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Abstract. Stable and robust path planning of a ground mobile robot
requires a combination of accuracy and low latency in its state estima-
tion. Yet, state estimation algorithms should provide these under com-
putational and power constraints of a robot embedded hardware. The
presented study offers a comparative analysis of four cutting edge pub-
licly available within robot operating system (ROS) monocular simul-
taneous localization and mapping methods: DSO, LDSO, ORB-SLAM?2,
and DynaSLAM. The analysis considers pose estimation accuracy (align-
ment, absolute trajectory, and relative pose root mean square error)
and trajectory precision of the four methods at TUM-Mono and EuRoC
datasets.

Keywords: Simultaneous localization and mapping * Visual SLAM -
Monocular SLAM - Visual odometry - State estimation - Path
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1 Introduction

Simultaneous localization and mapping (SLAM, [8]) is an ability of an
autonomous vehicle to start in an unknown location of an unknown environ-
ment and then, using only relative observations, to incrementally construct a
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map of the environment [25] while simultaneously using the map to compute a
bounded estimate of the vehicle location [22]. Nowadays, SLAM is applied to
state and pose estimation problems in various domains, from virtual and aug-
mented reality to autonomous vehicles and robotics [12,15]. The field has reached
a mature level [7] that causes proprietary SLAM algorithms utilizing in many
commercial products as well as public availability of a number of open-source
SLAM software packages [6]. Yet, due to sensor price and robot weight concerns,
currently the prevailing type of SLAM is a monocular approach [5].

One of the main features of a monocular SLAM is a scale-ambiguity [10],
which states that a world scale could not be observed and drifts over time, being
one of the major error sources. Being both a challenge and a benefit, it allows
switching seamlessly between differently scaled environments [14], while stereo
or depth cameras do not allow such flexibility, having a limited range where they
can provide reliable measurements [21]. This paper offers a comparative analysis
in terms of a pose estimation accuracy and a trajectory precision of the most
recent and popular robot operating system (ROS) based open-source monocular
SLAM methods considering power constraints of mobile ground robots [18]. The
four selected SLAM methods are DSO [9], LDSO [13], ORB-SLAM?2 [19,20] and
DynaSLAM [2]

2 Related Work

2.1 The Selected SLAM Methods

Direct Methods can estimate a completely dense reconstruction by a direct
minimization of a photometric error and optical flow regularization. Some direct
methods focus on high-gradient areas estimating semi-dense maps [2]. The pre-
sented study compares:

— DSO, which is a state-of-the-art pure direct method [9],
— LDSO, which is DSO’s latest revision with a loop closure ability and a global
map optimization [13].

Feature-Based Methods rely on matching key points and can only estimate a
sparse reconstruction [3], mostly providing a good trade-off between an accuracy
and a runtime. The current study presents a comparison of:

— ORB-SLAM2 [20] state-of-the-art visual SLAM method that tracks ORB
features in real-time. It has a same monocular core as the original ORB-
SLAM [19] but is featured with an improved and optimized workflow.

— The recently proposed DynaSLAM [2] method, which adds a front-end stage
to the ORB-SLAM2 system to have a more accurate tracking and a reusable
map of a scene. It outperforms the accuracy of the standard visual SLAM
baselines in highly dynamic scenarios.
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2.2 Benchmarks

There are several publicly available datasets for the SLAM benchmark purposes,
however, some of the existing ones are not suitable to benchmark monocular
SLAM algorithms due to a low precision of groundtruth data [16]. The current
study considers the two most suitable datasets, TUM-Mono and EuRoC.

TUM-Mono. Schubert et al. [24], Engel, Usenko, and Cremers [11] developed
a dataset for evaluating a tracking accuracy of a monocular visual odometry [17]
and SLAM methods. The dataset includes 50 indoor and outdoor sequences,
which start and end in the same position and contain groundtruth only for these
start and end trajectory segments. All dataset sequences are photometrically
calibrated and provide exposure times for each frame as reported by a sensor,
a camera response function, and a dense lens attenuation factors. This allows
evaluating a tracking accuracy via an accumulated drift and a reliably benchmark
direct methods.

EuRoC. Buri et al. [4] proposed a visual-inertial dataset aiming at evalua-
tion of localization and 3D environment reconstruction algorithms. The dataset
consists of 11 sequences, recorded with two monocular cameras onboard a micro-
aerial vehicle. The datasets range from slow flights under good visual conditions
to dynamic flights with motion blur and poor illumination. Each sequence con-
tains synchronized stereo images, extrinsic and intrinsic calibrations, an inertial
unit (IMU) measurements, and an accurate groundtruth (approximately 1 mm)
recorded using a laser tracker and a motion capture system. Compared to the
TUM-Mono benchmark, the sequences in EuRoC are shorter and have less vari-
ety as they only contain recordings inside a single machine hall and a single
laboratory room.

2.3 Metrics

TUM-Mono. To evaluate the TUM-Mono benchmark results, we used pro-
posed by Engel, Usenko, and Cremers metrics [11], an alignment Root Mean
Square Error (RMSE) - a combined error measure, which equally takes into
account an error caused by scale, rotation and translation drifts over an entire
trajectory. It is the RMSE between tracked trajectories when aligned to start
and end segments.

EuRoC. The EuRoC includes entire groundtruth camera trajectories, which
allows using an absolute trajectory RMSE (ATE), a measure of a global trajectory
accuracy, and a relative pose RMSE (RPE), which is a measure of a local pose
accuracy, proposed by Sturm, Engelhard, Endres, Burgard, and Cremers [26].
Overall, the RPE metric provides an elegant way to combine rotational and
translational errors into a single measurement, while the ATE only considers
translational errors. As a result, the RPE is always slightly larger than the ATE
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(or equal if there is no rotational error). However, rotational errors typically also
manifest themselves in wrong translations and are thus indirectly also captured
by the ATE. From a practical perspective, the ATE has an intuitive visualization,
which facilitates a visual inspection. Nevertheless, as the authors noted, the two
metrics are strongly correlated.

Trajectory Detail Level. In contrast to the reviewed metrics, which mainly
focus on measuring a difference between corresponding frames, a trajectory detail
level measures a difference between a length of trajectories, being an estimated
and a groundtruth trajectories length ratio. The metric can be used to bench-
mark effectiveness of hardware capabilities usage and even estimate limits of a
detail level of a particular SLAM algorithm while running on various hardware
configurations. In addition, it could be useful in determining a suitable trade-off
between an accuracy and output data detail level.

3 Comparative Analysis

Mur-Artal and Tardds [20] proposed running each sequence five times and showed
median results to account for a non-deterministic nature of a system. Bescos,
Fécil, Civera and Neira [2] extended this approach by increased the number of
runs up to 10 times, as dynamic objects are prone to increase a non-deterministic
effect. In light of the above, the current study also utilizes the extended approach.

3.1 Hardware Setup

This study focuses on SLAM methods usage with mobile ground robots that
implies a restriction on energy consumption and absence of strict constraints on
a mobile robot weight, which, for example, are critical for SLAM usage with a
UAV. The selected hardware platform with balanced computational resources
and power consumption is the HP Omen 15-ce057ur laptop with the technical
specifications briefly described in Table 1.

Table 1. Hardware specifications.

CPU Intel Core i7-7700 HQ, 2800 MHz
RAM 16 GB, DDR 4, 2400 MHz
Weight 2.56 kg

Battery 70 Wh Li-Ion

Power consumption | 80 W (avg. load)
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Fig. 1. The experimental sequence - the loop start and end (left) and the global tra-
jectory overview (right).

3.2 TUM-Mono

To prove the effectiveness of the proposed approach [11], we expanded the TUM-
Mono dataset sequences with a new real-world sequence (Fig. 1) collected with
PAL Robotics TIAGo Base ground mobile robot [1] with a single monocular
camera onboard [23].

The sequence presents 13 min of video and about a 100-m length trajectory
in a gradually changing environment - from a narrow indoor corridor to a wide
indoor corridor, which moved the robot from illuminated scenes to dark scenes.
The sequence starts and ends in the same place with slow loopy motion allowing
a correct initialization of the SLAM algorithms. The groundtruth for the entire
trajectory was recorded with the ORB-SLAM2 [20] algorithm, in contrast to the
other sequences groundtruth, which was provided by LSD-SLAM [10] only for
the start and end segments.

We have evaluated the metrics over DSO, LDSO, ORB-SLAM2, and
DynaSLAM methods on the expanded TUM-Mono dataset, running the dataset
sequences forward and backward, with the loop closure feature being disabled,
following the dataset authors’ recommendations.

Figure 2 presents the cumulative error graphs — accumulated translational,
rotational, and scale drifts along with the RMSE when aligning the estimated
trajectory start and end segments with the provided groundtruth trajectory. The
figure depicts the number of runs in which the errors are below the corresponding
x-values - the closer to the top left, the better. It is important to note the
difference in magnitude — the RMSE within start and end segments is about 100
times less than the alignment RMSE.

Due to the groundtruth nature and the similarity of the experimental results,
Engel et al. [11] concluded that almost all of the alignment errors originate
not from the noise in the groundtruth, but from the accumulated drift. Our
experiments confirmed this conclusion, which means that these metrics could
be used for any benchmark with a groundtruth of any accuracy as a reference,
even the one collected with SLAM algorithms. Figure 3 shows the color-coded
alignment RMSE ranging from 0 (blue) to 10m (red) for each dataset sequence.
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Fig. 2. Accumulated translational (e:, m), rotational (e, m), and scale (e}, m) drifts
along with the start and end segments RMSE (eqa1ign, m).
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Fig. 3. Color-coded alignment RMSE (eqiign, m) for each TUM-Mono dataset
sequence. (Color figure online)
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The experiments demonstrated that direct methods provide outstanding
results comparing to the feature-based ones - the TUM-Mono dataset is designed
especially for direct methods benchmark purposes, providing full photometric
data for each frame, which greatly improves the accuracy of such methods. How-
ever, there is not that much of a difference if comparing DSO to LDSO - as we
can assume, the LDSO global map optimization slightly improves the overall
accuracy of the base method.

The same behaviour is observed while comparing feature-based methods - the
accuracy of DynaSLAM is slightly lower comparing to ORB-SLAM?2. However,
the DynaSLAM initialization is always quicker than the ORB-SLAM2 initializa-
tion; in highly dynamic sequences, the ORB-SLAM?2 initialization only occurs
when moving objects disappear from a scene while DynaSLAM succeeds in boot-
strapping the system in such dynamic scenarios.
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3.3 EuRoC

We evaluated the metrics over DSO, LDSO, ORB-SLAM?2, and DynaSLAM on
the EuRoC dataset over all sequences for each of the two camera streams, which
were interpreted as separate sequences with the same groundtruth (*.0” and ‘.1’
notations correspond to the first and the second camera dataset respectively and
are labeled on X-axis in Figs.4 and 5). Figure4 shows the calculated absolute
trajectory RMSE (ATE, measured in metres) and the relative pose RMSE (RPE,
measured in metres per second) metrics ranging from 0 (blue) to 2 (red) for all
methods.
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Fig. 4. Color-coded evaluation results for each EuRoC dataset sequence: absolute tra-
jectory RMSE (ATE, m) and relative pose RMSE (RPE, m/s). (Color figure online)

As the analysis demonstrates, that in terms of the RPE, the measure of
local accuracy, the direct methods generally perform significantly better than
the feature-based ones, but it is still difficult for them to overcome a harsh envi-
ronment with a lack of light and prevailing rotational movements (over transla-
tional movements), as shown in MH.05, V1.03, and V2.03 sequences. In terms
of the ATE, the feature-based methods demonstrate a stable performance, even
in the “hard” sequences. However, the accuracy of DynaSLAM is slightly lower,
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compared to ORB-SLAM?2, since DynaSLAM succeeds in bootstrapping the sys-
tem with a dynamic content and always initializes quicker than ORB-SLAM?2
and thus has more frames to process (and more room for accumulating errors).
Figure5 demonstrates the calculated trajectory detail level for DSO, LDSO,
ORB-SLAMZ2, and DynaSLAM methods for each EuRoC dataset sequence.

ORB-SLAM2

experiment
detail level

0.005

experiment
detail level

0.005

Fig. 5. Color-coded trajectory detail level for each EuRoC dataset sequence. (Color
figure online)

Table 2. Median absolute trajectory RMSE (ATE, m), relative pose RMSE (RPE,
m/s) & trajectory detail level (Detail) for each EuRoC dataset sequence.

Sequence | DSO LDSO ORB-SLAM2 DynaSLAM

ATE | RPE | Detail | ATE | RPE | Detail | ATE | RPE | Detail | ATE | RPE | Detail
MH.01 0.054 | 0.132 | 0.018 | 0.044 | 0.131 | 0.018 | 0.041 | 0.491 | 0.006 | 0.042 | 0.494 | 0.006
MH.02 0.063 | 0.134 | 0.025 | 0.044 | 0.139 | 0.025 | 0.035 | 0.458 | 0.006 | 0.036 | 0.465 | 0.007
MH.03 0.209 | 0.711 | 0.028 | 0.090 | 0.706 | 0.028 | 0.041 | 1.095 | 0.006 | 0.043 | 1.102 | 0.007
MH.04 0.173 | 0.632 | 0.022 | 0.136 | 0.642 | 0.022 | 0.074 | 0.560 | 0.009 | 0.076 | 0.568 | 0.011
MH.05 0.169 | 0.199 | 0.023 | 0.127 | 0.198 | 0.023 | 0.054 | 0.589 | 0.009 | 0.056 | 0.592 | 0.010
V1.01 0.104 | 0.088 | 0.023 | 0.099 | 0.089 | 0.023 | 0.054 | 0.454 | 0.005 | 0.054 | 0.459 | 0.006
V1.02 1.047 | 0.137 | 0.044 | 1.013 | 0.111 | 0.044 | 0.054 | 0.528 | 0.009 | 0.055 | 0.534 | 0.011
V1.03 0.584 | 0.334 | 0.057 | 0.607 | 0.375 | 0.057 | 0.091 | 0.409 | 0.009 | 0.097 | 0.411 | 0.010
V2.01 0.064 | 0.081 | 0.018 | 0.058 | 0.081 | 0.019 | 0.047 | 0.225 | 0.007 | 0.047 | 0.227 | 0.008
V2.02 0.162 | 0.306 | 0.037 | 0.106 | 0.281 | 0.038 | 0.051 | 0.508 | 0.009 | 0.053 | 0.552 | 0.009
V2.03 1.439 | 0.087 | 0.036 | 1.266 | 0.086 | 0.040 | 0.096 | 0.477 | 0.010 | 0.097 | 0.479 | 0.012

The obtained results suggest that the direct methods typically distinguish
more keyframes and, thus, having a better trajectory detail level, show a better
local (pose) accuracy, compared to feature-based methods. It is important to
note the difference in the color scale of the feature-based methods plots, which
is the difference in the detail level magnitude. DynaSLAM operates a slightly
larger amount of frames than ORB-SLAM?2 and has a slightly better trajectory
detail level (due to the quicker initialization).
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Table 3. Median alignment RMSE (Align, m), absolute trajectory RMSE (ATE, m),
relative pose RMSE (RPE, m/s) & trajectory detail level (Detail).

Metrics | DSO | LDSO | ORB-SLAM2 | DynaSLAM
Align |0.8496 | 0.7769 | 5.7571 6.1891
ATE ]0.16830.1062 | 0.0507 0.0525
RPE ]0.1373|0.1111 | 0.4765 0.4787
Detail |0.0355|0.0376 | 0.0086 0.0099

3.4 Summary

Tables 2 and 3 summarize the calculated metrics as a single median value for
each EuRoC dataset sequence (Table2) and the entire TUM-Mono and EuRoC
datasets (Table 3).

The alignment error, accumulated drift, is in average 7.35 times lower for
direct methods than for indirect:

— LDSO outperforms DSO by 8.56%
— DynaSLAM is 6.98% behind ORB-SLAM?2

The absolute trajectory error, global accuracy, for direct methods is in average
2.66 times higher than for indirect:

— LDSO outperforms DSO by 36.89%
— DynaSLAM is 3.42% behind ORB-SLAM?2

The relative position error, local accuracy, for direct methods is in average 3.85
times lower than for indirect:

— LDSO outperforms DSO by 19.08%
— DynaSLAM is 0.46% behind ORB-SLAM?2

The level of trajectory detail for direct methods is in average 3.95 times
higher than for indirect:

— LDSO outperforms DSO by 5.59%,
— DynaSLAM outperforms ORB-SLAM?2 by 13.13%.

While it was expected that LDSO should outperform its original source algo-
rithm (DSO) and experiments demonstrated its better performance with regard
to all measured criteria, DynaSLAM and ORB-SLAM2 have varying benefits
with respect to particular criteria, and this variety should be considered when
selecting a SLAM algorithm for a specific task.
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4 Conclusions and Future Work

This paper presented a comparative analysis of four publicly available ROS-based
monocular SLAM algorithms in terms of the state estimation accuracy and the
trajectory detail level. The analysis demonstrated that the direct methods DSO
and LDSO have a better accuracy while having entire photometric data available
and mainly focus on the local accuracy, which is also indirectly proven by the fact
that they save and operate a relatively large amount of trajectory keyframes. For
these reasons, DSO and LDSO are more suitable for tasks involving a short-range
operation and requiring high accuracy in a local pose estimation, e.g.., a 3D-
reconstruction of an environment. At the same time, the feature-based methods
ORB-SLAM2 and DynaSLAM outperform the direct ones in terms of the global
accuracy, which, combined with an average trajectory detail level, makes them
a universal solution for most SLAM tasks - especially the ones that require
a long-range operating with stable and reliable results throughout an entire
trajectory. In tasks that involve dynamic objects the accuracy of DynaSLAM
will be significantly higher than ORB-SLAM?2.

The current study used HP Omen 15-ce057ur laptop hardware. However,
any SLAM method performance strongly correlates with available computa-
tional resources. Our ongoing work deals with expanding the obtained results
and comparing the four algorithms’ performance using several different robots
of the Laboratory of intelligent robotic systems [1,18]. We strongly believe that
such comparison could be useful to the research community in order to have a
better perspective of how each metric varies depending on availability of real
robots’ onboard computational resources.

Acknowledgements. The reported study was funded by the Russian Foundation for
Basic Research (RFBR), according to the research project No. 19-58-70002. The second
author acknowledges the support by the research grant of Kazan Federal University.
The forth and the fifth authors acknowledge the support of the Japan Science and
Technology Agency, the JST Strategic International Collaborative Research Program,
Project No. 18065977. The sixth author acknowledges the support of the National
Science and Technology Development Agency (NSTDA), Thailand, Project ID FDA-
CO0O-2562-10058-TH. Special thanks to PAL Robotics for their kind professional support
with TTAGo Base robot software and hardware related issues.

References

1. Bereznikov, D., Zakiev, A.: Network failure detection and autonomous return for
PMB-2 mobile robot. In: International Conference on Artificial Life and Robotics
(ICAROB), pp. 444-447 (2020)

2. Bescos, B., Facil, J.M., Civera, J., Neira, J.: DynaSLAM: tracking, mapping, and
inpainting in dynamic scenes. IEEE Robot. Autom. Lett. 3(4), 4076-4083 (2018)

3. Bokovoy, A., Yakovlev, K.: Sparse 3D point-cloud map upsampling and noise
removal as a vSLAM post-processing step: experimental evaluation. In: Ronzhin,
A., Rigoll, G., Meshcheryakov, R. (eds.) ICR 2018. LNCS (LNAI), vol. 11097, pp.
23-33. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99582-3_3


https://doi.org/10.1007/978-3-319-99582-3_3

232

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

E. Mingachev et al.

Burri, M., et al.: The EuRoC micro aerial vehicle datasets. Int. J. Robot. Res.
35(10), 1157-1163 (2016)

Buyval, A., Afanasyev, 1., Magid, E.: Comparative analysis of ROS-based monoc-
ular SLAM methods for indoor navigation. Ninth International Conference on
Machine Vision, ICMV, vol. 10341, p. 103411K. International Society for Optics
and Photonics (2017)

Carballo, A., Takeuchi, E., Takeda, K.: High density ground maps using low bound-
ary height estimation for autonomous vehicles. In: 21st International Conference
on Intelligent Transportation Systems (ITSC), pp. 3811-3818. IEEE (2018)
Delmerico, J., Scaramuzza, D.: A benchmark comparison of monocular visual-
inertial odometry algorithms for flying robots. In: IEEE 2018 International Con-
ference on Robotics and Automation, ICRA, pp. 2502-2509. IEEE (2018)
Dissanayake, M.G., Newman, P., Clark, S., Durrant-Whyte, H.F., Csorba, M.: A
solution to the simultaneous localization and map building (SLAM) problem. IEEE
Trans. Robot. Autom. 17(3), 229-241 (2001)

Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE Trans. Pattern
Anal. Mach. Intell. 40(3), 611-625 (2017)

Engel, J., Schops, T., Cremers, D.: LSD-SLAM: large-scale direct monocular
SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014.
LNCS, vol. 8690, pp. 834-849. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-10605-2_54

Engel, J., Usenko, V., Cremers, D.: A photometrically calibrated benchmark for
monocular visual odometry. arXiv preprint arXiv:1607.02555 (2016)

Gabdullin, A.; Shvedov, G., Ivanou, M., Afanasyev, I.: Analysis of onboard sensor-
based odometry for a quadrotor UAV in outdoor environment. In: International
Conference on Artificial Life and Robotics (ICAROB) (2018)

Gao, X., Wang, R., Demmel, N., Cremers, D.: LDSO: direct sparse odometry with
loop closure. In: 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems, IROS, pp. 2198-2204. IEEE (2018)

Ibragimov, 1.Z., Afanasyev, I.M.: Comparison of ROS-based visual SLAM meth-
ods in homogeneous indoor environment. In: 2017 14th Workshop on Positioning,
Navigation and Communications (WPNC), pp. 1-6. IEEE (2017)

Lavrenov, R., Matsuno, F., Magid, E.: Modified spline-based navigation: guaran-
teed safety for obstacle avoidance. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R.
(eds.) ICR 2017. LNCS (LNAI), vol. 10459, pp. 123-133. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66471-2_14

Martinez-Garcia, E.A., Rivero-Juérez, J., Torres-Méndez, L.A., Rodas-Osollo, J.E.:
Divergent trinocular vision observers design for extended Kalman filter robot state
estimation. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 233(5), 524-547
(2019)

Martinez Garcia, E.A.: 4WD robot posture estimation by radial multi-view visual
odometry. Instituto de Ingenierfa y Tecnologia (2018)

Moskvin, I., Lavrenov, R., Magid, E., Svinin, M.: Modelling a crawler robot using
wheels as pseudo-tracks: model complexity vs performance. In: 7th International
Conference on Industrial Engineering and Applications (ICIEA), pp. 235-239.
IEEE (2020)

Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: ORB-SLAM: a versatile and accu-
rate monocular SLAM system. IEEE Trans. Robot. 31(5), 1147-1163 (2015)
Mur-Artal, R., Tardés, J.D.: ORB-SLAM2: an open-source SLAM system for
monocular, stereo, and RGB-D cameras. IEEE Trans. Robot. 33(5), 1255-1262
(2017)


https://doi.org/10.1007/978-3-319-10605-2_54
https://doi.org/10.1007/978-3-319-10605-2_54
http://arxiv.org/abs/1607.02555
https://doi.org/10.1007/978-3-319-66471-2_14

21.

22.

23.

24.

25.

26.

Comparison of ROS-Based Monocular Visual SLAM Methods 233

Nagahama, K., Nishino, T., Kojima, M., Yamazaki, K., Okada, K., Inaba, M.: End
point tracking for a moving object with several attention regions by composite
vision system. In: International Conference on Mechatronics and Automation, pp.
590-596. IEEE (2011)

Rodriguez-Telles, F.G., Mendez, L.A.T., Martinez-Garcia, E.A.: A fast floor seg-
mentation algorithm for visual-based robot navigation. In: 2013 International Con-
ference on Computer and Robot Vision, pp. 167-173. IEEE (2013)

Safin, R., Lavrenov, R., Tsoy, T., Svinin, M., Magid, E.: Real-time video server
implementation for a mobile robot. In: 2018 11th International Conference on
Developments in eSystems Engineering (DeSE), pp. 180-185. IEEE (2018)
Schubert, D., Goll, T., Demmel, N., Usenko, V., Stiickler, J., Cremers, D.:
The TUM-mono VI benchmark for evaluating visual-inertial odometry. In: 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, pp.
1680-1687. IEEE (2018)

Simakov, N., Lavrenov, R., Zakiev, A., Safin, R., Martinez-Garcia, E.A.: Modeling
USAR maps for the collection of information on the state of the environment.
In: 2019 12th International Conference on Developments in eSystems Engineering
(DeSE), pp. 918-923. IEEE (2019)

Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark
for the evaluation of RGB-D SLAM systems. In: 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 573-580. IEEE (2012)





