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PART 1 

ELECTRON PARAMAGNETIC RESONANCE 

 

 Many substances in a magnetized state gain the ability to absorb energy of 

electromagnetic waves impinging on such substance. This absorption has a resonance 

character, i.e. it appears only under certain condition between the electromagnetic 

wave length and the intensity of the static magnetic field that magnetizes the sample 

of substance. The phenomena of this type are called a magnetic resonance and play a 

considerable role in modern physics, chemistry, biology and technics as very 

effective tool for research of structure of substances and as a basis for making the 

very important technical devices. 

 One of the versions of magnetic resonance absorption – electron paramagnetic 

resonance appears as a result of interaction of the magnetic moments of electron shell 

of atoms of paramagnetic substances with the external (static Ho and high-frequency 

Hν) magnetic fields. The essence of this physical effect is easy to understand if we 

recall the basic data on the magnetic properties of atoms and their interactions both 

with the external magnetic fields, and with each other. 

 

1. Magnetic properties of atom 

 

 The atomic magnetism is generated by three origins: 

a) orbital motion of electrons creating an orbital magnetic moment µl of each of 

them; 

b) spin properties of an electron – existence with it an intrinsic mechanical Рs and 

magnetic µs moments; 

c) the same properties of many nuclei possessing intrinsic mechanical РI and 

magnetic µI moments. 
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 The circulation of each electron around a nucleus with period Т represents the 

analogue of a circular current with intensity i=e/T (in SGS system), creating the 

orbital magnetic moment which value is equal to: 

µl = i⋅S/c = γl⋅Pl       (1) 

where S –area of contour run around by the electron; −+⋅= )1(lllP h mechanical 

moment of the electron orbital motions, l – orbital quantum number, and 

γl = µl/Pl=e / (2m0c)        (2) 

– the so-called gyromagnetic ratio of orbital motion of an electron (strictly speaking, 

the gyromagnetic ratio is a quantity inverse to γl, however the used term was stated 

and does not cause misunderstanding). 

 Adding vectorially the orbital magnetic moments of all electrons of atom, they 

form the resulting magnetic moment µL of the whole electronic shell: 

µL = µl1 + µl2 + … … …... = γl ⋅{Pl1 + Pl2 +...} = γl⋅PL   (3) 

,)1( += LLPL h  where PL – total orbital mechanical moment of atom, L – here 

orbital quantum number of atom. 

 The spin magnetic moment µs of electron is related with its mechanical moment 

by a relation: 

µs = γs⋅Ps,      (4) 

where )1( += ssPs h  – intrinsic mechanical moment of electron, s – spin quantum 

number, and γs = e/m0c – its spin gyromagnetic ratio. As one can see it twice the 

similar quantity for orbital motion: γs = 2γl = 2e/2m0c. This fact was called the 

gyromagnetic anomaly and though there is no anything abnormal from the present 

point of view this term is used until now. 

 The sum of spin magnetic moments of all electron shells forms the total spin 

magnetic moment of atom µS: 

µS = µs1 + µs2 + … … …... = 2γl ⋅{Ps1 + Ps2 +...} = 2γl⋅PS   (5) 
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where )1( += SSPS h – total spin mechanical moment of atom, S – spin quantum 

number of atom. 

 If we replace the quantities in equations (1) and (4) with the corresponding 

values then we will obtain the following relations for the orbital and spin magnetic 

moments of electron: 

)1(2)1(

,)1()1(
2

0
0

0
0

+=+=

+=+=

ssss
cm

e

llll
cm

e

s

l

µµ

µµ

h

h
 

The quantity 21
0

0

9.27 10 erg / oersted
2

e
m c

µ −= = ⋅
h  is called the Bohr’s magneton and 

serves as unit for measurements of the nuclear magnetic moment. 

 The quantum numbers l and s of an electron take the following values: 

l = 0, 1, 2... (n – 1); s=1/2, 

where n – principal quantum number. 

 This means that the spin magnetic moment of electron is approximately equal to 

two Bohr magnetons: 

,23)1(2 000 µµµµ ≈=+= sss  

while its orbital magnetic moment has the values, that are different for different states 

of electron in the atom, at that for l = 0 

.0)1(0 =+= lll µµ  

 The magnetic moments µl and µs are antiparallel oriented relative the 

corresponding mechanical moments Pl and Ps, since the electron charge is negative 

(see Fig.1). 

 The directions µl  and µs relative each other (the same as directions of quantum 

vectors in general relative the given axis in space) are determined by the space 

quantization rules: it is possible to specify precisely the projection value of quantum 

vector to the given axis, but it is impossible to determine simultaneously the other 

components of this vector. The projections of the orbital and spin magnetic moments 
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of electron on the axis specified by direction of constant magnetic field Н, are equal 

to: 

   µlH = µl ·cos (µl  H ) = −µ0ml,    µsH = µs ·cos (µs  H ) =−  2 µ0 ms, 

respectively, where ml = – l; – (l – 1,);... + (l – 1); +l – orbital magnetic quantum 

number of electron (quantum number of the orbital mechanical moment projection); 

ms = ±1/2 – its spin magnetic quantum number (quantum number of the spin 

mechanical moment projection). The sign "minus" appears because the mechanical 

and magnetic moments of electron are opposite (the electron charge is negative). 

 Thus, the orbital magnetic moment µl can have 2l+1 different orientations 

relative the field H, and its projection µlH has 2l+1 possible values. 

 The vector µs is aligned either along H or reverse and its projection µsH toward 

the field is equal to µ0 and −µ0 , respectively. 

 The sum of the total orbital µL and spin µS magnetic moments of atom 

determines its total magnetic moment: 

µJ = µL + µS = γL ⋅{PL + 2PS}.     (6) 

Since the total mechanical moment of atom is equal to: 

PJ=PL+PS,      (7) 

                                               PL 
 
 
 
 
                      PS 
 
 
              −                          +      
 
 
 
                                               µL 
         µS 

Fig. 1. Mechanical and magnetic orbital (PL, μL) and 
intrinsic (spin, PS, μS) moments of electron in the atom 
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where )1( += JJPJ h  (J – quantum number of the total mechanical moment of atom) 

then it follows from (6) and (7) that the vector µ makes an angle with vector PJ  

which differs from 180o (as a result of the gyromagnetic anomaly). 

 A sketch of composition of moments µL and µS into the resulting magnetic 

moment µ of all electronic shells is shown on Fig.2 (according to selected scale on 

Fig.2 the length of vector µL is equal to length of vector PL: in this scale as a result of 

the gyromagnetic anomaly the length of vector µS is twice the length of PS). 

 However, the physical meaning has only its component µJ along PJ but not the 

vector µ. 

 Thus, the effective magnetic moment of atom (or simply the magnetic moment 

of atom) µJ is antiparallel to PJ and numerically is equal to: 

µJ = µL ·cos (µl  P J) + µS ·cos (µS  P J). 

Simple algebra (see Fig.2) gives: 

      ,)1(0 += JJgJJ µµ      (8) 

where    
)1(2

)1()1()1(1
+

+−+++
+=

JJ
LLSSJJgJ   (9) 

               PJ 
 
  PS PL 
 
 
 
 
  µL 
                                                                   µS 
 
 
                                                     µ 
 
                      µJ 

Fig. 2. Composition of the mechanical and magnetic 
moments of electronic shell of atom 
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 – is the so-called Landé splitting factor, g-factor, or factor of spectroscopic splitting 

of the electronic shell of atom. From (9) it follows that the value of Landé splitting 

factor depends on state of atom. It is possible to make the qualitative conclusion 

about the origin of magnetism of the given atom from the values of this factor: if gJ = 

gL = 1, it is possible only at S=0, in this case µS = 0, and magnetism is created only 

due to the orbital motion of electrons: if gJ = gS = 2 (to be more precise 2.00238) then 

it is possible for L=0 (µL = 0), and magnetism has pure the spin origin. Certainly the 

intermediate cases are possible. 

 In case of condensed matter when the interaction of the given atom with atoms 

of substance can be considerable, the g-factor can differ from that given by equation 

(9). These differences give the possibility to evaluate both the character of the 

interactions of atoms, and the origin of magnetism of the given substance. 

 If we deal with atom or ion with partially filled shell that is characterized by the 

principal and orbital quantum numbers n and l, then, since the orbital moments and 

spins of electrons can be differently oriented, it is possible to obtain a set of various 

states (terms) of atom or ion, each of which would have its own value of quantum 

numbers L, S and J of the total moments. Each of terms will have its own energy. 

Since any system in the absence of external actions tends to occupy a state with the 

lowest energy, only a term with the lowest energy is populated (the energy gap 

between the lowest and the first excited term, as a rule, considerably exceeds the 

energy of thermal motion at temperatures of the order of hundreds Kelvin). 

 It is possible to choose a term from all possible terms of atom or ion with the 

lowest energy using the well-known empirical rules established by Hund in 1927. 

According to these rules, the lowest energy has the term with the largest (with the 

given electronic configuration of atom or ion) value of the total spin S and the largest 

(at this S value) total orbital moment L. If L and S are not equal to zero and if in a 

layer n of shell l there are less than half of the maximum possible number of electrons 

(<2l+1), then the level of a multiplet with J = |L-S | has the lowest energy, and at the 

number of electrons larger than 2l+1 – level with J = L+S. 
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 The Hund’s rule can be formulated also as follows: 

 1) The total spin quantum number MS = Σ(ms)k in the ground state has a 

maximum within the limits allowed by the Pauli's exclusion principle. 

 2). The total orbital quantum number ML = Σ(ml)k in the ground state has a 

maximum within the limits allowed by rule 1. 

 3). The total value of quantum number of the total moment J for partially filled 

shell is given by expressions: 

  J = |L-S | if the shell is less than half filled, 

  J = L+S if the shell is more than half filled. 

 

 Let's consider the application of Hund’s rules with the Mn2 +ion as an example, 

having the electronic configuration of the open shell 3d5 (in the layer n=3 there are 5 

electrons with the orbital quantum number l = 2; we remind that the value of number 

l is designated by letter d). According to the Pauli's exclusion principle there shall be 

no two electrons with identical quantum numbers n, l, ms and ml in the atom. Since n 

and l for all five electrons are identical, there shall be no two electrons with identical 

pairs of numbers ms and ml in a shell. The total spin of the ion will be maximal, if the 

spins of separate electrons are oriented equally, i.e. if ms=1/2 for all electrons; then 

MS = 5/2 and S = 5/2. But in that case the numbers ml of all five electrons shall be 

different. Since ml can have 2l+1 values and l = 2, then ml=2, 1, 0,-1,-2 for five 

electrons, and the total quantum number ML=0, i.e. L=0. Finally, the total quantum 

number of the total moment J = L+S = 5/2. So, the ground state of the Mn2 + ion is 

characterized by quantum numbers S = 5/2, L = 0, J = 5/2. The spectroscopic symbol 

of this term – 6S5/2. Since L=0 in this state, the g-factor has, according to relation (9), 

the value g=2. Since L=0 and J = S for the Mn2 + ion, the ion is frequently 

characterized by the number S instead of the number J. 

 To obtain the total and, consequently, exact value of the magnetic moment of 

atom in whole, µF, the quantity µJ (6) shall be added to the vector value of the 

magnetic moment µof I of atomic nucleus: 
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µF = µL + µS + µI = γL ⋅{PL + 2PS} + µI. 

 The intrinsic magnetic moment of nucleus is equal to µI = γI⋅PI, where γI - 

gyromagnetic ratio for nucleus equal to γI⋅ = gI e / (2mpc); gI - its spectroscopic 

splitting factor, mp - mass of proton, PI - intrinsic angular momentum of nucleus, 

numerically equal to ,)1( += IIPI h  where I - spin quantum number of the nucleus. 

 Using definitions of γI and PI let’s determine the value of the intrinsic magnetic 

moment of nucleus: .)1(0 += IIgIII µµ  

The quantity 24
0 5.05 10 erg/oersted

2I
p

e
m c

µ −= = ⋅
h  is called the nuclear magneton and 

serves as unit for measurement of the magnetic moments of nuclei. 

 Since µ0I is approximately 2000 times smaller than µ0 (Bohr magneton) the 

nuclear magnetic moments are approximately 2000 times smaller than the electronic 

magnetic moments (gI and I* are of the order of unity). Therefore the nuclear 

magnetism can be often omitted. However "often" does not mean "always": in some 

cases it is impossible to neglect the nuclear magnetism. For example, in EPR it 

causes occurrence of the hyperfine structure of the absorption resonance lines. 

Moreover, the existence of nuclear magnetic moments provides possibility for very 

important version of magnetic resonance – a nuclear magnetic resonance. 

 

2. Behavior of the magnetic moments in the magnetic fields and the nature of 

paramagnetic resonance 

 

 To understand the physics of electron paramagnetic resonance the two 

approaches are possible: 

a) classical, on the basis of consideration of a nuclear magnetic moment motion 

in the external field as the classical mechanical system with properties of a 

top and capable to change its energy under the action of variable part of field; 
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b) quantum mechanical, on the basis of representation with the energy level 

splitting of the atom having a magnetic moment, in a static magnetic field 

with a set of the Zeeman sublevels, between which the transitions are 

possible under the influence of a high-frequency magnetic field.  

 Both approaches give the same results in the sense that they allow to formulate 

the same basic laws of the phenomena. 

 

 А. Magnetic field Н acts on atom as on a regular magnet, orienting its 

magnetic moment so that the energy of their interactions: 

∆EH = – µJ H = – µJ H cos (µJ H)    (10) 

would be the lowest. This requirement will be satisfied if µJ orients along H. 

However the achievement of this is prevented by the gyroscopic properties of atom: 

the field Н is unable to orient µJ parallel to it, and it will cause precession of the 

magnetic moment of atom with the Larmor frequency. It is necessary, however, to 

take into account that not only the atom as a whole has the gyroscopic properties, but 

also any electron separately since it has the mechanical moment Ps. In the magnetic 

field Н the magnetic moment of every electron of atom shall precess with the Larmor 

frequency, but different from the precession frequency of the magnetic orbital 

moments, since the gyromagnetic ratio for the spin of electron is twice for orbital 

motion. As a result the atomic magnetic moment µJ will precess in the magnetic field 

Н with the frequency: 

,
2 0

0 cm
eHgH J== γω      (11) 

where gJ – Landé splitting factor, which value is given by equation (9), also depends 

on the contribution of the orbital and spin moments to the total magnetic moment of 

atom. 

 Proceeding from the circular frequency to the linear one, equation (11) may be 

written as follows: 
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,
4 0

0 cm
eHgJ π

ν =      (12) 

and if we substitute here the values of constants then we will find: 

ν0 = 1.3995⋅106 gJH [Hz],     (12а) 

that for Н = 103-104 Oersted corresponds the centimeter band of radio waves. 

 Now suppose that the atom is affected not only by the static magnetic field Н, 

but also by weak field Hν rotating with frequency ν in a plane, perpendicular to Н 

(see Fig.3). 

 If frequency ν coincides with frequency ν0 (equations (12) and (12а)) then the 

vectors µJ and Hν rotate synchronously and stationary relative each other. But in this 

case the field Нν will act on µJ as any magnetic field acts on a magnetic moment: it 

will tend to orient the vector µJ parallel to it. This means that the mechanical moment 

N affects the atom, deviating the magnetic moment µJ from its initial direction and 

increasing the energy of its interaction with the field Н at the expense of energy of 

the variable field Нν. 

 

  

The described interaction of the atomic magnetic moment with the high-frequency 

(rotating) magnetic field is realized only at the coincidence of rotation of vector Нν 

    H 
 
                     µJ 
 
 
 
 
 
 
                           Hν 

Fig. 3. Behavior of the atomic magnetic moment µJ in the static 
Н and the high-frequency magnetic fields Нν  
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with the Larmor precession of the moment µJ in the field Н both on frequency and on 

direction; thus, this interaction has a resonant character. Really, imagine that the 

frequencies ν and ν0 are different or their rotation directions are opposite. Then the 

relative position of µJ and Нν will change continuously, consequently the direction of 

the moment N will change: it will periodically increase or reduce the angle between 

µJ and the field Н. In average the effect of field Нν on the magnetic moment µJ will 

be equal to zero. This, by the way, gives the possibility to use in the real experiment 

the sinusoidal linearly polarized field with the same frequency instead of the rotating 

magnetic field Нν. The enquiry is that this linearly polarized field is the sum of two 

oppositely rotating fields with half amplitude compared with a sinusoidal field. The 

corresponding resonance interaction of Нν with µJ will be realized by the one of two 

specified components that rotates in precession direction of moment µJ. 

 The stated mechanism of the magnetic moment µJ deviation by the high-

frequency field Нν from the equilibrium position and the energy of moment µJ related 

to it in the field Н does not explain completely the reason of energy absorption of the 

field Нν by the magnetized paramagnetic substance. Really, in the field Н the 

moment µJ has the lowest energy if it is parallel to a field; deviating from this 

orientation at the effect of field Нν this moment gains the energy. This is 

accompanied by energy absorption of the high-frequency field. As experiment shows, 

the high-frequency field energy is absorbed at EPR phenomenon continuously and 

arbitrarily long - while the substance is affected by the fields Н and Нν. Intuitively it 

is clear that the spin system is not capable to absorb energy interminably. So, to 

where this energy leaves?  

 The atoms of any substance are not isolated and are bound by interactions with 

each other. In paramagnetic crystals two of these interactions play the greatest role: 

the spin-spin and the spin-lattice interactions. The first one is interaction between the 

magnetic moments of atoms and by nature is quite similar to interaction of 

microscopic magnetic needles: it determines the processes of energy redistribution 
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inside the “spin system”, i.e. in all set of magnetic atoms of the given solids. This 

process equalizes the energy of the given atoms, it is called a spin relaxation, and the 

time necessary for its realization – the spin-spin relaxation time. This interaction not 

very strong, but plays the essential role in electron paramagnetic resonance: in case 

when it is realized between the electronic moments – it causes, considerably, the line 

width of the resonance absorption. 

 The second type of interaction is even more essential for all magnetic resonant 

phenomena as it causes the possibility of their existence. The spin-lattice interaction 

for a variety of paramagnets is very different by the physical mechanisms, but has the 

common features. It represents the process (better to say – processes) of energy 

exchange of the spin system with a crystal lattice as a whole and is reduced, 

ultimately, to transition of energy of a precessional motion of the magnetic moments 

into heat, in other words – into energy of oscillations of the atoms forming a lattice. 

This energy transmission of the spin system to a lattice requires a certain time; it is 

called a time of spin-lattice relaxation and strongly depends on temperature - 

increases with lowering of a temperature. 

 Now it is easy to understand, to where the energy of a variable magnetic field 

absorbed at electron paramagnetic resonance leaves. If we consider the behavior in 

the magnetic fields Н and Нν of not a particular atom but the ensemble of atoms in a 

paramagnetic crystal it is necessary to take into account a spin-lattice interaction. The 

alternating field that deviate the magnetic moments of all atoms from the position of 

stable equilibrium increases the energy of the total spin system. The spin-lattice 

interaction transfers this energy to a lattice, increasing intensity of thermal vibrations 

of all its atoms (there can also be a nonmagnetic atoms among them), as a result of 

which the magnetic atoms return into their initial state and are ready to repeat again 

the process of transformation of an electromagnetic energy into heat. Certainly, it is 

not necessary to think that all magnetic atoms of a crystal do it synchronously. 

Actually such process has a statistical character: part of atoms deviated by a high-

frequency field from the equilibrium accumulate the energy while the other transfers 
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the excess of energy to a lattice, and the third ones return to an equilibrium state. 

Thus, at each given moment of time there are the atoms in a crystal which are in any 

of possible stages of the described processes. As a result the paramagnetic crystal 

(and also any other paramagnet including the fluid) will continuously absorb energy 

of a variable magnetic field while the resonance requirements are met. 

 This is the phenomenon of electron paramagnetic resonance (EPR). 

 

 B. Quantum – mechanical description allows understanding of this phenomenon 

more precisely and in full and it is based on the following basic representations. 

 The energy, mechanical and magnetic moments of atom are quantized by value, 

i.e. can possess only certain values forming discrete sets, and the mentioned moments 

are quantized also spatially: they can be oriented relative, e.g., the external field Н 

only with some well defined angles. Hence the natural conclusion follows: in the 

external magnetic field Н each energy level of the paramagnetic atom will split on a 

series of sublevels. Really, the energy of interaction (10) of µJ with Н is equal to: 

).cos()1(0 HHJJgHE JJJH

rrrr µµµ +−=−=∆  

Due to space quantization the quantity 

,)cos()1( JJ MHJJ =+
rrµ  

called the magnetic quantum number of atom can have only some values that form 

the following set: 

MJ =-J; - (J-1);... + (J-1); +J, 

i.e. with the given J that determines the total mechanical moment of the electron shell 

of atom (see (7)) the magnetic quantum number can have any of 2J+1 allowed values 

for it. Then 

∆EH = µ0 gJ H MJ,     (13) 

and this means also that the energy level of atom would split on 2J+1 sublevels, the 

number of which is equal to the number of possible orientations of the moment of 

atom (see Fig.4). 
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From Fig.4 and (13) one can see that any neighboring two sublevels are separated by 

the equal energy intervals µ0gJH. The numbers N1 and N2 of the atoms that are on two 

any sublevels, separated by energy interval ∆Е, in case of thermodynamic 

equilibrium are related through the well-known Boltzmann equation: 

N2/N1 = exp (-∆E/kT). 

It means that atoms of the paramagnetic crystal in the magnetic field Н occupy the 

magnetic sublevels with different density: the less is the energy of the given sublevel 

the larger is the density on it. 

 If the paramagnet is affected by not only the field Н but also by the high-

frequency field Нν then the latter will flip the atoms from the lower levels on 

overlying ones and back if only the field frequency corresponds to the energy 

difference between the given sublevels: 

hν = ∆E.      (14) 

These types of transitions are governed by a simple selection rule: realizable only 

those transitions for which the magnetic quantum number changes on unity, i.e. ∆MJ 

= ±1. Then the requirement (14) can be written as follows: 

hν0 = ∆E = ∆E′-∆E′′ = µ0 gJ H (MJ′′ - MJ′) = µ0 gJ H ∆MJ 

5/2     E0+(5/2)gJµ0H

 -5/2     E0-(5/2)gJµ0H
 -3/2     E0-(3/2)gJµ0H
 -1/2     E0-(1/2)gJµ0H

1/2     E0+(1/2)gJµ0H
3/2     E0+(3/2)gJµ0H

E0
6S5/2, J=5/2

H>0      MJ     EH=E0+∆EH

H=0

 
Fig. 4. Splitting of the basic term of the Mn2 + ion by the 

magnetic field H. The arrows indicate the allowed 
transitions between the levels. 
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or taking into account the selection rules: 

.
4

,
0

0
000 cm

eHg
h
HgHgh JJJ π

µνµν ===  

 Thus the quantum – mechanical description leads to the same frequency of the 

resonance transition as that given by the classical description. 

 The high-frequency magnetic field Нν transfers the atoms predominately from 

the lower levels to the upper ones at the expense of some part of its energy when the 

resonance conditions are met. As a result of spin-lattice interaction the particles of 

top levels transfer the excess energy to a lattice and jump without energy radiation 

again to the lower levels. At the continuous effect of the magnetic fields there is a 

dynamic balance between the atoms that elevate on top levels and leaving down to 

the lower levels. The energy of the high-frequency magnetic field will be 

continuously absorbed by the substance, thus heating it up. 

 From the aforementioned it is clear that the electron paramagnetic resonance is 

related to the Zeeman effect in optics. The difference is that at Zeeman effect the 

transitions are top-down between the magnetic sublevels of various atomic levels, i.e. 

with emission of electromagnetic energy in the range of high (optical) frequencies. In 

case of electron paramagnetic resonance such transitions are realized top-down 

between the sublevels of the same atomic level and are accompanied by 

electromagnetic energy absorption in the range of the lower frequencies. 

 

3. Basic characteristics of the electron paramagnetic resonance spectrum 

 

 Complex and diverse interactions in the paramagnetic substance determine the 

essential features of behavior of the atomic magnetic moments in the fields Н and Нν 

and thus determine the character of the resonant magnetic absorption spectrum. The 

spectra for the various magnetic atoms in different substances appear rather various 
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and sometimes rather difficult and containing a lot of lines with different intensities 

and line shapes. 

  

3а). Width and intensity of the resonance lines 

 

 It is known that the spectroscopic lines are never infinitely narrow. The finite 

width of a line and the shape of its contour are caused by tailing of the atomic energy 

levels between which the given transition occurs by effect of the various physical 

factors among which the interactions between the radiating atoms have the greatest 

importance. 

 When discussing a problem of emission or absorption line width it is necessary 

to take into account first of all the following factor for the problem - broadening of 

energy levels due to the uncertainty principle: if the atom is on the given energy level 

for the time period ∆t then the value of energy of this state will be within the limits of 

the band ∆Er determined by a relation: 

.h≈∆∆ tEr  

Therefore, even in the conditions of total absence of the interatomic interaction the 

spectroscopic line has the finite, the so-called natural width: 

∆νNat = 1 / (2π∆t),     (15) 

determined by a lifetime of spontaneously emitting atom in the excited state (i.e. on 

the upper energy level). This remains valid in the presence of interactions between 

emitting (absorbing) atoms or their environment when the lifetime of atom ∆t on the 

initial level is determined by these interactions. It is easy to show that in these cases 

the atom lifetime is shortened, broadening of the energy levels increases and the 

spectrum line width considerably exceeds the "natural" one, and, as well as for this 

latter it is given by equation (15). 

 As it was already mentioned above, the basic types of interactions in the case of 

magnetic resonance are the spin-spin and spin-lattice interactions. Having designated 
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the corresponding relaxation times Т1 and Т2, respectively, for the EPR absorption 

line widths on the basis of the equation (15) it is possible to write: 

∆ν = 1 / (2πT1) + 1 / (2πT2).     (16) 

 
 

This relation qualitatively and correctly describes the line widths and a very 

important conclusion about possibility of EPR observation in pure condensed 

paramagnets follows from it. In these substances all atoms have the magnetic 

moments and they are located very closely - at the distances determined by a lattice 

period. The spin-spin interactions are very strong, the energy exchange between 

atoms is very fast, the relaxation time Т2 is very small, and the resonance line width is 

determined, mainly, by the second term in (16) and is very large. Thereby, the weaker 

interactions - spin-lattice interactions and interactions of atomic electrons with a 

nucleus - actually will not affect the shape of the resonance spectrum. Therefore EPR 

study on pure paramagnets is less informative and is not interesting. The real value 

and development was obtained by EPR starting from research of magneto-diluted 

substances, especially the crystals which paramagnetic properties are created by small 

impurity of paramagnetic atoms (ions) in a diamagnetic lattice. There is a large 

number of these crystals of a natural origin, for example, a ruby (Al2O3), containing 

the paramagnetic triple-charged ions of chrome in small concentrations and replacing 

the aluminium ions in a diamagnetic lattice of corundum; calcite (CaCO3), containing 

Jm/2

ν1    ν0    ν2

Jm

ν
 

Fig. 5. The width and intensity of the absorption line. 
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usually the doubly charged ion of manganese as a paramagnetic impurity; diamond 

that contains many of paramagnetic impurities: nitrogen, aluminium, iron ions, etc. A 

particular role was played among these crystals by ruby: an important area of the up-

to-date technical physics, quantum radio electronics has begun with research of its 

radiospectroscopic properties. The requirements arisen in this connection had led to 

development of the industry of the artificial paramagnetic impurity crystals, including 

a ruby, superior compared with natural crystals. 

 Quantitatively the width of the absorption resonance line is measured by 

difference of the frequencies ∆ν =ν2 - ν1 between points of a line contour, taken at 

half of its height (Fig. 5). 

 The integrated intensity of a line is measured by the area limited by its contour 

and the frequency axis. The amount of the absorbed energy is proportional to the 

difference of level populations between which the given transition occurs. At the 

given frequency and temperature this difference is proportional to the total number of 

magnetic atoms in the test sample that allows to measure the concentration of 

magnetic ions in the given substance from the integrated intensity of the absorption 

line. 

  

3b). EPR line shapes 

 

The EPR line shapes can be rather various at their identical integrated intensity. 

Various types of interactions cause not only a different line broadening, but also 

cause difference of their shapes. For EPR spectra the most typical are the Gaussian 

and Lorentz line shapes. From Fig. 6, where these lines and their derivatives are 

presented, it is clear that the Lorentz line is narrower at the center, but is wider on the 

"wings", compared with the Gaussian line, and their width at the half height is 

different. We omit here the equations describing the mentioned types of lines and 

mention only that the Gaussian shape line is observed in cases of strong domination 
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of the spin-spin interaction in a paramagnet over the spin-lattice interaction, and the 

Lorentz line - at inverse relation of these interactions. 

  

3c). Fine structure of the EPR spectrum  

 

 As it is evident from equations (13), (14) and Fig. 4, the intervals between the 

neighboring Zeeman sublevels of system of noninteracting atoms are identical and 

the allowed transitions between them in the given field Н occur at the same 

frequency, i.e. give the same absorption line. The pattern will be essentially different 

when the magnetic atom (ion) with the magnetic quantum number J>1/2 is a part of 

solid substance and is strongly affected by the environment. Both in a crystal and in 

amorphous substance there exist a strong internal electric fields created by the 

neighboring ions and affecting the magnetic ion so that its energy levels are split (this 

is the Stark effect known from optics). 

Let's consider the influence of a crystal field with the manganese ion in a calcite 

(CaCO3) as an example. The Mn2+ ion has five unpaired electrons giving the total 

spin magnetic moment µS = (35)1/2µ0. The magnetic spin number MJ (or MS, as it was 

H

J(H)

H
J'(H)

 
Fig. 6. The absorption line shape and its derivative: 

solid line – Gaussian shape line; 
dotted line – Lorentz shape line. 
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already mentioned, it is the same for Mn2+ ion) has six different values: ±5/2; ±3/2; 

±1/2. (The divalent manganese ion has zero orbital moment and, hence, does not 

make the contribution to EPR. For the other ions of the transitional elements as it will 

be established below, the orbital magnetic moment will also do not make any 

contribution to EPR because of "freezing of orbits” effect). The effect of crystal field 

leads to splitting of the energy levels of the ion already at H=0 on three Stark 

sublevels. At superposition of the external magnetic field Н each of these sublevels 

split on two Zeeman sublevels. At that the effect of the crystal field leads to various 

shifts of Zeeman sublevels (owing to Stark effect), to violation of equality of the 

energy intervals between them. Therefore the transitions between the sublevels in the 

same field Н will occur at various frequencies, the absorption line splits into group of 

lines (according to the selection rules ∆МS = ±1 - on five lines; see Fig. 7(a)) 
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This splitting of EPR line by the crystal field is called the fine structure of the EPR-

spectrum. It is more convenient to explore the EPR- spectrum experimentally at 

constant frequency ν of a high-frequency electromagnetic field and slow varying with 

time the magnetizing field H. The transitions between the Zeeman sublevels of an ion 

in this case occur also only at a resonance, i.e. at coincidence of frequency ν of the 

high-frequency field Hν with ν0 - frequency of the quantum, absorbed at transition 

between the neighboring sublevels (∆MS = ±1). But because of effect of the crystal 

field the equality of the energy intervals between the sublevels of the Mn2+ ion is 

broken, the transitions between the neighboring sublevels will occur only at the 

moments of time when the field Н will have the intensity, at which 

ν0=gкр
i eH / (4πmc) = ν 

(gкр
i
 - spectroscopic splitting factor of the neighboring sublevels of ion in the field of 

a lattice), i.e. at five various values of the field Н (see Fig. 7 (b). Thus, as a result we 

will observe the fine structure of the EPR line - the absorption line will consist of 

group of lines (five lines). 

 The crystal field causes also two rather important effects: the so-called 

"freezing" of the orbital moments and angular dependence of a resonant spectrum. 

The first effect is that the strong crystalline field, affecting a moving electron in an 

atom, spatially fixes its orbit and therefore the orbital magnetic moment cannot react 

at the external magnetic field and ceases to take part in the process of electron 

paramagnetic resonance. Meanwhile, the spin magnetic moment of electrons is not 

affected by electric field of a crystal and as in case of the free atom it is freely 

oriented in the field Н according to the rules of spatial quantization. It causes all 

features of electronic paramagnetic resonance. 

 The second effect is related to symmetry of the internal electric field of the 

crystal that depends on lattice symmetry of the latter. The magnetic field Н, acting on 

an ion with different angles relative a crystal field, splits differently its energy levels 

owing to what the position and the number of the resonance lines will depend on the 
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angle θ between Н and crystal axes. In the first approximation the dependence of 

distances (along the field Н at fixed frequency ν0) versus the specified angle is 

described by the function (3cos2θ - 1). 

 Examination of the fine structure of the EPR-spectrum gives a lot both for 

understanding the properties of a paramagnetic ion and for opinion about features of 

the crystal field and its symmetry. 

 The character of interactions of the paramagnetic ion with its diamagnetic 

environment can be such that observation either of a single line or a fine structure can 

be impossible in usual conditions: thermal oscillations of the crystal lattice widen the 

line so that it is necessary to cool down the crystal to the possible lowest (liquid 

helium or nitrogen) temperatures for their observation. 

 The fine structure of EPR spectrum is observed only when there is the electric 

anisotropy of the crystal lattice, i.e. the symmetry of charges surrounding a 

paramagnetic ion is low enough. If the surrounding ions are located with high 

symmetry it may happen that the fine structure of the EPR spectrum will be absent. 

This appears, for example, for the case of the Mn2 +ion, replacing the Ca2 + ions in a 

fluorite crystal (CaF2). The Mn2+ ion is located at cube center in which corners the F– 

ions are located. The crystal electric field in the location of the manganese ion has 

high, cubic symmetry, and the fine structure of manganese spectrum is absent. Thus, 

the EPR Mn2+ spectrum in crystal CaF2 should consist of one line, as for the free ion 

(Fig. 4). 
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3c). Hyperfine structure of EPR spectrum  

 

 The very essential feature of EPR spectra in many cases is the hyperfine 

structure appearing, as in the case of optical spectra, as a result of interaction of the 

magnetic moments of unpaired electrons with the magnetic moment of nucleus. We 

will examine this using the manganese ion in fluorite as an example. 

 The spin of manganese nucleus is equal to I = 5/2. This means that in the 

external field Н the magnetic moment of nucleus can take 2I+1 = 6 various 

directions. And this, in turn, means that the electronic magnetic moment will be 

affected by the total magnetic field H+HI, able to take six various values. In this field 

the magnetic moment µS (or µJ) will have six possible values of energy and as a result 

each of the electronic Zeeman sublevels will split on six sublevels of a hyperfine 

structure. As affected by the high-frequency field Нν the transitions will appear 
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  Hyperfine splitting of levels MJ=1/2 and MJ =-1/2 of the ion Mn2 + 

and transitions between them. 
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governed by the following selection rules: ∆MS = ±1: ∆MI=0 (the nuclear moment at 

the time of electronic transition does not change its orientation). As a result the given 

EPR line of the fine structure will split on six components (see Fig. 8). 

 A manganese ion in a calcite, as we saw, has five lines of the fine structure; each 

of them will split on six lines of the hyperfine structure. Hence, the EPR spectrum of 

the Mn2+ ion in a calcite will consist of thirty lines of absorption. Unlike for a calcite, 

the EPR spectrum of the Mn2+ ion in fluorite will have no fine structure, i.e. will 

consist only of six lines of a hyperfine structure. 

 Research of hyperfine structure of EPR line gives the possibility to determine 

the spin of a nucleus of a paramagnetic ion, allows to evaluate the state of its 

unpaired electrons.  

 

PROCEDURE AND TECHNICS OF EXPERIMENT 

 

1. EPR radio spectrometers 

 

 Radio spectrometers of various types are used for recording the EPR spectra. 

 EPR spectrometers can be subdivided by methods of signal amplification into 

the following types: 

 1) video spectrometer with low-frequency signal amplification; 

 2) radio spectrometer with double modulation of the magnetic field, resonant 

amplification and synchronous detection at the second modulation frequency; 

 3) superheterodyne spectrometer with intermediate frequency amplification. 

 Sensitivity is the prime parameter of radio spectrometers. 

 The minimal number of the paramagnetic centers detected by a spectrometer in 

the absence of the saturation effect without account of intrinsic noises of the 

measuring circuit is equal to:  ,
00

min P
fkT

VQ
N ∆

=
α  
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where α - constant depending on type of the device; Q0 - resonator quality factor (Q-

factor); V - effective volume of the test sample; ∆f - pass band of a measuring track; 

Р0 - microwave power. 

 At the same conditions: identical power of the radio-frequency field (of the 

order of units of the milliwatt), Q-factor of the resonator, effective volume of the test 

sample, etc., a superheterodyne radio spectrometer shows the greatest sensitivity, the 

least - video spectrometer.  

 The problem of the sensitivity determination of any installation is rather 

difficult, since not only the test sample parameters (EPR line width, configuration of 

the sample, etc.) are of importance. Therefore the majority of experimentalists 

determine the sensitivity of the installations on the substance called αα’-diphenyl-β- 

picrylhydrazyl (2,2-diphenyl-1-picrylhydrazyl) (DPPH). Take the known batch of 

this radical and by measuring a signal-to-noise ratio determine the sensitivity of the 

installation. The spectrometer sensitivity enhances with frequency step-up of a 

spectrometer. In average the sensitivity of various types of the spectrometers of a 

three-centimeter band (X-band, frequency 10 GHz) is as follows: superheterodyne 

spectrometer – 1011-1012, spectrometer with double modulation – 1010-1011, video 

spectrometer – 1014-1016 magnetic centers per volume unit. 

 

2. Description of Varian Е-12 EPR-spectrometer  

 

 Radio spectrometer EPR E-12 of a three-centimeter band (X-band with 

frequency around 9.5 GHz) is intended for observation and recording on a plotter the 

EPR spectra of the free radicals, paramagnetic ions, radiation damage centers and 

other paramagnetic particles. 

 The frequency of a microwave field at which there is an energy resonance 

absorption by the paramagnetic sample (EPR frequency), as it is known, is related to 
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the value of static magnetic field into which the sample is placed by the following 

relation: 

hν = µH0     (17) 

Thus, it is evident that the resonance absorption line can be observed at change of the 

microwave field frequency and constant value of the magnetic field or at change of 

the magnetic field value and constant frequency of the microwave field. In radio 

spectrometer Е-12, as well as in general in EPR spectrometers, the second variant of 

observation of resonance absorption of the microwave field energy by substance is 

used. 

 The graphic lines of the absorbed microwave energy by the sample registered by 

a radio spectrometer versus intensity of the static magnetic field affecting the sample 

is the EPR spectroscopic lines of substance. 

 Spectrometer Е-12 is the EPR-spectrometer of reflective type. The block 

diagram of EPR-spectrometer Е-12 is shown on Fig. 9. 

 Klystron generator (1) is used as the source of the energy in the microwave 

range which frequency can change within a small band 8.8 – 9.6 GHz. The 

microwave energy of the klystron generator enter into a spectrometer waveguide 

transmission line through a gate (2) that prevents hit back of microwave energy into a 

klystron, reflected from a loading that can lead to malfunctions in generator 

operation. The microwave energy, entering into the transmission line, if necessary, 

can be attenuated on 30 dB (1000 times) by means of the step attenuator (3). The 

smooth change of power is carried out by the adjustable attenuator (4). Hitting on the 

circulator (5), the microwave energy is directed to the rectangular resonator (6) in 

which it excites the oscillations Н102 through a coupling aperture. Changing the 

dimensions of a coupling aperture, it is possible to match the resonator with a 

waveguide that brings microwave energy to it, i.e. to achieve, that energy hitting on 

the resonator would completely, without reflection, be absorbed by the resonator and 

dissipated in it. Usually it is not necessary to achieve full matching of the resonator 

with a waveguide: part of the power should reflect from the resonator and, having 
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transited through the circulator (6), hit on the microwave detector (7), creating a 

current of 200-250 µA in it. In this case the detector will work in the linear mode and 

have the maximum sensitivity. 

 

 
Fig. 9. Block diagram of Varian E-12 EPR spectrometer. 1 – klystron; 2 – gate; 3 – 

step attenuator; 4 – smoothly adjustable attenuator; 5 – circulator; 6 – resonator; 7 – 

microwave detector; 8 – unit for stabilization and magnetic field scan; 9 – generator 

of the magnetic field modulation (100 kHz); 10 – modulation coils; 11 – narrow band 

amplifier of EPR signal; 12 – synchronous detector of EPR signal; 13 – filter; 14 – X-

Y recorder; 15 – transmission line of automatic frequency control (AFC) generator 

(70 kHz); 16 – narrow band amplifier of AFC transmission line (70 kHz); 17 – 

synchronous detector of AFC transmission line; 18 – voltage summator; 19 – 

directional coupler (directional-phase shifter); 20 – adjustable attenuator; 21 – 

variable phase shifter; 22 – bypass microwave transmission line switch; 23 – power 

unit of klystron; 24 – windings of magnet; 25 – magnetic gaussmeter with detecting 

element; 26, 27 – Hall probe of the magnetic field stabilization system. 
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The test sample is placed in the antinode of the magnetic component of the 

electromagnetic field of the resonator which is introduced into the resonator via the 

reach-through hole in a narrow wall of the resonator. The schematic setup of the 

resonator and a pattern of the field lines of magnetic and electrical components of 

electromagnetic field in it are shown in Fig. 10. At resonance conditions the sample 

starts to absorb the microwave field power that leads to change of properties of the 

resonator and, as consequence, to change of the power reflected from it. This change 

is registered in the form of EPR spectrum of the test sample. 

For observation of the spectroscopic lines change slowly the magnetic field by 

the power supply, stabilization and field scan unit (8) near the resonant value Н0 with 

the amplitude larger than the absorption line width. At the moment when the field 

passes through the resonant value Н0 there is microwave energy absorption by the 

paramagnetic sample which is registered by the microwave detector - the microwave 

energy receiver. This is illustrated in Fig.11 which shows the magnetic field scan and 

a view of microwave power curve on the microwave detector in the absence and in 

the presence of the sample in the resonator.  

1 

2 

3 
4 

5 

6 

7 

Fig. 10. The rectangular resonator with oscillations of the type Н102 of Varian E-12 
spectrometer. 1 – rectangular wave guide; 2 –resonator; 3 – coupling iris of a wave 

guide with the resonator which hole dimension can be changed; 4 – branch pipe for test 
sample 5 input into the resonator; 6, 7 – magnetic and electric field lines of a resonator. 



32 

 

 

 

 The absolute value of power absorbed by the sample is very small and only 

slightly exceeds a noise level. To amplify the signal-to-noise ratio in the device a 

method of double modulation of a magnetic field (the first modulation - sweep) is 

used. The essence of the double modulation method is as follows: slowly changing 

magnetic field is modulated by the high-frequency field with frequency 100 kHz (the 

generator (9) in Fig. 9) and with amplitude that is several times smaller compared 

with the absorption line half-width. For recording the very narrow lines the 

spectrometer is provided with possibility to use the lower modulation frequencies: 10 

kHz, 1 kHz, 270 Hz, or 35 Hz. 

 Two coils (10) glued to wide walls of the resonator are used as the modulating 

device. The walls thickness in the location of coils is reduced to the value less than 

the thickness of a skin layer for frequency 100 kHz (approximately to 0.05 mm) so 

that the modulating field penetrate better through the metal walls of the resonator. If 

б)
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Fig. 11. Power curves of the microwave field on the microwave detector in 
the absence of the sample in the resonator (curve a) and in the presence of the 

sample in the resonator (curve b). 
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the slowly changing magnetic field has the value far from the resonant value, a 

voltage on the microwave detector does not change. When approaching the resonance 

the absorption of microwave power by a paramagnet increases, and since the value of 

the magnetic field changes within the small limits with frequency of 100 kHz, the 

microwave power, incident on the microwave detector, i.e. and the detector current, 

with the same frequency starts to change. Fig. 12 shows that the alternating-current 

amplitude with frequency of 100 kHz on the microwave detector output at constant 

modulation amplitude of the magnetic field is the larger the greater is the slope of the 

EPR line at the given field value Н, and the alternating current phase differs on 180о 

on opposite wings of the line (Fig. 12 a,b). If the magnetic field has the value Н0 

(adjusted precisely on center of the EPR line), there appears a signal of small 

amplitude with the doubled modulation frequency on the microwave detector and a 

signal with frequency 100 kHz is absent (Fig. 12). 

Thus, application of "small" modulation of the magnetic field allows to use 

amplification of EPR signal after the microwave detector in the narrow frequency 

UД
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Fig. 12. A signal on the microwave detector output at "small" modulation of the magnetic 
field on wings (a, b) and at the center (c) of EPR lines. The output voltage of the synchronous 

detector versus the magnetic field when crossing the EPR line. 
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range (∆f ≈10 kHz) at modulation frequency (100 kHz) by means of narrowband 

amplifier (11) that essentially reduces the voltage of noise at output of registering 

system that have "white" spectrum and increases a signal-to-noise ratio, i.e. 

sensitivity of a spectrometer. 

After the narrowband amplifier the EPR signal is rectified by the synchronous 

detector (12) which output voltage is proportional to the input voltage amplitude and 

the sign of the output voltage depends on the input voltage phase in respect to a 

reference voltage. Figure 12 shows the output voltage of the synchronous detector 

versus the magnetic field intensity. At the modulation amplitude of the magnetic 

field, much smaller the EPR line width, the voltage at output of the synchronous 

detector is close to derivative of the absorption line.  

Having transited the synchronous detector with the reference frequency 

100 kHz the signal after the additional filtration comes on two-coordinate recording 

potentiometer (14). The horizontal sweep of a recorder is synchronized with slow 

saw-toothed field scan. The scan time can be changed from 30 seconds to 16 hours, 

the sweep amplitude – from 0.2 to 10000 Oe. When recording the signals on a 

recorder the additional noise suppression by means of RC - filters (13) with time 

constant from 0.3 to 100 s is provided that raises the sensitivity of the device. 

For normal operation of the radio spectrometer it is necessary that frequency of 

the klystron generator and the working resonator are precisely coincided. For 

elimination of their possible mismatch the automatic frequency control (AFC) 

scheme of a klystron on resonance frequency of the working resonator is used. The 

principle of operation of the regulating system uses the possibility of frequency 

change of a klystron by voltage change on its reflector. 

 The frequency control is carried out as follows. Apply additional voltage with 

small amplitude and with frequency 70 kHz on a klystron reflector from the AFC 

generator path (15) owing to that the frequency of a klystron appears to be 

modulated. If the klystron carrier frequency does not coincide with intrinsic 

frequency of the resonator, it appears that the microwave power reflected from the 
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resonator is modulated and consequently, and also the voltage on the microwave 

detector. The amplitude and phase of this modulation are determined by the value and 

sign of mismatch, i.e. the difference of the klystron frequency from the intrinsic 

frequency of the resonator, therefore the voltage component at the output of the 

microwave detector with frequency of 70 kHz can be used for stabilization of the 

klystron frequency, having amplified with the amplifier (16) and synchronously 

detected with the detector (17). The regulating voltage from the synchronous detector 

is applied on a klystron reflector through the summator (18) and polarity of the 

connection is selected in such manner as to compensate the frequency drift of a 

klystron from frequency of the working resonator. 

If there is a necessity to carry out the EPR spectra measurements at very small 

microwave power (for example, in samples with long times of spin-lattice relaxation), 

it may appear that the microwave power reflected from the resonator is not enough to 

bring the microwave detector to the linear mode (to the linear sector of its current-

voltage characteristic). At low power of the signal reflected from the resonator the 

AFC system can cease to work. In this case the bypass microwave path is used. By 

means of the directional coupler (19) a small portion of microwave power is tapped 

from the basic path through the regulated attenuator (5) and the phase transformer 

(21) directly on the microwave diode, bypassing a path in which the resonator is 

included, containing the sample in which EPR is observed. If not necessary, this 

bypass path can be disconnected by the cutout switch (22). 

Except recording the EPR spectra with a recorder, the spectrometer has the 

home-made automated control and data collecting systems which allows to control 

the magnetic field scan and to record the spectrum in a digital form directly into the 

computer memory. This system consists of the communication device with the built-

in analog-to-digital converter and the computer with the program, operating with 

Windows XР. 
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3. Preparation of the spectrometer for operation 

Open the water gate for cold water supply to the heat exchanger unit. Switch 

on the actuator (green button on a dashboard located on a wall near to the power unit 

of the magnet) of electric power supply of power units of heat exchanger and the 

magnet of a spectrometer, switch on the heat exchanger pump (tumbler on the heat 

exchanger unit). Switch on the power supply sockets of the frequency meters, 

computer, magnetic gaussmeter located over the magnet. Switch on the computer and 

the interface of the spectrometer with the computer. Check up the position of the 

tumblers and switches on the console of the spectrometer and the microwave unit. 

Their positions should be as follows: 

 

The radio-frequency unit: 

 
MODE switch (extreme left) shall be in STBY position; 

LEVELED-UNCALIB switch – in LEVELED position; 

ROWER handle– in position of not more than 0.2 mW (30 dB); 

AFC switch – in NORM position; 

AFC MODULATION switch – in position 5-7; 

REFERENCE ARM – in ABS position; 

РHASE – in midposition. 
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Console: 

 

 

 

The module of receiver and modulation (100 kHz): 

 

RECIEVER GAIN (amplification of receiver) – in position 10 x 100; 

MODULATION AMРLITUDE – in position 2 Gauss р-р; 

OUTРUT ZERO – in midposition; 

TIME CONSTANT – in position 0.30. 
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SYSTEM FUNCTION SELECTOR: 

 

CAVITY MODULATION (resonator) – in position I 100 kHz; 

RECORDER INРUT – in position 100 kHz. 

 

FIELD CONTROLLER 

 

FIELD SET - 03300 G; 

VARIABLE SCAN – in position CALIB 

(UNCAL lamp is switched off); 

SCAN RANGE – in position 1000 Gauss 

 

 

 

 

 

 

 

 

4. Operation procedure with a spectrometer 

 

Switch on the console power (the switch is at the left below on the console). 

MODE switch (extreme left, microwave unit) turn to TUNE position, the 

indicator flickers, the unit is turned on in 30 s (this delay is provided for klystron 

warming up). 

REFERENCE ARM – switch to OFF position. The klystron generation band is 

observed on the oscilloscope (Fig. 13a).  

Find and adjust the resonance dip at center of the generation zone band with 

FREQUENCY handle (Fig. 13b). 
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Achieve the maximum resonance dip by adjustment of matching device over 

the resonator, up to a base line of the generation band. 

Turn the REFERENCE ARM to ON (ABS) position. Achieve the symmetrical 

resonance in the generation band by rotating REFERENCE ARM RHASE (Fig. 13d). 

Turn REFERENCE ARM to OFF position. 

 

Turn MODE switch (extreme left, microwave unit) to OРERATE position.  

AFC OUT indicator shall be in the middle of the scale (near to zero), showing 

that AFC (automatic frequency control) operates. If not, then achieve the indicator 

position nearby zero with handle FREQUENCY. If it is impossible or AFC OUT 

indicator does not responding, it is necessary to return to TUNE position and to check 

up a band and a dip.  

If the indicator works well it is necessary to gradually increase the power by 

ATTENUATION handle (reducing the attenuator index towards 0 dB), 

simultaneously setting the adjustment of the resonator connection and achieving that 

Fig. 13. Procedure for 
adjustment of the resonator. 
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the current indicator DET CURR is around zero. After that return ATTENUATION 

handle position back on 30 dB.  

Turn REFERENCE ARM to ON position. DET CURR indicator shall be 

between 150 and 300 µA.  

Important! DO NOT set РOWER LEVELER in OFF position when 

REFERENCE ARM is in ON position.  

By adjusting REFERENCE ARM РHASE achieve the maximum current on 

DET CURR current indicator.  

Reduce attenuation by ATTENUATION handle from 30 dB towards 0. At that 

the current of DET CURR index shall remain constant within the whole power band. 

If the current changes then adjust ATTENUATION on 40 or 50 dB. Record the value 

of a current at this level then reduce ATTENUATION down to a minimum, 

simultaneously maintaining the value of the recorded current value by small 

adjustment of the resonator connection. 

Adjust with handle AFC MODULATION the minimal noise level on the 

oscilloscope or on the output indicator 100 kHz of RECIEVER LEVEL unit. If 

necessary increase the amplification RECIEVER GAIN on the unit 100 kHz. The 

optimum position of AFC MODULATION handle depends on the microwave power 

level hitting into the resonator.  

 

Measurements of spectra 

After engaging and adjustment of spectrometer it is necessary to measure the 

klystron frequency. The frequency of a microwave signal is divided on 1000 by 

Hewlett-Рackard HР5260A divider and measured by frequency meter SEYFFER 

GR1192-B. After that start the program on the computer for measuring the EPR 

spectrum (double click on VarianРrim icon on a desktop). The program window is 

shown in Fig. 14. 

The main area of the program window is filled by graphic presentation of the 

measured spectrum. A small yellow square on the top of this field shows the running 
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number of the measured spectrum point. The running intensity in mV is shown in a 

small yellow square on the right. The position of this small square along Y-axis 

corresponds to the running positions of the measured point along Y-axis of the 

spectrum plot. 

 

 

• Set the following parameters of communication and control device:  

ADC range – 625 mV 

Scan Time – 00:05 (5 minutes) 

• Click on Capture button. The system will automatically set the magnetic field in 

extreme left (low field) position of the set scan range. 

• Start of measurement is carried out by pressing the button ►. The button ◄ 

starts spectrum recording in the opposite direction. Buttons with double triangles 

allow fast rewind. The button ▌▌ allows to pause temporarily the spectrum 

record. The termination of spectrum record is carried out by the button ■.  

Fig. 14. Window of program for EPR spectrum recording. 
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At first it is necessary to make a trial record of spectrum for selection of the 

amplification constant (RECIEVER GAIN). After that it is necessary to rewind the 

index of running point of the spectrum to extreme left position and start the 

measurement. At the beginning of recording it is necessary to pause the record (▌▌ 

button), measure the value of the magnetic field by means of magnetic gaussmeter 

Ш1-1 and frequency meter Ч3-34, record this value and the corresponding point 

number of the spectrum in the logbook. After that continue record of the spectrum by 

pressing the ► button. Near to the right end of the spectrum repeat the measuring 

procedure of the magnetic field value. 

After finishing of spectrum record it is necessary to record the digital data using 

the menu File-> Save. 

To turn the spectrometer to the reset state (record mode) it is necessary to press 

the Release button. 

 

Shutdown 

 

Move the power adjustment handle ATTENUATION in MIN (60 dB) position. 

MODE switch in STANDBY position. 

Switch off the console power. 

Switch off the heat exchanger, shut off the water. 

Switch off the power. 

 

5. Measurement of the magnetic field value  

 

 The magnetic field measurement is carried out by means of the magnetic 

gaussmeter Ш1-1, allowing the measurements with accuracy up to few hundredth 

parts of per cent at field inhomogeneity not exceeding 0.02% per 1 cm. The 

measuring limits - from 250 to 25000 Oe. 
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Operation principle of the magnetic inductometer Ш1-1 

 The operation principle of the magnetic gaussmeter "Ш1-1” is based on the 

phenomenon of nuclear magnetic resonance (NMR). If the diamagnetic substance 

with the paramagnetic nuclei (with the nuclei having the magnetic dipole moments) is 

placed in the static magnetic field with the value Н, the dipoles will start to precess 

around the applied field direction. The precession frequency is given by the Larmor 

equation: 

ω = γH 

where ω - cyclic frequency of precession, γ - gyromagnetic ratio of the nucleus. 

 To detect a precession of the magnetic dipoles the substance is placed in the 

inductance coil of the sensor which is a part of LC-tank of the high frequency 

generator. Change smoothly the frequency of the generator. When the frequency of 

the generator becomes equal to the precession frequency of the nuclei, there is the 

resonance phenomenon, i.e. energy absorption of the high-frequency magnetic field 

by nuclei of the working substance. This energy absorption, equivalent to reduction 

of a LC-tank Q-factor and, hence, equivalent to resistance of the generator circuit, 

causes the amplitude reduction of the generated oscillations. The generator works in 

the small oscillations mode at which the largest sensitivity to reduction of a Q-factor 

of the high-frequency coil of the sensor at the moment of NMR is provided. The 

magnetic field modulation by alternating current with frequency of 50 Hz with the 

help of the modulation coil of the sensor is provided owing to the NMR requirements 

are repeated twice during the modulation period. 

 At periodical change of the magnetic field intensity near the resonant value the 

amplitude change of the generated oscillations is converted after detection into the 

alternating current signal - NMR signal. Record the NMR signal and measure the 

frequency of the generator, find the magnetic field value from the equation: 

H=C⋅f 

where f - frequency of the generator, C - constant of the measuring sensor. The sensor 

uses the NMR of hydrogen (protons) for which C = 0.234874 Oe/kHz. 
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Preparation for measurements 

 1. Set the toggle switch "Power (Сеть)" in the position "Power On (Вкл)", at 

that the indicator shall light up. Warm up the device for 15 minutes. 

 2. Press the button “Beam centering (Центровка луча)”, then set the beam at the 

mark on screen center with the rotary knob “Beam centering (Центровка луча)”.  

 3. Set the rotary knob "Frequency (Частота)" on a mark corresponding to the 

measured induction, for that use the approximate calibration curves placed on the 

front panel of the device. At measurements the sensor 3 is used, the handle "Feedback 

coupling (Обратная связь)“ is set in position III. 

 4. Set a voltage of the generated oscillations within the limits corresponding to 

4-10 µA on a pointer indicator. Set the rotary knob "Amplification (Усиление)" so 

that the oscilloscope screen will show the device noise.  

 5. Set the switch “Level control (Контроль уровня)” in position “Modulation 

(Mодуляция)”. Set the current of modulation corresponding to 4-10 µA with a 

pointer indicator by the rotary knob “Modulation (Mодуляция)”.  

 

Measurements operation 

 1. Place the sensor in the magnetic field. By slowly rotating the rotary knob 

"Frequency (Частота)" achieve appearance of the NMR signal on the screen 

(Fig. 15). Decrease the modulation current to the minimum possible value at which 

the NMR signal is clearly observed on the oscilloscope screen with the rotary knob 

“Modulation (Mодуляция)”. 



45 

 

 2. Achieve intersection of the resonance curves with the rotary knob "Phase 

(Фаза)". Match the intersection point of the resonance curves with the mark in the 

screen center with the rotary knob "Frequency (Частота)". This adjustment 

corresponds to occurrence of the NMR signal at current passage in the modulation 

coil through zero values, and the generator frequency in this case precisely 

corresponds to the requirement Н = Cf (NMR requirement), where Н – the value of 

the measured magnetic field. 

 3. Measure the device generator frequency with a frequency meter and 

determine the magnetic field intensity. 

Fig. 15. NMR signal on the screen of the magnetic inductometer Ш1-1. 
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CALCULATION PROCEDURE FOR SPIN HAMILTONIAN CONSTANTS 

OF THE Mn2 + ION IN CaF2 CRYSTAL 

 

 The crystal CaF2 (fluorite) belongs to the cubic crystal system and has face-

centered space lattice (space group Oh
5). Each Ca2 + ion (or isomorphically 

substituting it Mn2+ ion) is located at center of the cube which vertexes are filled by 

the fluorine ions. In a lattice in the direction of the fourfold axis these cubes are 

alternated with cubes in which center the cation is absent, and the cations nearest to 

the given cation are located in the center of the twofold axis of the same cubes. 

 According to high symmetry of the nearest environment the Mn2+ EPR spectrum 

in fluorite has no fine structure, consists of six lines of the hyperfine structure 

(Fig. 16) and is described by the following spin Hamiltonian (the axis z coincides 

with the static magnetic field direction): 

H=gβHSz+A ′(SxIx+SyIy+SzIz). 

The first term describes interaction with the external magnetic field (Zeeman 

splitting), the second one - interaction with the magnetic moment of the nucleus 

(hyperfine spectrum structure). 

 Here g - factor of spectroscopic splitting, β - Bohr magneton, Sx, Sy, Sz - moment 

operators of the ion electronic shell, A′ - hyperfine structure constant, Ix, Iy, Iz - 

moment operators of the nucleus of the ion. The values of g-factor and hyperfine 

interaction constant can be determined from the EPR spectrum analysis. 

 The observed EPR spectrum indicates that the term of the Hamiltonian that 

describes the hyperfine structure is small compared with the Zeeman energy. 

Therefore the interpretation of spectra is carried out with the assumption that the 

Zeeman energy is the main unperturbed part of the Hamiltonian and the hyperfine 

interaction is considered in the form of the perturbation V. 
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 The eigenvalues of the Hamiltonian can be found as follows. Using the 

electronic wave functions of operator Sz we find the eigenvalues taking into account 

the second order of perturbation theory:  

 

EM=EM
(0)+EM (1)+EM (2)=gβHM +<M|V|M> +Σ′

M ′[(|<M|V|M′>|2)/(EM
(0)-EM′

(0)), 

 

where EM
(0), EM

(1), EM
(2) – are the energy level values in the zero, first and second 

approximations; M and M′ - magnetic quantum numbers of the electronic shell of an 

ion. 

 The resonance values of the magnetic field in which the EPR-transitions M, m – 

M±1, m (m - magnetic quantum number of the nuclear moment of an ion) are 
observed, with accuracy up to the second approach will read as follows: 

HM, m - M±1, m=H0 – A⋅m – (А2/2H0) ⋅[35/4 – m2 – m ⋅(2M-1)]. 

Here H0 = (hν/gβ), where ν - measuring frequency and the hyperfine interaction 

constant A is expressed in gβ units (A = A′/(gβ)) and is measured in Oersted. 

Hрад∆H

Нтеор

Hэксп

 
Fig. 16. EPR spectrum (primitive and 

derivative) of the Mn2 + ion in CaF2 crystal. The 
EPR line of the free DPPH radical is observed 
near the spectrum center thus allow to measure 
the Mn2 + ion g-factor without measurement of 

the spectrometer frequency.  
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 It is better to determine the Hamiltonian constants according to the following 
scheme. If we write the values of fields for each value of the quantum number of the 
nuclear moment m we will obtain the following equations: 

  HM, 5/2 – М±1,5/2=H0 – (5/2) ⋅A – (А2/2H0)⋅ [10/4 – (5/2) ⋅(2M-1)]; 

  HM, 3/2 – М±1,3/2=H0 – (3/2) ⋅A – (А2/2H0)⋅ [26/4 – (3/2) ⋅(2M-1)]; 

  HM, 1/2 – М±1,1/2=H0 – (1/2) ⋅A – (А2/2H0)⋅ [34/4 – (1/2) ⋅(2M-1)];  (18) 

  HM,-1/2 – М±1,-1/2=H0 + (1/2) ⋅A – (А2/2H0)⋅ [34/4 + (1/2) ⋅(2M-1);] 

  HM,-3/2 – М±1,-3/2=H0 + (3/2) ⋅A – (А2/2H0)⋅ [26/4 + (3/2) ⋅(2M-1);] 

  HM,-5/2 – М±1,-5/2=H0 + (5/2) ⋅A – (А2/2H0)⋅ [10/4 + (5/2) ⋅(2M-1)] 
 It is easy to see that if we take differences for pairs: 

HМ,-m – М±1,-m – HМ, m – М±1, m,  
they will be independent on corrections to within the second order of a perturbation 
theory, namely: 

HМ,-m – М±1,-m – HМ, m – М±1, m = 2Am. 
Taking m values from +5/2 to +1/2, we obtain three relations that allow to determine 
the values of the hyperfine interaction constant from the experimentally measured 
values of the resonance fields: 

HМ,-5/2 – М±1,-5/2 – HМ, 5/2 – М±1,5/2 = 5A; 

HМ,-3/2 – М±1,-3/2 – HМ, 3/2 – М±1,3/2 = 3A; 

HМ,-1/2 – М±1,-1/2 – HМ, 1/2 – М±1,1/2 = A. 
We then obtain A values from each relation and taking the average. 
 To determine the spectroscopic splitting factor g it is supposed that the g-factor 

of the Mn2+ ion is equal to the g-factor of the free radical (α,α’-diphenyl-β-
picrylhydrazyl) and is equal to 2.0036, and from equations (18) one calculates the 
theoretical positions of lines with this g-factor, taking the measured field as H0 in 
which the EPR line of the free radical is observed. Taking differences of the 
theoretical calculations with the experimentally observed resonance values of the 

fields, we obtain the shift ∆H of each EPR line due to deviation of the g-factor of the 
Mn2+ ion from the g-factor of the free radical. 
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 From the shift ∆H averaged over all lines we determine the true value of the 

spectroscopic splitting factor: 

g = (gрадHрад) / (Hрад±∆H). 

 The field of radical is usually measured at experiment. The sign of ∆H is taken 

depending on what prevails: theoretical calculations or experiment. If the theoretical 

calculations give the overestimated values of the resonance fields then take the sign 

“-“, if underestimated “+”. 

 

RESEARCH TASK 

Research the EPR spectrum of the Mn2+ ion in CaF2 fluorite: 

 1. Measure the resonance values of the static magnetic field HRes for all 

observable EPR-transitions, including the EPR line of DPPH radical; 

 2. Calculate the constants g and A of the spin Hamiltonian. 

 

WORK PROCEDURE 

 1. Study the EPR theory, procedure of experiment and experimental technique, 

description of the devices used in installation. 

 2. Pass the test according to section 1 and obtain the permit-to-experiment. 

 3. Perform the experimental research of the EPR spectra. 

 4. Perform the calculations specified in the research task. 

 5. Pass the test according to sections 3 and 4. 
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PART 2 

1. Basics of EPR theory of rare-earth ions in ionic crystals 

 

1.1. Free ions 

 

The family of the rare earth ions or lanthanides forms a special group of the 

elements which chemical properties are very similar. Their valence is usually equal to 

three. The closed electronic shells correspond to the atomic core of xenon: 

1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p6; 

the La3+ ion is in this state. In the subsequent ions the electrons gradually fill a 4f-

shell; the Lu3+ ion has the filled 4f-shell. Table 1.1 shows the basic characteristics of 

triple-charged ions.  

Outside of the atomic core of a xenon the electrons have a configuration 4f n, where  

n = Z – 57 and Z – atomic number of lantanide. In almost all cases the magnetic 

properties of ions are determined by the number of electrons in a 4f-shell. The 

coupling of electrons is close to LS-type (Russell-Saunders coupling), at that the 

ground state of the ion is determined by the Hund’s rule. The total moment of 

gyration (angular moment) is described by the quantum number J L S= +  (L and S – 

are the orbital and spin moments) and the corresponding value of Lande splitting 

factor (g-factor): 

 ( ) ( )
( )

1 13 .
2 2 1J

L L S S
g

J J
+ − +

= −
+

 (1) 

The resulting electronic magnetic dipole moment is equal to: 

 ,J J Bg µ= −μ J  (2) 

where 2B e mcµ = h  – Bohr magneton. Equation (2) is valid while it is possible to 

neglect all interactions which mix the states with different J. 
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The Hamiltonian of spin-orbit interaction ( )ξ l s  in LS – coupling approach may be 

written as follows: 

 ΗSO = λ (LS). (3) 

For the basic terms obeying the Hund’s rule (i.e. the terms with the maximum spin S), 

( )2 .Sλ ξ= ±  Plus and minus signs correspond to the electronic shells that are less or 

more than half filled, respectively. The spin-orbit interaction splits the given term on 

a multiplet of levels with different values of the full angular moment J. 

The energy of level J is determined by the equation:  

ΕJ ( ) ( ) ( ){ }1 1 1 1 ,
2

J J L L S Sλ= + − + − +                                   (4) 

from which the Lande intervals rule is as follows: 

 ΕJ – ΕJ–1 =λ J. (5) 

Experimentally these intervals are determined from the optical absorption and 

luminescence spectra. 
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Table 1.1 
 

 

1.2. Lanthanide compounds 

 

The lanthanide ions enter into many chemical compounds, but we will restrict 

ourselves to discussion of only several types of compounds, in which the local 

symmetry is not reduced to below the axial one and in which a series of the Ln3+ ions 

has been studied. 

 

Element 

 

Atomic 

number 

Z 

 

Ion 

 

Electron 

confi-

guration 

Ground 

state 

Lande 

splitting 

factor 

g J 

Excited 

state 

Energy of 

excited 

state,  

cm–1 

Lanthanum 57 La3+ 4f 0     

Cerium 58 Ce3+ 4f 1 2F5/2 6/7 2F7/2 2200 

Praseodymium 59 Pr3+ 4f 2 3H4 4/5 3H5 2100 

Neodymium 60 Nd3+ 4f 3 4I9/2 8/11 4I11/2 1900 

Promethium 61 Pm3+ 4f 4 5I4 3/5 5I5 1600 

Samarium 62 Sm3+ 4f 5 6H5/2 2/7 6H7/2 1000 

Europium 63 Eu3+ 4f 6 7F0 0 7F1 400 

Gadolinium 64 Gd3 + 4f 7 8S7/2 2 6P7/2 30000 

Terbium 65 Tb3+ 4f 8 7F6 3/2 7F5 2000 

Dysprosium 66 Dy3+ 4f 9 6H15/2 4/3 6H13/2 3400 

Holmium 67 Ho3+ 4f 10 5I8 5/4 5I7 5000 

Erbium 68 Er3+ 4f 11 4I15/2 6/5 4I13/2 6500 

Thulium 69 Tm3+ 4f 12 3H6 7/6 3H5 8200 

Ytterbium 70 Yb3+ 4f 13 2F7/2 8/7 2F5/2 10000 

Lutetium 71 Lu3+ 4f 14     
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The first compounds of these type are ethylsulphates of lanthanides 

Ln(C2H5SO4)3·9H2O. The space symmetry group of ethylsulphates is P63/m, a point 

symmetry group of the Ln3+ ion environment – С3h. This ion has nine molecules of 

water as the nearest neighbors: six of them form a triangular prism, at that three 

molecules are located above, and three – below the mirror plane containing three 

remained water molecules and Ln3+ ion. In water molecules the oxygen atoms are the 

nearest to the rare-earth ion; in erbium ethylsulphate, for example, the distances from 

the Er3+ ion to the six О2– ions forming a prism, are equal to 2.37 Å, and the distances 

to three O2– atoms, lying in the symmetry plane, – 2.52 Å. The symmetry of the 

nearest environment of the Ln3+
 ion is close to D3h (the symmetry elements of group 

D3h – vertical triad axis, horizontal plane and three vertical symmetry planes). 

The second group of compounds very similar with ethylsulphates from EPR 

results, form anhydrous trichlorides of type LaCl3 which crystallize in structure with 

space symmetry С63/m; the point symmetry of environment of ion is С3h. The nearest 

neighbors of the La3+ ion are the nine approximately equidistant Cl– ions. Three ions 

of chlorine lie in one plane with La3+ at a distance of 2.97 Å from it. Six other ions 

are located at a distance of 2.99 Å from the La3+ ion, at that three of them lie above in 

the parallel plane, and three - in the parallel plane below La3+. All rare-earth ions 

introduced into LaCl3 as an impurity do not change the structure of this compound, 

but the major part of undiluted trichlorides with the heavier ions have different 

structure (orthorhombic), similar to that of YCl3. 

The third group with a bit different symmetry are formed by a nitrates of the 

type Ln2Mg3(NO3)12·24H2O. These are the rhombohedric crystals with the space 

group R3 . The Ln3+ ion is surrounded by twelve atoms of oxygen with the distances 

to which are 2.64 Å in average; These atoms belonging to (NO3)– are located in the 

corners of the distorted icosahedron. Research of optical spectra and EPR confirmed 

that the crystal electric field has symmetry close to icosahedral. The point symmetry 

group of the Ln3 + (Ln = La, Ce, Pr, Nd) ion environment are close to C3, but in 

general the optical spectroscopy and magnetic resonance data were interpreted with 
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C3v symmetry. The nitrates are remarkable in the sense that the rare-earth ions in 

them are separated by large distances, e.g. in cerium-magnesium the nearest Ce3+ ions 

are located at a distance of 8.56 Å. Due to strong natural dilution the nitrates 

(especially cerium-magnesium) are used in ultralow temperature equipment – as 

paramagnetic salts in the adiabatic demagnetization refrigerators and thermometric 

compounds. Ethylsulphates of lanthanides are also magnetically diluted, the nearest 

Ln3+ ions in them are separated by the distance of 7.1 Å (along the c axis). In 

trichlorides the nearest rare-earth ions are also located along the c axis but the 

distance between them is much smaller – 4.3 Å. 

The fourth group of compounds is formed by tetrafluorides of lanthanides 

LiLnF4 (Ln = Tb, Dy, Ho, Er, Tm, Yb and Y). They have tetragonal structure of 

scheelite (CaWO4), space symmetry group I41/a. The point symmetry group of the 

Ln3+ ion is S4; the lanthanide ion fills two positions in a unit cell, but these positions 

are related by (001) plane reflection and are therefore the magnetically equivalent. 

The nearest environment of the Ln3+ ion consists of the eight F– ions at the distance of 

2.3 Å, while the lithium ion has the tetrahedral environment with tetragonal 

distortion. 

The fifth group of crystals consists of phosphates, arsenates and vanadates of 

lanthanides LnBO4 (B = P, As, V). At room temperature these crystals have 

tetragonal zirconium structure (ZrSiO4), space symmetry group 1I4 / amd . The point 

symmetry of the Ln3 + ion environment – D2d, the nearest environment is the four О2– 

ions at a distance of 2.3 Å. 

Finally, the sixth group is the crystals with cubic structure of elpasolite. Their 

joint formula – A2BLnCl6, space symmetry group (at room temperature) – Fm3m, the 

point symmetry of the Ln3+ ion environment (also for univalent ions A+ and B+) – 

cubic. The Ln3+ ions are located in the sites of face-centered cubic (fcc) lattice, the 

distance between them is approximately 7 Å. Each lanthanide ion is in the center of 

regular octahedron of the Cl- ions, the same environment has the B+ ion. The A+ ion is 
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located in the center of cube at that the four B+ ions and the four Ln3+ ions are located 

in this cube sites, and Cl– is in the center of each facet. 

In many cases the lanthanide ions may be implanted in the foreign compounds 

instead of the bivalent metal ions like cadmium, calcium, lead, magnesium, etc. For 

example CdF2, CaF2, SrF2, PbF2 and BaF2 may be doped by Ln3+. These crystals have 

cubic symmetry, their lattice parameters are equal to 5.40 Å, 5.45 Å, 5.86 Å, 5.93 Å 

and 6.19 Å, respectively. The CaF2 structure may be considered as simple sequence 

of cubes formed by the F- ions with the Ca2+ ions located in the center of every 

second cube. Thus the calcium ion is located in the center of a cube formed by eight 

fluorine ions, the Ca-F distance is 2.36 Å. The rare-earth ion replace calcium, 

however the symmetry of their environment is not always the cubic one. If the nearest 

vacant interstitial site (center of the neighboring cube) is occupied by the excess F- 

ion, then there is a tetragonal symmetry. The trigonal symmetry of the Ln3 + center is 

realized in the case when the oxygen (O2–) ion replaces the F- ions in one of the cube 

vertex. The paramagnetic La3+ centers with cubic symmetry are observed when 

compensation of the electric charge is not nearby the rare-earth ion, but at the remote 

sites. It shall be noted that crystals of the type CaF2, CaWO4, KMgF3 and others, 

doped by the triple-charged rare-earth ions have wide application as active substances 

of the optic quantum amplifiers and generators (lasers). 

 

1.3. Crystal electric field 

 

We will take into account the interaction approximately between the free ions 

in a crystal, considering that each ion is in some electric field created by all 

surrounding particles. This field we will call the crystal field. The idea about the 

crystal field put forward by Becquerel, thanks to works of Bethe, Kramers, Van-

Fleck, Elliott and Stevens, transformed into the well-developed theory and allowed to 
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explain the diverse physical and chemical properties of compounds with transition 

group elements. 

A crystal field effect is always weaker compared with Coulomb interaction 

between electrons in atom. Therefore we can use a self-consistent field method and to 

consider the configuration of electrons forming an open shell of a paramagnetic ion. 

The self-consistent field method does not consider completely the electrostatic 

interaction between the electrons. Therefore, it is necessary to know for the 

calculations that are usually carried out by a perturbation technique in what relation 

there are the missed part of a coulomb repulsion between the electrons, magnetic 

coupling between their spin and orbital moments and crystal field forces. The crystal 

field is considered as intermediate if its effect is stronger compared with the spin-

orbit coupling of electrons, but is much weaker compared with interactions between 

the separate electrons. This case is realized in compounds of iron elements group. As 

to rare-earth compounds, a weak crystal field which is not able to disturb the coupling 

between the orbital and spin moments of all open electronic shell is acting in it. 

The character of energy levels splitting of paramagnetic ions by a crystal field 

depends on symmetry of this field and is easily determined by means of the group 

theory methods. Tables 1.2a and 1.2b show the number of energy sublevels appearing 

in the field of the corresponding symmetry for the integer and half-integer values of 

quantum number J; the numbers in brackets denote a degeneracy of these sublevels. 

 

Table 1.2a 

 

J 

Splitting in the crystalline field of 

cubic symmetry trigonal 
symmetry 

tetragonal 
symmetry 

rhombic 
symmetry 

0 1 (1) 1 (1) 1 (1) Complete 
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1 1 (3) 
2=1 (1) +1 

(2) 

2=1 (1) +1 

(2) 

splitting 

2 2=1 (2) +1 (3) 
3=1 (1) +2 

(2) 

4=3 (1) +1 

(2) 

3 3=1 (1) +2 (3) 
5=3 (1) +2 

(2) 

5=3 (1) +2 

(2) 

4 
4=1 (1) +1 (2) +2 

(3) 

6=3 (1) +3 

(2) 

7=5 (1) +2 

(2) 

5 4=1 (2) +3 (3) 
7=3 (1) +4 

(2) 

8=5 (1) +3 

(2) 

6 
6=2 (1) +1 (2) +3 

(3) 

9=5 (1) +4 

(2) 

10=7 (1) +3 

(2) 

7 
6=1 (1) +1 (2) +4 

(3) 

10=5 (1) +5 

(2) 

11=7 (1) +4 

(2) 

8 
7=1 (1) +2 (2) +4 

(3) 

11=5 (1) +6 

(2) 

13=9 (1) +4 

(2) 

 

From Table 1.2b we see that in the case of a half-integer spin the energy sublevels 

remain always at least twice degenerate. This fact is a consequence of the general 

Kramers theorem that has the fundamental value for the theory of paramagnetism. 
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The theorem says: electrical forces are not able to remove completely the degeneracy 

of the energy level of the system that contains the odd number of electrons.  

 

This implies that the paramagnetic resonance, as a rule, can be observed on the 

paramagnetic ions containing the odd number of electrons since the magnetic field, 

removing degeneration of the basic energy level, may cause the splittings lying in the 

radio-frequency band. It is necessary only that the transitions between the magnetic 

sublevels are not forbidden. If the number of electrons is even then already in the 

Table 1.2b 

J 
Distribution in crystal field of 

cubic symmetry lower symmetry 

1/2 1=1 (2) 1 (2) 

3/2 1=1 (4) 2 (2) 

5/2 2=1 (2) +1 (4) 3 (2) 

7/2 3=2 (2) +1 (4) 4 (2) 

9/2 3=1 (2) +2 (4) 5 (2) 

11/2 4=2 (2) +2 (4) 6 (2) 

13/2 5=3 (2) +2 (4) 7 (2) 

15/2 5=2 (2) +3 (4) 8 (2) 
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absence of a magnetic field all levels may be undegenerate and so far apart from each 

other that it is not possible to observe a paramagnetic resonance at any values of the 

really achievable magnetic fields. 

For calculation by a perturbation technique of crystal field effect on energy 

levels of paramagnetic ions it is necessary to calculate first the matrix elements of 

energy ΗКР of electrons of the open shell in a crystal electric field. It is possible to 

present the energy ΗКР in a form 

 ( ), , ,КР i i i
i

eV x y z= −∑H  (6) 

where V – crystal field potential, xi, yi, zi – i-th electron coordinates of the open shell. 

Supposing that electronic shells of paramagnetic atom and particles surrounding it do 

not overlap with each other and that, hence, the potential V satisfies the Laplace 

equation, we can perform for it the spherical harmonic expansion: 

 ( )
0

, .
k

q q qk
k k k

k q k
V B Y Vγ θ ϕ

∞

= =−
= =∑ ∑ ∑  (7) 

The signs of spherical harmonics are defined so that ( )1 .qq q
k kY Y −∗

−=  The symmetry 

of an environment imposes some restrictions for the coefficients q
kB . For example, in 

the presence of inverse center in expansion (7) the harmonics with odd k are absent; 

besides, owing the reality of potential it is necessary, that the following requirement 

is satisfied ( )1 .qq q
k kB B

∗
−=  

We will be interested in not the absolute energy level shifts, but only their 

splitting in a crystal field. Therefore we can, without loss of generality, omit the term 

with k = 0 in expansion (7). 

Now the problem is reduced to evaluation of matrix elements of a crystal field (or 

crystal-field potential) between the wave functions Ψ which are the Slater 

determinants or their linear combinations. Each determinant will be of the type 

( )1 1,..., , ,..., .N Pχ χ ϕ ϕ  The first N one-electron functions 1,..., Nχ χ  correspond to 

the filled shells; they are identical in all Slater determinants appearing in the 
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expansion of states Ψ of a paramagnetic ion. The other one-electron wave 

functions ϕ1, …, ϕР correspond to magnetic electrons of the open shells; hence, it 

is the functions of the type , , sll m m , where l = 2 for d-electrons and l = 3 for f-

electrons. The potential of a crystal field i
i

V V=∑  is the sum of the one-electron 

operators. Accordingly, each matrix element V ′Ψ Ψ  is the sum of the one-

electron matrix elements ,a bVΨ Ψ  where Ψa, Ψb – wave functions of electrons 

χ of the filled shells and functions of electrons ϕ of the open shells. The 

contribution of the filled shells to a matrix element V ′Ψ Ψ  looks like 

1

N

j j
j

Vχ χ
=
∑  and is equal to zero since we have omitted the term with k = 0 in 

expansion (7). Therefore in general we cannot consider the filled shells and to 

write our Slater determinant in the form ( )1,..., Pϕ ϕ , i.e. to construct it of the wave 

functions of magnetic electrons only. Then the one-electron matrix element is 

written in the following form: 

 ( )
,

, , , , , , , ,q q qk
s s s sl k l k l k l

k q k q
l m m V l m m r B l m Y l m m mδ′ ′ ′ ′=∑ ∑ ∑  (8) 

where  ( ) 2 2

0

где ,k k
lr f r r r dr

∞

= ∫   (9) 

and ( )lf r  – radial wave function. The matrix elements of the operator q
kV  are zero if 

the following requirements are violated: 

 , .l lk l m q m′≤ = +  (10) 

The selection rule k ≤ l   essentially reduces the number of the parameters 

necessary for description of the crystal potential. Besides, even in the absence of the 

symmetry center it is possible to omit the terms q
kV  with odd k since the 

corresponding matrix elements are equal to zero. 
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The number of terms of series (7) decreases only owing to symmetry of the 

environment. If the environment has a symmetry axis of the second order, parallel to 

the quantization axis, or symmetry plane, perpendicular to it, then only the terms with 

the even coefficient q are remained. If there is the third order axis there are only q 

values, multiple of three. 

In the presence of a plane symmetry, perpendicular to the quantization axis of 

the third order (C3h symmetry), the coefficients q
kB  can be made real by a 

corresponding choice of plane xOz . In the case of C3h symmetry the terms with q ≠ 0 

at l = 2 are absent, and at l = 3 there is only one term: 

 ( )
6 6 6 6 6 6

6 6 6 6 6 6 6 6 6 66 6 6 6 6 6
6 6 6 6 6 6 6 6 6 6 ;

2 2
B B B B Y YB Y B Y B Y B Y Y Y

i i
− −

∗ ∗ ∗
∗ ∗ ∗+ − −

+ = + = + − ⋅  

by transformation of rotation around the axis z it is always possible to achieve that 
6 6
6 6B B ∗− =0. The same type of considerations lead to the similar relations in case of 

C4h or D4 symmetry when only the terms with |q | = 0 and |q | = 4 are different from 

zero. 

If the potential has cubic symmetry then there exists only one combination of 

spherical harmonics of the fourth order, invariant relative the cubic group, and only 

one – of the sixth order: 

 ( )4 0 4 4
4 4 4 4 4

14 54, ;
24 24

k V b r Y Y Y −  = = + + 
  

 (11) 

 ( )6 0 4 4
6 6 6 6 6

2 146, .
3232

k V b r Y Y Y −  = = − + 
  

 (12) 

The coefficients b4 and b6 are defined so that functions V4/b4 and V6/b6 were 

normalized to unity on unit sphere. 

Though the expansion of crystal potential of the type (7) is more natural, in the 

literature it is usually accepted to expand it on the homogeneous polynomials of the 

power k, each of them represents a certain combination of spherical harmonics, 
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without paying special attention on normalization of these polynomials. If symmetry 

is such that the coefficients q
kB  in the expansion (7) are real, then this new expansion 

looks as follows: 

 ( ), , ,q q
k k

k q
V P x y z

0>
= Α∑∑  (13) 

where q
kP  – unnormalized homogeneous polynomials proportional to ( )q qk

k kr Y Y ∗+  

which should not be confused, however, with Legendre polynomials designated in a 

similar fashion. Table 1.3 shows the polynomials in the case of tetragonal, hexagonal 

and cubic symmetry of the crystal field, and also the relation between the coefficients 
q
kA  in expression (13) and q

kB  in (7). 

In case of cubic symmetry the polynomials: 

 0 4 4 4 4 4
4 4 4

35 20 ,
5

P P P x y z r = + = + + − 
 

 (14) 

 
(

)

0 4 6 6 6 4 2 4 2
6 6 6

4 2 4 2 4 2 4 2 6

1521 14 16
4

15 ,
4

P P P x y z x y y x

x z z x y z z y r

= − = − ⋅ + + + + +


+ + + + − 


 (15) 

are introduced and the cubic potential is written as follows: 

 4 4 6 6,CUBEV A P A P= +  (16) 

where the coefficients А4 and А6 are related to coefficients b4 and b6 in expressions 

(11) and (12) through the following relations: 

 4 4 6 6
1 3 7 1 13, .

16 6 642 2
A b A b

π π
= ⋅ = ⋅  (17) 

The coefficients А4 and А6 can be calculated in the so-called “point charge 

approach” by expansion of the quantity 1 ;
i i−∑ r R

 here the vectors Ri determine the 

position of charges that create the potential. The electrostatic energy of electron with 
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charge –е in the field of six charges –Ze, located in vertexes of the regular 

octahedron, is given by the equations (14) - (17), and 

 ( )

2 2

6( )5 74
7 Z 3 Z, .

16 64OCTAHEDRONOCTAHEDRON
e eA A

R R
= ⋅ = ⋅   (18)  

Here R – distance of each charge –Ze from octahedron center. 

If the paramagnetic ion is surrounded by eight charges located in vertexes of a cube, 

 

 
2 2

4( ) 6 ( )5 7
7 Z 1 Z, ,

18 9CUBE CUBE
e eA A

R R
= − ⋅ = ⋅  (19) 

where R is again the distance of each charge –Ze from the cube center. 

 

1.4. Equivalent operators 

 

Having obtained the expansions (7) or (13) for the crystal field potential we are 

faced with the problem of evaluation of the matrix elements .V ′Ψ Ψ  The 

Table 1.3 

( )( )
0 2 2 4 4 2 2 4

2 4
0 4 2 2 4 4 2 2 4 2 2 4

4 6

3 6

35 30 3 11 6

P z r P x x y y

P z z r r P z r x x y y

= − = − +

= − + = − − +

 
0 6 4 2 2 4 6 6 6 4 2 2 4 6

6 6

0 0 4 4
2 2 4 4

231 315 105 5 15 15

1 5 1 3 35
8 82 2

P z z r z r r P x x y x y y

A B A B
π π

= − + − = − + −

= ⋅ = ⋅
 

0 0 4 4
4 4 6 6

0 0 6 6
6 6 6 6

1 3 2 1 3 13 28
16 322 2

1 26 1 13 21 22
32 322 2

A B A B

A B A B

π π

π π

⋅
= ⋅ = ⋅

⋅ ⋅
= ⋅ = ⋅
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rectilinear approach would consist in expansion of functions Ψ and Ψ′ on Slater 

determinants that would allow to reduce the matrix element V ′Ψ Ψ  to the sum of 

the one-electron matrix elements of the type ( ), , ,s sl ll m V l m m mδ′ ′ . 

It is much more preferable to express the functions Ψ and Ψ′ via eigenstates 

, , , JL S J M  of operator J and to apply the Wigner-Eckart theorem. From the 

components Jx, Jy, Jz of vector J we compose the so-called “equivalent operators” – 

the tensor operators q
kO  possessing the same properties of transformation, as the 

polynominals q
kP  defined in Table 1.3. Then within each set of functions with the 

given J we can write the equality: 

 ( ) ( ), , , , ,J J J J
q qk

ik k k
i

J M P J M a r J M O J M′ ′=∑ r J  (20) 

where summation 
i
∑  is carried out with all electrons. The matrix elements q

kP∑  

of the corresponding equivalent operators coincide to within some common factor, 

identical for all functions with equal k. Thus, the cumbersome direct calculations of 

the matrix elements of the crystal field potential can be replaced by simple 

evaluations of matrix elements of polynomials of the second, fourth and sixth degrees 

of Jx, Jy, Jz. 

Direct calculations nevertheless are necessary for determination of common 

factor a2, a4, a6. In the literature these factors are called the Stevens coefficients and 

designated, accordingly, as α, β, γ or , , .J J J J J Jα β γ  The Stevens 

coefficients for all rare-earth ions can be determined by means of the wave functions 

corresponding to the states with maximum Jz, by transition from the representation J, 

Jz to the representation Lz, Sz and then to the representation lz, sz. The values of the 

coefficients α, β, and γ are given in monographies [1, 2]. 

Construction of polynomials q
kO  is nontrivial, since the components Jx, Jy, Jz  

do not commute with each other. Therefore, if we find the expression x y zµλ ν  in a 
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polynomial q
kP , in polynomial q

kO  it is replaced not by x y zJ J Jµλ ν , but by a 

symmetrized product, i.e. by an average of every possible products in which Jx, Jy, Jz 

are met λ, µ, ν times, respectively. It is possible then to simplify this average, using 

the commutation rules of the operators Jx, Jy, Jz. In Table 1.4 we give the list of some 

equivalent operators q
kO , using the designation { } ( )1, .

2SA B AB BA= +  The matrix 

elements of operators q
kO  are tabulated in [1, 2]. 

 

Table 1.4 

( )0 2
2 3 1zO J J J= − +  

( ) ( ) ( )20 4 2 2 2
4 35 30 1 25 6 1 3 1zz zO J J J J J J J J J= − + + − + + +  

( ) ( )
( ) ( ) ( ) ( )

20 6 4 4 2 2
6

3 22 2 3 2

231 315 1 735 105 1

525 1 294 5 1 40 1 60 1
z z z z

z z

O J J J J J J J J

J J J J J J J J J J

= − + + + + −

− + + − + + + − +
 

( )4 4 4
4

1
2

O J J+ −= +  

( )( )( ){ }4 2 4 4
6

1 11 1 38
2 SzO J J J J J−+= − + − +  

( )6 6 6
6

1
2

O J J+ −= +  

 

Summing the abovementioned we can write the crystal field potential in the 

following form: 

 
2,4,6

;q q q qk
k k k k k k

k q k q
V a A r O a C O

=
= =∑ ∑ ∑∑  (21) 

here kr  – the average value of kr  obtained by averaging on atomic wave functions. 

In most cases neither the coefficients q
kA , nor the radial parts of atomic wave 
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functions are not precisely known; therefore the products q qk
k kA r C=  can be 

considered as fitting parameters. They are called a "crystal field parameters” and are 

found, as a rule, from optical spectra of rare-earth ions in crystals. 

The result of effect of potential (21) within a set of states with given J can be 

illustrated rather simply. The equivalent operators of the type 0
4O  contain only zJ  

and, hence, have only diagonal matrix elements for 2J+1 states characterized by 

various values of the magnetic quantum number Jz or M. These diagonal matrix 

elements are identical for the states +Jz and –Jz since the operators contain only even 

degrees of Jz. The states with different |Jz | values have, generally speaking, different 

energies; therefore the crystal potential containing only operators 0
kO  will lead to 

occurrence of some doublets of the type |±M | and one singlet ,O  if J is integer. 

The operators q
kO  for which q≠0 have only the nondiagonal matrix elements 

and, hence, mix the states with various M, so the resulting wave functions have the 

form: 

 , ,M
M

C J M∑  (22) 

where, of course, 2 1M
M

C =∑  to satisfy the normalization requirement. In any such 

combination the consecutive M values differ on quantity q. For example, the presence 

of equivalent operator 6
6O  in (21) leads to occurrence of states with the wave 

functions: 

 6 6, 6 , , 6 ,MM MC J M C J M C J M+ −+ + + −  

in which the number of terms does not exceed three, since the maximum value of J in 

the ground state is equal 8 (Ho3 + ion, 4f 10, 5I8). 
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1.5. Zeeman effect 

 

When the secular equation is solved, i.e. the ion energy levels in a crystal field and 

the corresponding wave functions are found, it is necessary to evaluate the splitting 

of these levels by an external magnetic field. We know (see Tables 1.2) that under 

the effect of a crystal electric field, either doublets and quadruplets (ions with odd 

number of electrons), or singlets, doublets and triplets (ions with an even number 

of electrons) do appear. Since the intervals between the energy levels in a crystal 

field are much larger the Zeeman splitting in usual magnetic fields, the magnetic 

resonance transitions are observed, as a rule, only between the components of 

Stark energy levels. The spin-lattice interaction in compounds with rare-earth 

elements is very strong at room temperature, therefore the experiments should be 

performed at such low temperatures that only the lowest level is actually 

populated. It is clear that EPR observation will be possible if this level is not a 

singlet. 

To determine the resonance condition it is necessary to calculate the Zeeman 

effect for the lowest level. In the first approximation, when only the matrix elements 

between the states with the given value J are considered, the Zeeman operator 

( )2Z B Hµ= +L SH  is reduced to the simple from: .Z J Bg µ= HJH  Thus, calculation 

of the Zeeman effect of the first order is reduced to finding the matrix elements 

, ,x y zJ J J  for the lower group of states. Suppose that the doublet is the lowest Stark 

energy level of a rare-earth ion. Suppose also that the crystal electric field has the 

axial symmetry (trigonal, tetragonal or hexagonal). Then the matrix elements иx yJ J  
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are equal, but differ, generally speaking, from the matrix element ,zJ  so the Zeeman 

effect within the lower doublet is described by the spin Hamiltonian with effective 

spin S=1/2 and anisotropic g-tensor: 

 ( ),B BS z z x x y yg H S g H S H Sµ µ ⊥= + +H  (23) 

Here 

 2 , ,J Jzg g J g g J ⊥ += + + = + −  (24) 

and and + −  – two components of a doublet of the type (22). For conservation of 

exact sign of g
 which is important for some purposes, two states 1 2+  and 1 2−  

of the effective spin shall be chosen so that the identity shall be satisfied: 

 1 2 1 2 .Jg S g J⊥ + ++ − + −≡  

Physically this identity is required in order that the spin Hamiltonian gave the exact 

intensities of the resonance transitions caused by the variable magnetic field Н1 with 

the circular polarization. 

In the case of strong magnetic fields when the Zeeman energy is not so small in 

comparison with the splittings in a crystal field, it can appear that it is necessary to 

consider the higher order effects, not only the first one. The Zeeman effect of the 

second order leads to that both sublevels of a doublet are shifted on the same value, 

proportional to Н2; this does not change the frequency of transition between the 

doublet states. The Zeeman effect of the third order affects the frequency of 

transition since it can have different signs for two components of a doublet and 

shifts them in the opposite directions. This splitting can be considered as a by-

effect of the second order Zeeman effect. Really, the latter changes the wave 

functions of the lower doublet in such a manner that they take the form 

{ } { }иσ σ′ ′+ + + − + − . The coefficient σ determines the impurity of the other 

states and is proportional to the field Н. If now we calculate the Zeeman splitting 

of the first order, using the new states, then, besides the main term proportional to 

Н, we will obtain the correction to the energy, proportional to Нσ 2, i.e. H3. This 
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effect has the greatest value for the doublets which do not split in the magnetic 

field perpendicular to the axis c in the first approximation (g⊥=0), but may split in 

the third order and give a weakly allowed transition in the strong magnetic fields. 

 

1.6. Magnetic hyperfine interaction 

 

Let's consider the interaction of the nuclear magnetic moment with the local 

magnetic field created by environmental electrons. This field is caused partly by 

the orbital motion of electrons and partly by their spin magnetism. For the free ion 

in the case of LS-coupling the resulting field created by electrons quickly precesses 

around a vector of the total moment of momentum J. With close approximation it 

is possible to restrict the consideration of only the field component which is 

parallel to J and, hence, is conserved at motion. It gives the possibility to reduce 

the magnetic hyperfine interaction Hamiltonian to the simple form: 

 .HF JA= JIH  (25) 

The operator of the magnetic interaction of a nucleus with electrons is generally has 

the following form: 

 ( ) ( )3 3 5
3 82 .

3HF B
i i ii i

i i
i i i i

I
r r r

πγ µ δ
 

= ⋅ − + + 
 

∑
s r rl s s rhH  (26) 

The main electronic configuration of the paramagnetic ion does not contain the 

unpaired S-electrons, therefore the last term in curly brackets (26) usually does not 

contribute to the hyperfine interaction constant of the free ion AJ in (25). If the 

ground term of a paramagnetic ion has at least slight "impurity" of the excited 

configurations containing unpaired S-electrons (they are called s-configurations) then 

the contribution of the contact interaction in AJ becomes different from zero. As 

experience shows, in case of the rare-earth atoms the contact contribution to the 
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hyperfine interaction is insignificant, therefore we can neglect it. Then for the 

hyperfine interaction constant we have: 

 32 ;J BA r J N Jµ γ −= h  (27) 

here γ - gyromagnetic ratio of nucleus of a rare-earth ion, J N J  – coefficient 

which value can be found in Tables (see [1, 2]). 

Within the approach that takes into account only the matrix elements between 

the states with given J, the calculation of the magnetic hyperfine interaction is very 

simple, since, as well as for the Zeeman effect calculation, only the matrix elements 

of the operator J are required here. Hence, there is the linear relation between the 

hyperfine and Zeeman interactions. For some subspace with (2J+1) states which can 

be represented by fictitious spin S and for which the Zeeman interaction has the form 

B gµ ⋅ ⋅H S% , the hyperfine interaction will look like A⋅ ⋅S I% , where A% – a tensor 

which, obviously, has the same main axes, as the g-tensor. The principal values of 

these tensors are related by a relationship: 

 .J

J

yx z

x y z

AA A A
g g g g

= = =  (28) 

This relationship means that at measurements with fixed frequency in a changing 

magnetic field the hyperfine splittings in EPR spectra will be identical for field 

directions along each of the main axes. In the presence of anisotropy for any field 

directions this relationship will be invalid because of difference of transformation 

properties of andg A%%  (see [2], chapter 3): 

 2 2 2 2 2 2 2,x y zg l g m g n g= + +  (29) 

2 2 2 2 2 2 2 2 2 2 2g ;y yx x z zg A l A m g A n g A= + +  (30) 

here l, m, n – direction cosines of the field Н relative the main axes of the g-tensor. 

From (28) it follows also that we can, without data on the crystal field, find the value 

of JA  only from the magnetic resonance experiments using the experimental values 

of g% and A% along the main axes. 



76 

 

 

These simple results lapse when the crystal field mixes the states with different 

J. The reason is that though the matrix elements of the hyperfine interaction operator 

can be always bound with the matrix elements of the Zeeman operator, the constants 

of proportionality for these two operators change unequally. Thus, practically one 

appraises about applicability of the approach, in which J-mixing is neglected, to what 

extent the relation (28) is satisfied. 

Table 1.5 shows the values of the magnetic hyperfine interaction constants AJ 

for free trivalent ions found from the EPR spectra in the ionic crystals. 

Table 1.5 

Atomic 

number 

Ion 

 

Isotope 

 
Abundance, % 

Nuclear spin 

I 

AJ/h, 

MHz 

59 Pr3 + 141 100 5/2 +1093 (10) 

60 Nd3 + 
143 

145 

12.3 

8.3 

7/2 

7/2 

-220.3 (2) 

-136.9 (1) 

61 Pm3 + 147 radioactive 7/2 (+) 599 (6) 

62 Sm3 + 
147 

149 

15.0 

13.9 

7/2 

7/2 

-240 (3) 

-194 (3) 

65 Tb3 + 159 100 3/2 +530 (5) 

66 Dy3 + 
161 

163 

19.0 

24.9 

5/2 

5/2 

-109.5 (22) 

+152.4 (30) 

67 Ho3 + 165 100 7/2 +812.1 (10) 

68 Er3 + 167 22.9 7/2 -125.3 (12) 

69 Tm3 + 169 100 1/2 (–) 393.5 

70 Yb3 + 
171 

173 

14.4 

16.2 

1/2 

5/2 

+887.2 (15) 

-243.3 (4) 
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2. Examples of EPR spectra calculations of rare-earth ions in ionic crystals 

 

2.1. The Nd3 + ion in neodymium ethylsulfate 

 

Let's perform a calculation of EPR spectrum of the Nd3 + ions in ethylsulfate at 

the liquid helium temperature. The crystal field in ethylsulfates has a С3h symmetry 

and is described by the Hamiltonian 

 0 0 0 0 0 0 6 6
2 2 4 4 6 6 6 6 .V C O C O C O C Oα β γ γ= + + +  (31) 

The values of the crystal field parameters have been found from the optical spectra of 

the Nd3+ ions in La1–xNdx (C2H5SO4) 3⋅9H2O crystals: 

 0 1 0 1 0 1 6 1
2 4 6 658.2cm , 68.2cm , 42.7cm , 595cm .C C C C− − − −= = − = − =  

The Stevens coefficients are known from tables (see [1,2]): 
3

2 2 3 3 3 3 2
7 2 17 5 17 19, , .

3 11 3 11 13 3 7 11 13
α β γ⋅ ⋅ ⋅
= − = − = −

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
 

To calculate the splitting by the crystal field of the ground level 4I9/2 of the 

Nd3+ ion (J=9/2) it is necessary to calculate the matrix elements of the operator (31) 

by means of wave functions 9 / 2, ,J M=  where M = 9/2 7/2, …,–9/2. The diagonal 

matrix elements M V M  and elements of the type 6M V M ±  will be different 

from zero. Using the tables of matrix elements of equivalent operators in [1, 2] we 

write a perturbation matrix (in cm-1) (Table 2.1). The secular equation can be easily 

solved since the matrix partitions into submatrices of the first and second orders. 
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Table 2.1 

M 9/2 7/2 5/2 3/2 1/2 –1/2 –3/2 –5/2 –7/2 –9/2 

9/2 41.0      –74.6    

7/2  –131.1      –113.9   

5/2   55.6      –113.9  

3/2    60.8      –74.6 

1/2     –26.4      

–1/2      –26.4     

–3/2 –74.6      60.8    

–5/2  –113.9      55.6   

–7/2   –113.9      –131.1  

–9/2    –74.6      41.0 

 

 

 

 

M ±7/2 5/ 2m  Table 2.2 

±7/2 –131.1 –113.9 

5/ 2m  –113.9 55.65 



All levels appear to be doubly degenerate (Kramers doublets), their energy is equal to 

–185,–26,–23, 108 and 126 cm-1, respectively. The lower level energy Ε =–185 cm-1 

is obtained from the two submatrices (see Table 2.2). It is evident from the table that 

the lower level is a doublet: 

 7/2 5/2 .7 / 2 5/ 2C C±± = ± + m m  

The coefficients in the wave functions are found from the normalization requirement 

( ) ( )22
7/2 5/2 1C C± + =m  and the equation is ( ) 7/2 5/2131.1 113.9 0C C±− − − ⋅ =mE  in which 

we put Ε =–185 (cm-1). As a result we obtain the wave functions of the lower doublet: 

0.905 7 / 2 0.431 5 / 2 .± = ± + m  

The Lande factor of the free Nd3+ ion is gJ = 8/11, therefore for the g-tensor 

components (24) we find: 

 2 3,48 ,J zg g J

= + + =  

 2,27.Jg g J+⊥ = + − =  

The agreement with the experimental values 3.535 and 2.072g g⊥
= =  can be 

improved if we consider an impurity of excited states 4I11/2 for the calculation of the 

perturbation matrix. 

It is necessary to bear in mind that EPR observation on Kramers doublet is not 

always possible. For example take the topmost doublet with the energy of 126 cm-1; 

the following wave functions correspond to it: 

 0.655 9 / 2 0.756 3/ 2 .± = ± + m  

Unlike functions and+ −  of the conjugated Kramers states ∆M = 9/2 – 3/2 >1 and 

consequently g⊥ = 0. If we direct a static magnetic field along the c axis of the crystal 

(H║z) then the EPR effect will be absent, because the probability of a magnetic 

dipole transition between the Zeeman sublevels is equal to zero (irrespective of the 

magnetic field direction). If the magnetic field is perpendicular to the c axis of crystal 

then there is no Zeeman splitting. 
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2.2. The Ce 3 + ion in the crystal field with cubic symmetry 

 

The field with cubic symmetry is described by the Hamiltonian 

 ( ) ( )0 0 4 0 0 6
4 4 4 6 6 65 21V C O O C O Oβ γ= + + −  (32) 

For the Ce3+ ion in the ground state J = 5/2, therefore it is possible to set γ = 0 in (32). 

According to Table 1.2 the sixfold degenerate level 2F5/2 of the free ion is split on one 

doublet and one quadruplet. The perturbation matrix is given in Table 2.3. From it we 

find the energies and the corresponding wave functions: 

 0
1,2 4 1,2

1 5240 , 5/ 2 3/ 2 ;
6 6

Cδ= − Ψ = ± − mE  

0
3,4,5,6 4 3,4

5,6

5 1120 , 5/ 6 3/ 2 ,
6 6
1/ 2 .

Cδ= Ψ = ± +

Ψ = ±

mE
  

For the Ce3+ ion the Stevens coefficient is 2
2 0,

3 5 7
β =

⋅ ⋅
>  therefore in the case of 

positive value of the parameter 0
4C  the doublet  

 1 55 2 3/ 2
6 6

± = − ±m  

is the lowest Stark level with the isotropic g-tensor: 

Table 2.3 

M 5/2 3/2 1/2 –1/2 –3/2 –5/2 

 

×60βС4
0 

5/2 1    5   

3/2  –3    5  

1/2   2    

–1/2    2   

–3/2 5     –3  

–5/2  5     1 
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 10 10.
6 7Jg g= ⋅ =  

 

3. Problem 

 

1. Compose an energy matrix of the Yb3+ ion (2F7/2) in the crystal electric field 

of cubic symmetry. Find the energy levels and the wave functions of the Yb3+ ion. 

Calculate the g-factors of the doublets Г6 (±7/2, µ1/2) and Г7 (±5/2, µ3/2) 

Instructions. 1) The Hamiltonian shall be presented in the form 

 ( ) ( )0 0 4 0 0 4
4 4 4 6 6 65 21 ;KP C O O C O Oβ γ= + + −H  

here β, γ – Stevens coefficients, 

 0 0
4 6,C C  – crystal field parameters, 

 0 4 0 4
4 4 6 6, , ,O O O O  – equivalent operators. 

2) Subdivide the 8th order matrix into four 2nd order matrices. 

3) Write the matrix elements using the common factors F(4) and 

F(6); 

For example, 7 2 1 2KP± =mH  

( ) ( )

0 4 0 4
4 4 6 6

0 0
4 6

5 7 2 1 2 21 7 2 1 2

4 35 6 3 35.

C O C O

C F C F

β γ

β γ

= ⋅ ± − ⋅ ± =

= ⋅ − ⋅

m m
 

4) At diagonalization of matrices separate the matrix elements on 

( )0
6 6C Fγ  and use the abbreviation 

 ( ) ( )0 0
4 64 6 ;C F C Fβ γ ρ=  

For example, 7 2 1 2 35 3 35.KP ρ± ⇒ −mH  

5) Use the crystal field parameters for energy calculation of the 

electronic states  



 82 

 

( ) ( )

0 1 0 1
4 6

3 4

240cм , 41,8см ;

1,7316 10 , 1,48 10 ,
4 60, 6 1260.

C С

F F
β γ

− −

− −

= − =

= − ⋅ = ⋅

= =

 

6) Calculate the g-factors of the doublets Г6, Г7 from the equation 

 ( )Г 2 Г Г .jzj jJg g J= ⋅  

2. Calculate the parameters of the spin Hamiltonian (S = 1/2) of the ground 

electronic doublet of the Yb3+ ion in the cubic crystal field of PbF2: 

 .BS g Aµ= +HS SIH  

Calculate the energies of the electron-nuclear states and construct the energy level 

diagrams for even and odd isotopes (see Table 3.1). 

Table 3.1 

Isotope Natural abundance, % Nuclear spin, I 

168Yb  0.1 0 
170Yb  3.2 0 
172Yb 21.9 0 
174Yb 31.6 0 
176Yb 12.6 0 
171Yb 14.4 1/2 
173Yb 16.2 5/2 

 

Calculate the resonance fields of extreme lines in the EPR spectra of both odd 

isotopes. 

 Instructions. 1) Consider the field Н applied along the axis z and use the 

simplified form of the spin Hamiltonian: 

( )1
2S z z zhS AS I A S I S I+ − − += + + +H  

(h = gµB H). 
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2) At evaluation of the parameters 171А and 173А use the following 

values of the hyperfine interaction constants: 
171АJ/h = 887.2 MHz, 173АJ/h =–243.3 MHz. 

3) Reduce the energy matrices of the electron-nuclear states (4th 

order for 171Yb and 12th order for 173Yb) to 2nd order matrices. 

4) Prove the validity of the relations: 

 

1 22 171 2
171 0

171 2
0

1 22 173 2
173 0

173 2
0

2 1 1 ,

10 1 1 ;
25

B

B

HA g
H

HA g
H

µ

µ

  ∆ = + − ∆    
  ∆ = + − ∆    

 

here g – factor of spectroscopic splitting of the ground doublet 

of the Yb3+ ion, Н0 – resonance field of even ytterbium isotopes 

(in Oersteds), 171∆ and 173∆ – intervals between the extreme 

lines of EPR spectra of odd ytterbium isotopes (in Oersteds). 

3. Perform recording of the EPR spectrum of the Yb3 + ions in PbF2 crystal at 

temperature 4.2 K. Measure the resonance fields and identify the spectral lines. Find 

the parameters of the spin Hamiltonian (g, 171A, 173A) from the EPR spectrum and 

compare these with calculations (take the g-factor of the free DPPH radical equal to 

2.0057). 
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