

L(x2) = { ¬Human, Human} – конфликт, следовательно, невозможно 
построить модель, в которой данный концепт был бы выполним.

Табличный алгоритм для расширений ALC

x0
L(x0 )={…}

x1
L(x1)={Human, 

∃hasAncestor.¬Human}

{hasAncestor}

x2
L(x2)={¬Human, Human}

{hasAncestor}



Класс сложности PSPACE — это множество задач в теории 
сложности вычислений, которые могут быть разрешены машиной 
Тьюринга  с полиномиальным ограничением пространства. 
Класс сложности EXPTIME (иногда называемый просто EXP) — это 
множество задач, в теории сложности вычислений, решаемых с 
помощью детерминированной машины Тьюринга за время O(2p(n)), где 
p(n) это полиномиальная функция от n. 
Класс сложности NEXPTIME (иногда называемый просто 
NEXP) — это множество задач, в теории сложности вычислений, 
решаемых с помощью недетерминированной машины Тьюринга за 
время O(2p(n)), где p(n) это полиномиальная функция от n. 

Известно, что 
P  NP  PSPACE  EXPTIME  NEXPTIME  EXPSPACE 
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https://ru.wikipedia.org/wiki/%D0%9C%D0%BD%D0%BE%D0%B3%D0%BE%D1%87%D0%BB%D0%B5%D0%BD
https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D1%81%D0%BB%D0%BE%D0%B6%D0%BD%D0%BE%D1%81%D1%82%D0%B8_%D0%B2%D1%8B%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%B8%D0%B9
https://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D1%88%D0%B8%D0%BD%D0%B0_%D0%A2%D1%8C%D1%8E%D1%80%D0%B8%D0%BD%D0%B3%D0%B0
https://ru.wikipedia.org/wiki/%C2%ABO%C2%BB_%D0%B1%D0%BE%D0%BB%D1%8C%D1%88%D0%BE%D0%B5_%D0%B8_%C2%ABo%C2%BB_%D0%BC%D0%B0%D0%BB%D0%BE%D0%B5
https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D1%81%D0%BB%D0%BE%D0%B6%D0%BD%D0%BE%D1%81%D1%82%D0%B8_%D0%B2%D1%8B%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%B8%D0%B9
https://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D1%88%D0%B8%D0%BD%D0%B0_%D0%A2%D1%8C%D1%8E%D1%80%D0%B8%D0%BD%D0%B3%D0%B0
https://ru.wikipedia.org/wiki/%C2%ABO%C2%BB_%D0%B1%D0%BE%D0%BB%D1%8C%D1%88%D0%BE%D0%B5_%D0%B8_%C2%ABo%C2%BB_%D0%BC%D0%B0%D0%BB%D0%BE%D0%B5
https://ru.wikipedia.org/wiki/%D0%9A%D0%BB%D0%B0%D1%81%D1%81_P
https://ru.wikipedia.org/wiki/%D0%9A%D0%BB%D0%B0%D1%81%D1%81_NP
https://ru.wikipedia.org/wiki/PSPACE
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Complexity of concept satisfiability problem w.r.t. empty TBox
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Complexity of concept satisfiability problem w.r.t. acyclic TBox
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Complexity of concept satisfiability problem w.r.t. general TBox
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Complexity of ABox consistency problem w.r.t. empty TBox
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Complexity of ABox consistency problem w.r.t. acyclic TBox
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Complexity of ABox consistency problem w.r.t. general TBox
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9. Решение задач с помощью DL и онтологических 
моделей 

Имеется множество программных систем ( reasoners) , 
позволяющих совершать логический анализ в дескрипционных 
логиках (проверять базу знаний на непротиворечивость, строить 
таксономии, проверять выполнимость и вложенность концептов, 
реализовывать запросы к базам знаний и др.). Подобные системы 
различаются по поддерживаемым ими дескрипционным логикам, 
по типу реализованной в них разрешающей процедуры 
(например, табличный алгоритм, метод резолюций и т. п.), по 
поддерживаемым форматам данных, языку программирования, на 
котором они реализованы, и другим параметрам. Некоторые 
известные системы: 

• CEL — поддерживает логику EL+ , имеющую 
полиномиальную сложность, написана на Листе; 

• FaCT++ — поддерживает логику SROIQ(D), реализует 
табличный алгоритм, написана на С++; 

• Kaon2 — поддерживает логику SHIQ, расширенную 
специальными правилами вывода, реализует алгоритм, 
основанный на методе резолюций, написана на Java; 

• Pellet — поддерживает логику SROIQ(D),  реализует 
табличный алгоритм, написана на Java; 

• RacerPro — поддерживает логику SHIQ(D), реализует 
табличный алгоритм, написана на Лиспе. 

Существуют также редакторы онтологий, позволяющие создавать 
онтологии, сохранять их в различных форматах, некоторые 
позволяют подключить блок рассуждений (reasoner) и с его 
помощью произвести логический анализ онтологии. Одним из 
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наиболее известных является редактор онтологий Protégé, 
позволяющий работать с онтологиями в языке OWL Full. 

Рассмотрим популярную задачу, которая широко известна как 
задача Эйнштейна. Это логическая задача, заданная 15-ми 
утверждениями, из которых нужно найти ответы на вопросы, 
о том, кто пьёт воду и держит зебру. 
Оригинальный текст задачи выглядит следующим образом: 

1. На улице стоят пять домов. 
2. Англичанин живёт в красном доме. 
3. У испанца есть собака. 
4. В зелёном доме пьют кофе. 
5. Украинец пьёт чай. 
6. Зелёный дом стоит сразу справа от белого дома. 
7. Тот, кто курит Old Gold, разводит улиток. 
8. В жёлтом доме курят Kool. 
9. В центральном доме пьют молоко. 
10.Норвежец живёт в первом доме. 
11.Сосед того, кто курит Chesterfield, держит лису. 
12.В доме по соседству с тем, в котором держат лошадь, курят 

Kool. 
13.Тот, кто курит Lucky Strike, пьёт апельсиновый сок. 
14.Японец курит Parliament. 
15.Норвежец живёт рядом с синим домом. 

Кто пьёт воду? Кто держит зебру? 

В целях ясности следует добавить, что каждый из пяти домов 
окрашен в свой цвет, а их жители — разных национальностей, 
владеют разными животными, пьют разные напитки и курят разные 
марки американских сигарет. Ещё одно замечание: в утверждении 
6 справа означает справа относительно вас. 

Возможное практическое решение 
Будем описывать предметную область этой задачи с помощью 
конструкций DL и одновременно строить онтологическую модель 
задачи с помощью редактора онтологий  Protege. 
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На первом этапе определяем концепты (классы). Из утверждений 
можно понять, что их пять: «Дома», «Мужчины», «Животные», 
«Напитки», «Сигареты». Так как у класса «Дома» есть два признака – 
это номер дома и цвет, то выделим в отдельный концепт 'цвет дома' с 
названием «Цвета». 

Первым шагом является создание нового проекта онтологии в 
Protege. Для этого запускаем Protege, выбираем «File» -> «New» и 
указываем IRI (Internationalized Resource Identifier) для новой 
онтологии. В качестве IRI можно использовать URL вида «http://
www.example.com/webenshtein.owl», который будет служить 
уникальным идентификатором онтологии. Также полезно добавить 
метаданные онтологии, такие как название, версия, авторы и 
описание , используя аннотационные свойства rdfs:label, 
owl:versionInfo, dc:creator и dc:description. 

После создания проекта приступаем к определению основных 
классов онтологии и их иерархии. Используя вкладку «Classes» в 
Protege, создаем корневые классы онтологии: Дома, Мужчины, 
Животные, Напитки, Сигареты, Цвета.  

Protege: 

  

Затем создаем объекты - индивимы (экземпляры классов ) 
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DL: 
Дома ≡ {Первый, Второй, Третий, Четвертый, Пятый} 
Животные ≡ {собака, улитка, лиса, лошадь, зебра} 
Мужчины ≡{ англичанин, испанец, украинец, норвежец, японец} 
Напитки ≡{ кофе, чай, вода, молоко, апельсиновый сок} 
Сигареты ≡{Old Gold, Kool, Chesterfield, Lucky Strike, Parliament} 
Цвета ≡ { красный, зеленый, белый, желтый, синий} 

Protege: 

  

и то же самое для всех остальных классов. 

Следующим шагом  создадим роли или свойства объектов и 
обозначим их характеристики. Создадим 6 ролей: 
«жить_в», «иметь_цвет», «иметь_животное», «курить_сигареты», 
«находиться_справа_от», «пить_напиток».   
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Роль   живет_в имеет область определения Мужчины и область 
значений Дома. Она является функциональной ролью, и обратная 
роль к ней тоже функциональна. 
Роль   имеет_цвет. Область определения Дома и область значений 
Цвета, она является функциональной ролью, и обратная роль к ней 
тоже функциональна. 
Роль   иметь_животное. Область определения Мужчины и область 
значений Животное, является функциональной ролью, и обратная 
роль к ней тоже функциональна. 
Роль   курить_сигареты. Область определения Мужчины и область 
значений Сигареты, является функциональной ролью, и обратная роль 
к ней тоже функциональна. 
Роль   находится_справа_от. Область определения Дома и область 
значений Дома, является функциональной ролью, и обратная роль к 
ней тоже функциональна. 
Роль   пить_напиток. Область определения Мужчины и область 
значений Напиток, является функциональной ролью, и обратная роль 
к ней тоже функциональна. 
Стоит отметить, что у все шесть ролей фактически устанавливают 
между аргументами бинарное отношение «один-к-одному». 

Protege: 
В разделе «Object Properties» создаем 6 свойств (предикатов): 
«жить_в», «иметь_цвет», «иметь_животное», «курить_сигареты», 
«находиться_справа_от», «пить_напиток».  При создании этих 
предикатов указываем сущности, которые они будут связывать, и их 
характеристики. 
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Для каждого свойства указываем домен (domain) и диапазон 
(range), определяющие, какие классы могут быть связаны этим 
свойством. Определяем характеристики свойств, такие как 
функционально сть , т ран зитивно сть , симметрично сть , 
асимметричность, рефлексивность и иррефлексивность.  

Определяем обратные свойства (inverse properties) для 
соответствующих пар свойств. Это позволяет выражать одни и те же 
отношения с разных точек зрения и упрощает формулирование 
запросов к онтологии. 

DL: 
       Теперь добавляем в DL-описание аксиомы, соответствующие 
известным фактам о наших сущностях. Первым делом добавим 
информацию о том, что дома стоят по порядку с 1 по 5. Для этого у 
объекта «Первый» укажем, что он стоит справа от пустого множества, 
а у объекта «Пятый» укажем, что он стоит справа от четвертого дома 
и слева от пустого множества. 

∀ inverse(находится_справа_от). {Первый} ⊑ ⊥ 
∀находится_справа_от. {Первый} ⊑ {Второй} 
∀находится_справа_от. {Второй} ⊑ {Третий} 
∀находится_справа_от. {Третий} ⊑ {Четвертый} 
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∀находится_справа_от. {Четвертый} ⊑ {Пятый} 
∀находится_справа_от. {Пятый} ⊑ ⊥ 

Protege: 

  

Для объектов «Второй», «Третий», «Четвертый» добавим 
информацию о том, что они находятся справа от предыдущего в 
разделе «Object property assertions». 

  

Теперь  приступаем к формализации условий задачи. 
Рассмотрим одно из сложных:   

Условие 11. Сосед того, кто курит Chesterfield, держит лису. 

DL: 
К1≡Мужчины ⊓ ∃иметь_животное. {лиса} 
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      (мужчины, имеющие животное лиса) 
К2≡Дом ⊓ ∃ inverse(живет_в). К1 
       (дома, в которых живут мужчины, имеющие животное лиса) 
К3≡Дом ⊓ ∃ находится_справа_от К2 
К4≡Дом ⊓ ∃ inverse (находится_справа_от) К2 
K5≡К3 ⊔ К4 
       (соседние дома, для домов, в которых живут мужчины, имеющие  
       животное лиса) 
К6≡Мужчины ⊓ ∃ живет_в. К5 
      (мужчины, которые живут в соседних домах для домов,  
       в которых живут мужчины, имеющие животное лиса) 
К7≡ Сигареты ⊓ ∃ inverse(курить_сигареты). К6 
       (Сигареты, которые курят мужчины, которые живут в соседних  
       домах для домов, в которых живут мужчины, имеющие животное  
        лиса) 
 К7 ⊑ {Chesterfield} 
  
В приведенном тексте мы использовали служебное слово inverse 
для того, чтобы сделать марку сигарет субъектом высказывания, 
так как по логике выражения сигареты марки Chesterfield 
выкуриваются мужчиной, а не наоборот. 

Protege: 
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Аналогичным способом вносим информацию из остальных 
утверждений.  

Для окончательной формализации необходимо в явном виде описать 
тот факт, что каждый мужчина обязательно живет в каком-то доме, 
пьет какой-то напиток, держит какое-то животное и курит сигареты 
какой-то марки. 

DL: 

Мужчины ⊑ ∃ живет_в. Дома  ⊓ ∃ иметь_животное. Животные ⊓ 
             ∃ курит_сигареты. Сигареты ⊓ ∃ пить напиток.Напитки 

Protege: 

  

Теперь запустив ризонер в системе Protege, мы получили ответы на 
поставленные вопросы: 

  

Теперь мы знаем, что Норвежец пьет воду, а Японец держит зебру. 
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Как мы видим, хорошие  формализации в DL задач и построенные по 
ним онтологии могут пригодиться для практического поиска их 
решений. 

Наиболее важным применением разработанным механизмам 
логического вывода в DL является применение программ-reaseners 
для логического анализа онтологий, который состоит из решения 
нескольких задач: 
  
1)  Проверка согласованности (consistency) онтологии, т.е. проверки, 

нет ли противоречий в определенных аксиомах и ограничениях. 
Если обнаружены противоречия, пересматриваем и корректируем 
соответствующие определения. 

2) Классификация (classification) Классификация состоит в 
вычислении полной иерархии для всех определенных классов, 
включая выведенные (inferred) подклассы и эквивалентные 
классы. Это позволяет выявить неявные таксономические 
отношения, которые следуют из определенных аксиом и 
ограничений.   

      Например, для фрагмента1 онтологии SNOMED CT из примера 2 
классификация даст следующую иерархию определенных классов: 

EntireDistalEpiphysisOfFemur 
⊑ 

StructureOfDistalEpiphysisOfFemur 
⊑ 

DistalFemurPart 
⊑ 

BoneStructureOfDistalFemur 
⊑ 

FemurPart 
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3) Реализация (realization) онтологии. Реализация определяет 
наиболее специфичные классы, экземплярами которых являются 
индивиды, на основе их определенных свойств и аксиом 
онтологии. Это позволяет автоматически классифицировать 
индивиды по соответствующим классам. 
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