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PART 1

ELECTRON PARAMAGNETIC RESONANCE

Many substances in a magnetized state gain the ability to absorb energy of
electromagnetic waves impinging on such substance. This absorption has a resonance
character, i.e. it appears only under certain condition between the electromagnetic
wave length and the intensity of the static magnetic field that magnetizes the sample
of substance. The phenomena of this type are called a magnetic resonance and play a
considerable role in modern physics, chemistry, biology and technics as very
effective tool for research of structure of substances and as a basis for making the
very important technical devices.

One of the versions of magnetic resonance absorption — electron paramagnetic
resonance appears as a result of interaction of the magnetic moments of electron shell
of atoms of paramagnetic substances with the external (static H, and high-frequency
H,) magnetic fields. The essence of this physical effect is easy to understand if we
recall the basic data on the magnetic properties of atoms and their interactions both

with the external magnetic fields, and with each other.

1. Magnetic properties of atom

The atomic magnetism is generated by three origins:
a) orbital motion of electrons creating an orbital magnetic moment w, of each of
them;
b) spin properties of an electron — existence with it an intrinsic mechanical Ps and
magnetic pus moments;
c) the same properties of many nuclei possessing intrinsic mechanical P, and

magnetic w, moments.



The circulation of each electron around a nucleus with period T represents the
analogue of a circular current with intensity i=e/T (in SGS system), creating the

orbital magnetic moment which value is equal to:

M= i1-S/lc = ]/iP| (1)
where S —area of contour run around by the electron; R =h-,/I(1+1) —mechanical
moment of the electron orbital motions, | — orbital quantum number, and

1 = wlP=e [ (2mqC) (2)

— the so-called gyromagnetic ratio of orbital motion of an electron (strictly speaking,
the gyromagnetic ratio is a quantity inverse to », however the used term was stated
and does not cause misunderstanding).

Adding vectorially the orbital magnetic moments of all electrons of atom, they
form the resulting magnetic moment £ of the whole electronic shell:

M= T+ =% {Pu+Pp+..}=xnPL (3)
here P_=hyL(L+1), where P_ — total orbital mechanical moment of atom, L -
orbital quantum number of atom.

The spin magnetic moment g of electron is related with its mechanical moment

by a relation:

Hs = 7P, (4)
where P, =h,/s(s+1) — intrinsic mechanical moment of electron, s — spin quantum
number, and % = e/myC — its spin gyromagnetic ratio. As one can see it twice the
similar quantity for orbital motion: % = 2% = 2e/2myc. This fact was called the
gyromagnetic anomaly and though there is no anything abnormal from the present
point of view this term is used until now.

The sum of spin magnetic moments of all electron shells forms the total spin

magnetic moment of atom :

Hs = U1 Y o+ ool =2y {Ps1 + P +..} = 2% Ps (5)
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where P, =h,/S(S+1)— total spin mechanical moment of atom, S — spin quantum

number of atom.
If we replace the quantities in equations (1) and (4) with the corresponding
values then we will obtain the following relations for the orbital and spin magnetic

moments of electron:

1 =— I +1) = g 1(1 1),

2m,C

m =%h4/s(s T1) = 2u,/5(s + 1)
0

eh

0

=9.27-10*erg/oersted is called the Bohr’s magneton and

The quantity g, = 5

serves as unit for measurements of the nuclear magnetic moment.

The quantum numbers | and s of an electron take the following values:
1=0,1,2. (h-1);s=1/2,
where n — principal quantum number.
This means that the spin magnetic moment of electron is approximately equal to

two Bohr magnetons:
Hs =2Mg~S(s+1) = ,Uo\/§ = 21y,

while its orbital magnetic moment has the values, that are different for different states

of electron in the atom, at that for | =0

= 110 +1) =0,

The magnetic moments g4 and g are antiparallel oriented relative the
corresponding mechanical moments P, and P, since the electron charge is negative
(see Fig.1).

The directions g and g relative each other (the same as directions of quantum
vectors in general relative the given axis in space) are determined by the space
guantization rules: it is possible to specify precisely the projection value of quantum
vector to the given axis, but it is impossible to determine simultaneously the other

components of this vector. The projections of the orbital and spin magnetic moments
6



Fig. 1. Mechanical and magnetic orbital (P, p.) and
intrinsic (spin, Ps, ps) moments of electron in the atom

of electron on the axis specified by direction of constant magnetic field H, are equal
to:
fin = 4 €08 (giH ) = =My, pisn = g5 -€0S (psH ) =2 1o M,

respectively, where my = -1, — (I = 1,);... + (I = 1); 4+l — orbital magnetic quantum
number of electron (quantum number of the orbital mechanical moment projection);
ms==+1/2 — its spin magnetic quantum number (quantum number of the spin
mechanical moment projection). The sign "minus"” appears because the mechanical
and magnetic moments of electron are opposite (the electron charge is negative).

Thus, the orbital magnetic moment g can have 2I+1 different orientations
relative the field H, and its projection g4y has 21+1 possible values.

The vector 4 is aligned either along H or reverse and its projection s toward
the field is equal to uo and —y4 , respectively.

The sum of the total orbital 4 and spin g magnetic moments of atom

determines its total magnetic moment:

My =+ ps = AP+ 2Ps}. (6)
Since the total mechanical moment of atom is equal to:
PJZPL+PS, (7)
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where P, =h,/3(J+1) (J — quantum number of the total mechanical moment of atom)
then it follows from (6) and (7) that the vector 4 makes an angle with vector P,
which differs from 180° (as a result of the gyromagnetic anomaly).

A sketch of composition of moments g and s into the resulting magnetic
moment u of all electronic shells is shown on Fig.2 (according to selected scale on
Fig.2 the length of vector g is equal to length of vector P,: in this scale as a result of
the gyromagnetic anomaly the length of vector ps is twice the length of Pg).

However, the physical meaning has only its component x4, along P, but not the
vector u.

Thus, the effective magnetic moment of atom (or simply the magnetic moment

Fig. 2. Composition of the mechanical and magnetic
moments of electronic shell of atom

of atom) g is antiparallel to P; and numerically is equal to:

= o -COS (4P ;) + 15 -€0S (P 3).
Simple algebra (see Fig.2) gives:

H ::uogJ\/‘](J +1), (8)

JAJ+D)+S(S+1)—-L(L+1D)

where g, =1+
2J(J +1)

©)



— is the so-called Landé splitting factor, g-factor, or factor of spectroscopic splitting
of the electronic shell of atom. From (9) it follows that the value of Landé splitting
factor depends on state of atom. It is possible to make the qualitative conclusion
about the origin of magnetism of the given atom from the values of this factor: if g; =
gL = 1, it is possible only at S=0, in this case us = 0, and magnetism is created only
due to the orbital motion of electrons: if g; = gs = 2 (to be more precise 2.00238) then
it is possible for L=0 (x4 = 0), and magnetism has pure the spin origin. Certainly the
intermediate cases are possible.

In case of condensed matter when the interaction of the given atom with atoms
of substance can be considerable, the g-factor can differ from that given by equation
(9). These differences give the possibility to evaluate both the character of the
interactions of atoms, and the origin of magnetism of the given substance.

If we deal with atom or ion with partially filled shell that is characterized by the
principal and orbital quantum numbers n and |, then, since the orbital moments and
spins of electrons can be differently oriented, it is possible to obtain a set of various
states (terms) of atom or ion, each of which would have its own value of quantum
numbers L, S and J of the total moments. Each of terms will have its own energy.
Since any system in the absence of external actions tends to occupy a state with the
lowest energy, only a term with the lowest energy is populated (the energy gap
between the lowest and the first excited term, as a rule, considerably exceeds the
energy of thermal motion at temperatures of the order of hundreds Kelvin).

It is possible to choose a term from all possible terms of atom or ion with the
lowest energy using the well-known empirical rules established by Hund in 1927.
According to these rules, the lowest energy has the term with the largest (with the
given electronic configuration of atom or ion) value of the total spin S and the largest
(at this S value) total orbital moment L. If L and S are not equal to zero and if in a
layer n of shell | there are less than half of the maximum possible number of electrons
(<2l+1), then the level of a multiplet with J = |L-S | has the lowest energy, and at the

number of electrons larger than 21+1 — level with J = L+S.
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The Hund’s rule can be formulated also as follows:
1) The total spin quantum number Ms = 2{(m,), in the ground state has a
maximum within the limits allowed by the Pauli's exclusion principle.
2). The total orbital quantum number M_ = 2{(m)), in the ground state has a
maximum within the limits allowed by rule 1.
3). The total value of quantum number of the total moment J for partially filled
shell is given by expressions:
J = |L-S | if the shell is less than half filled,
J = L+S if the shell is more than half filled.

Let's consider the application of Hund’s rules with the Mn? ion as an example,
having the electronic configuration of the open shell 3d° (in the layer n=3 there are 5
electrons with the orbital quantum number | = 2; we remind that the value of number
| is designated by letter d). According to the Pauli's exclusion principle there shall be
no two electrons with identical quantum numbers n, I, mg and m, in the atom. Since n
and | for all five electrons are identical, there shall be no two electrons with identical
pairs of numbers mg and m; in a shell. The total spin of the ion will be maximal, if the
spins of separate electrons are oriented equally, i.e. if mg=1/2 for all electrons; then
Ms = 5/2 and S = 5/2. But in that case the numbers m; of all five electrons shall be
different. Since m, can have 2l+1 values and | = 2, then m=2, 1, 0,-1,-2 for five
electrons, and the total quantum number M, =0, i.e. L=0. Finally, the total quantum
number of the total moment J = L+S = 5/2. So, the ground state of the Mn?* ion is
characterized by quantum numbers S = 5/2, L = 0, J = 5/2. The spectroscopic symbol
of this term — ®Sg,. Since L=0 in this state, the g-factor has, according to relation (9),
the value g=2. Since L=0 and J = S for the Mn® * ion, the ion is frequently
characterized by the number S instead of the number J.

To obtain the total and, consequently, exact value of the magnetic moment of
atom in whole, g, the quantity u; (6) shall be added to the vector value of the
magnetic moment s, of atomic nucleus:

10



e =+ ps+ = APL+ 2Ps} + .
The intrinsic magnetic moment of nucleus is equal to g = %P, where » -
gyromagnetic ratio for nucleus equal to y- = g,e / (2myC); g, - its spectroscopic
splitting factor, m, - mass of proton, P, - intrinsic angular momentum of nucleus,

numerically equal to P, =h,/I(I +1), where | - spin quantum number of the nucleus.
Using definitions of y and P, let’s determine the value of the intrinsic magnetic
moment of nucleus: x4, = u, g,+/1(1 +1).

The quantity s, = |-
2m c

p

=5.05-10" erg/oersted is called the nuclear magneton and

serves as unit for measurement of the magnetic moments of nuclei.

Since 1y 1s approximately 2000 times smaller than x4 (Bohr magneton) the
nuclear magnetic moments are approximately 2000 times smaller than the electronic
magnetic moments (g, and 1" are of the order of unity). Therefore the nuclear
magnetism can be often omitted. However "often" does not mean "always": in some
cases it is impossible to neglect the nuclear magnetism. For example, in EPR it
causes occurrence of the hyperfine structure of the absorption resonance lines.
Moreover, the existence of nuclear magnetic moments provides possibility for very

Important version of magnetic resonance — a nuclear magnetic resonance.

2. Behavior of the magnetic moments in the magnetic fields and the nature of

paramagnetic resonance

To understand the physics of electron paramagnetic resonance the two
approaches are possible:

a) classical, on the basis of consideration of a nuclear magnetic moment motion

in the external field as the classical mechanical system with properties of a

top and capable to change its energy under the action of variable part of field;
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b) quantum mechanical, on the basis of representation with the energy level
splitting of the atom having a magnetic moment, in a static magnetic field
with a set of the Zeeman sublevels, between which the transitions are
possible under the influence of a high-frequency magnetic field.

Both approaches give the same results in the sense that they allow to formulate

the same basic laws of the phenomena.

A. Magnetic field H acts on atom as on a regular magnet, orienting its
magnetic moment so that the energy of their interactions:
AEy = — s H = — 13 H cos (u; H) (10)
would be the lowest. This requirement will be satisfied if u; orients along H.
However the achievement of this is prevented by the gyroscopic properties of atom:
the field H is unable to orient w; parallel to it, and it will cause precession of the
magnetic moment of atom with the Larmor frequency. It is necessary, however, to
take into account that not only the atom as a whole has the gyroscopic properties, but
also any electron separately since it has the mechanical moment Ps. In the magnetic
field H the magnetic moment of every electron of atom shall precess with the Larmor
frequency, but different from the precession frequency of the magnetic orbital
moments, since the gyromagnetic ratio for the spin of electron is twice for orbital
motion. As a result the atomic magnetic moment x; will precess in the magnetic field
H with the frequency:

eH
? 2m,c’

where g; — Landé splitting factor, which value is given by equation (9), also depends
on the contribution of the orbital and spin moments to the total magnetic moment of
atom.

Proceeding from the circular frequency to the linear one, equation (11) may be

written as follows:
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Vo =10, (12)

and if we substitute here the values of constants then we will find:
w = 1.3995-10° g;H [Hz], (12a)
that for H = 10%-10" Oersted corresponds the centimeter band of radio waves.

Now suppose that the atom is affected not only by the static magnetic field H,
but also by weak field H, rotating with frequency v in a plane, perpendicular to H
(see Fig.3).

If frequency v coincides with frequency v, (equations (12) and (12a)) then the
vectors g and H, rotate synchronously and stationary relative each other. But in this
case the field H, will act on g as any magnetic field acts on a magnetic moment: it
will tend to orient the vector w; parallel to it. This means that the mechanical moment
N affects the atom, deviating the magnetic moment x; from its initial direction and
increasing the energy of its interaction with the field H at the expense of energy of
the variable field H,,.

Fig. 3. Behavior of the atomic magnetic moment p; in the static
H and the high-frequency magnetic fields H,

The described interaction of the atomic magnetic moment with the high-frequency

(rotating) magnetic field is realized only at the coincidence of rotation of vector H,
13



with the Larmor precession of the moment 4; in the field H both on frequency and on
direction; thus, this interaction has a resonant character. Really, imagine that the
frequencies v and v, are different or their rotation directions are opposite. Then the
relative position of 4 and H, will change continuously, consequently the direction of
the moment N will change: it will periodically increase or reduce the angle between
My and the field H. In average the effect of field H, on the magnetic moment x; will
be equal to zero. This, by the way, gives the possibility to use in the real experiment
the sinusoidal linearly polarized field with the same frequency instead of the rotating
magnetic field H,. The enquiry is that this linearly polarized field is the sum of two
oppositely rotating fields with half amplitude compared with a sinusoidal field. The
corresponding resonance interaction of H, with g will be realized by the one of two
specified components that rotates in precession direction of moment ;.

The stated mechanism of the magnetic moment x; deviation by the high-
frequency field H, from the equilibrium position and the energy of moment g; related
to it in the field H does not explain completely the reason of energy absorption of the
field H, by the magnetized paramagnetic substance. Really, in the field H the
moment u; has the lowest energy if it is parallel to a field; deviating from this
orientation at the effect of field H, this moment gains the energy. This is
accompanied by energy absorption of the high-frequency field. As experiment shows,
the high-frequency field energy is absorbed at EPR phenomenon continuously and
arbitrarily long - while the substance is affected by the fields H and H,,. Intuitively it
Is clear that the spin system is not capable to absorb energy interminably. So, to
where this energy leaves?

The atoms of any substance are not isolated and are bound by interactions with
each other. In paramagnetic crystals two of these interactions play the greatest role:
the spin-spin and the spin-lattice interactions. The first one is interaction between the
magnetic moments of atoms and by nature is quite similar to interaction of

microscopic magnetic needles: it determines the processes of energy redistribution
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inside the “spin system”, i.e. in all set of magnetic atoms of the given solids. This
process equalizes the energy of the given atoms, it is called a spin relaxation, and the
time necessary for its realization — the spin-spin relaxation time. This interaction not
very strong, but plays the essential role in electron paramagnetic resonance: in case
when it is realized between the electronic moments — it causes, considerably, the line
width of the resonance absorption.

The second type of interaction is even more essential for all magnetic resonant
phenomena as it causes the possibility of their existence. The spin-lattice interaction
for a variety of paramagnets is very different by the physical mechanisms, but has the
common features. It represents the process (better to say — processes) of energy
exchange of the spin system with a crystal lattice as a whole and is reduced,
ultimately, to transition of energy of a precessional motion of the magnetic moments
into heat, in other words — into energy of oscillations of the atoms forming a lattice.
This energy transmission of the spin system to a lattice requires a certain time; it is
called a time of spin-lattice relaxation and strongly depends on temperature -
increases with lowering of a temperature.

Now it is easy to understand, to where the energy of a variable magnetic field
absorbed at electron paramagnetic resonance leaves. If we consider the behavior in
the magnetic fields H and H, of not a particular atom but the ensemble of atoms in a
paramagnetic crystal it is necessary to take into account a spin-lattice interaction. The
alternating field that deviate the magnetic moments of all atoms from the position of
stable equilibrium increases the energy of the total spin system. The spin-lattice
interaction transfers this energy to a lattice, increasing intensity of thermal vibrations
of all its atoms (there can also be a nonmagnetic atoms among them), as a result of
which the magnetic atoms return into their initial state and are ready to repeat again
the process of transformation of an electromagnetic energy into heat. Certainly, it is
not necessary to think that all magnetic atoms of a crystal do it synchronously.
Actually such process has a statistical character: part of atoms deviated by a high-

frequency field from the equilibrium accumulate the energy while the other transfers
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the excess of energy to a lattice, and the third ones return to an equilibrium state.
Thus, at each given moment of time there are the atoms in a crystal which are in any
of possible stages of the described processes. As a result the paramagnetic crystal
(and also any other paramagnet including the fluid) will continuously absorb energy
of a variable magnetic field while the resonance requirements are met.

This is the phenomenon of electron paramagnetic resonance (EPR).

B. Quantum — mechanical description allows understanding of this phenomenon
more precisely and in full and it is based on the following basic representations.

The energy, mechanical and magnetic moments of atom are quantized by value,
I.e. can possess only certain values forming discrete sets, and the mentioned moments
are quantized also spatially: they can be oriented relative, e.g., the external field H
only with some well defined angles. Hence the natural conclusion follows: in the
external magnetic field H each energy level of the paramagnetic atom will split on a

series of sublevels. Really, the energy of interaction (10) of 4 with H is equal to:
r 1 r 1
Due to space quantization the quantity

JIW ) cos(i,H) =M,
called the magnetic quantum number of atom can have only some values that form
the following set:
M; =-J; - (J-1);... + (J-1); +J,

I.e. with the given J that determines the total mechanical moment of the electron shell
of atom (see (7)) the magnetic quantum number can have any of 2J+1 allowed values
for it. Then

ABR = 1o 93 H M, (13)
and this means also that the energy level of atom would split on 2J+1 sublevels, the
number of which is equal to the number of possible orientations of the moment of

atom (see Fig.4).
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From Fig.4 and (13) one can see that any neighboring two sublevels are separated by
the equal energy intervals wg;H. The numbers N; and N, of the atoms that are on two
any sublevels, separated by energy interval AE, in case of thermodynamic

equilibrium are related through the well-known Boltzmann equation:

H0 M, E=E+AE,
— 52 E+5/2)g,uH
32 E+(32)guH
H= Y2 EHU2guH
0 12 EA(U2)guH
32 EA(3/2)g,uH
52 EA(5/2)guH

°s  J=5/2

5/2

Fig. 4. Splitting of the basic term of the Mn?* ion by the
magnetic field H. The arrows indicate the allowed
transitions between the levels.

N,/N; = exp (-AE/KT).
It means that atoms of the paramagnetic crystal in the magnetic field H occupy the
magnetic sublevels with different density: the less is the energy of the given sublevel
the larger is the density on it.

If the paramagnet is affected by not only the field H but also by the high-
frequency field H, then the latter will flip the atoms from the lower levels on
overlying ones and back if only the field frequency corresponds to the energy
difference between the given sublevels:

hv = AE. (14)
These types of transitions are governed by a simple selection rule: realizable only
those transitions for which the magnetic quantum number changes on unity, i.e. AM;
= +1. Then the requirement (14) can be written as follows:
hvo=AE = AE“AE "= 1y g3 H (My”- My) = 1o g3 H AM;
17



or taking into account the selection rules:

HoH eH
= gJ .
h 47m,C

hve=19;H, vo=0;

Thus the quantum — mechanical description leads to the same frequency of the
resonance transition as that given by the classical description.

The high-frequency magnetic field H, transfers the atoms predominately from
the lower levels to the upper ones at the expense of some part of its energy when the
resonance conditions are met. As a result of spin-lattice interaction the particles of
top levels transfer the excess energy to a lattice and jump without energy radiation
again to the lower levels. At the continuous effect of the magnetic fields there is a
dynamic balance between the atoms that elevate on top levels and leaving down to
the lower levels. The energy of the high-frequency magnetic field will be
continuously absorbed by the substance, thus heating it up.

From the aforementioned it is clear that the electron paramagnetic resonance is
related to the Zeeman effect in optics. The difference is that at Zeeman effect the
transitions are top-down between the magnetic sublevels of various atomic levels, i.e.
with emission of electromagnetic energy in the range of high (optical) frequencies. In
case of electron paramagnetic resonance such transitions are realized top-down
between the sublevels of the same atomic level and are accompanied by

electromagnetic energy absorption in the range of the lower frequencies.

3. Basic characteristics of the electron paramagnetic resonance spectrum

Complex and diverse interactions in the paramagnetic substance determine the
essential features of behavior of the atomic magnetic moments in the fields H and H,
and thus determine the character of the resonant magnetic absorption spectrum. The

spectra for the various magnetic atoms in different substances appear rather various
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and sometimes rather difficult and containing a lot of lines with different intensities

and line shapes.

3a). Width and intensity of the resonance lines

It is known that the spectroscopic lines are never infinitely narrow. The finite
width of a line and the shape of its contour are caused by tailing of the atomic energy
levels between which the given transition occurs by effect of the various physical
factors among which the interactions between the radiating atoms have the greatest
Importance.

When discussing a problem of emission or absorption line width it is necessary
to take into account first of all the following factor for the problem - broadening of
energy levels due to the uncertainty principle: if the atom is on the given energy level
for the time period At then the value of energy of this state will be within the limits of
the band AE, determined by a relation:

AE At = h.

Therefore, even in the conditions of total absence of the interatomic interaction the
spectroscopic line has the finite, the so-called natural width:

Awat = 11 2zAt), (15)
determined by a lifetime of spontaneously emitting atom in the excited state (i.e. on
the upper energy level). This remains valid in the presence of interactions between
emitting (absorbing) atoms or their environment when the lifetime of atom At on the
initial level is determined by these interactions. It is easy to show that in these cases
the atom lifetime is shortened, broadening of the energy levels increases and the
spectrum line width considerably exceeds the "natural” one, and, as well as for this
latter it is given by equation (15).

As it was already mentioned above, the basic types of interactions in the case of

magnetic resonance are the spin-spin and spin-lattice interactions. Having designated
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the corresponding relaxation times 7; and T, respectively, for the EPR absorption
line widths on the basis of the equation (15) it is possible to write:
Av=112xT,) +1/(2xT,). (16)

Vi Vo W2 \Y

Fig. 5. The width and intensity of the absorption line.

This relation qualitatively and correctly describes the line widths and a very
important conclusion about possibility of EPR observation in pure condensed
paramagnets follows from it. In these substances all atoms have the magnetic
moments and they are located very closely - at the distances determined by a lattice
period. The spin-spin interactions are very strong, the energy exchange between
atoms is very fast, the relaxation time 75 is very small, and the resonance line width is
determined, mainly, by the second term in (16) and is very large. Thereby, the weaker
interactions - spin-lattice interactions and interactions of atomic electrons with a
nucleus - actually will not affect the shape of the resonance spectrum. Therefore EPR
study on pure paramagnets is less informative and is not interesting. The real value
and development was obtained by EPR starting from research of magneto-diluted
substances, especially the crystals which paramagnetic properties are created by small
Impurity of paramagnetic atoms (ions) in a diamagnetic lattice. There is a large
number of these crystals of a natural origin, for example, a ruby (Al,O3), containing
the paramagnetic triple-charged ions of chrome in small concentrations and replacing

the aluminium ions in a diamagnetic lattice of corundum; calcite (CaCOs3), containing
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usually the doubly charged ion of manganese as a paramagnetic impurity; diamond
that contains many of paramagnetic impurities: nitrogen, aluminium, iron ions, etc. A
particular role was played among these crystals by ruby: an important area of the up-
to-date technical physics, quantum radio electronics has begun with research of its
radiospectroscopic properties. The requirements arisen in this connection had led to
development of the industry of the artificial paramagnetic impurity crystals, including
a ruby, superior compared with natural crystals.

Quantitatively the width of the absorption resonance line is measured by
difference of the frequencies Av =, - v, between points of a line contour, taken at
half of its height (Fig. 5).

The integrated intensity of a line is measured by the area limited by its contour
and the frequency axis. The amount of the absorbed energy is proportional to the
difference of level populations between which the given transition occurs. At the
given frequency and temperature this difference is proportional to the total number of
magnetic atoms in the test sample that allows to measure the concentration of
magnetic ions in the given substance from the integrated intensity of the absorption

line.

3b). EPR line shapes

The EPR line shapes can be rather various at their identical integrated intensity.
Various types of interactions cause not only a different line broadening, but also
cause difference of their shapes. For EPR spectra the most typical are the Gaussian
and Lorentz line shapes. From Fig. 6, where these lines and their derivatives are
presented, it is clear that the Lorentz line is narrower at the center, but is wider on the
"wings", compared with the Gaussian line, and their width at the half height is
different. We omit here the equations describing the mentioned types of lines and

mention only that the Gaussian shape line is observed in cases of strong domination
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of the spin-spin interaction in a paramagnet over the spin-lattice interaction, and the

Lorentz line - at inverse relation of these interactions.

J(H)

1 IH)

Fig. 6. The absorption line shape and its derivative:
solid line — Gaussian shape line;
dotted line — Lorentz shape line.

3c). Fine structure of the EPR spectrum

As it is evident from equations (13), (14) and Fig. 4, the intervals between the
neighboring Zeeman sublevels of system of noninteracting atoms are identical and
the allowed transitions between them in the given field H occur at the same
frequency, i.e. give the same absorption line. The pattern will be essentially different
when the magnetic atom (ion) with the magnetic quantum number J>1/2 is a part of
solid substance and is strongly affected by the environment. Both in a crystal and in
amorphous substance there exist a strong internal electric fields created by the
neighboring ions and affecting the magnetic ion so that its energy levels are split (this
Is the Stark effect known from optics).

Let's consider the influence of a crystal field with the manganese ion in a calcite
(CaCO3) as an example. The Mn®" ion has five unpaired electrons giving the total

spin magnetic moment ps = (35)"?o. The magnetic spin number M, (or Ms, as it was
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already mentioned, it is the same for Mn®" ion) has six different values: +5/2; +3/2:
+1/2. (The divalent manganese ion has zero orbital moment and, hence, does not
make the contribution to EPR. For the other ions of the transitional elements as it will
be established below, the orbital magnetic moment will also do not make any
contribution to EPR because of "freezing of orbits” effect). The effect of crystal field
leads to splitting of the energy levels of the ion already at H=0 on three Stark
sublevels. At superposition of the external magnetic field A each of these sublevels
split on two Zeeman sublevels. At that the effect of the crystal field leads to various
shifts of Zeeman sublevels (owing to Stark effect), to violation of equality of the
energy intervals between them. Therefore the transitions between the sublevels in the
same field A will occur at various frequencies, the absorption line splits into group of

lines (according to the selection rules AMs = +1 - on five lines; see Fig. 7(a))

H=0 H = const, vw=const H=const, v=const ['u"|_
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Fig. 7. Fine structure of EPR line of Mn®*ion in CaCo,
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This splitting of EPR line by the crystal field is called the fine structure of the EPR-
spectrum. It is more convenient to explore the EPR- spectrum experimentally at
constant frequency v of a high-frequency electromagnetic field and slow varying with
time the magnetizing field H. The transitions between the Zeeman sublevels of an ion
In this case occur also only at a resonance, i.e. at coincidence of frequency v of the
high-frequency field H, with 1, - frequency of the quantum, absorbed at transition

between the neighboring sublevels (AMs = £1). But because of effect of the crystal
field the equality of the energy intervals between the sublevels of the Mn®* ion is
broken, the transitions between the neighboring sublevels will occur only at the
moments of time when the field A will have the intensity, at which
1=, eH / (42mc) = v

(g,qyi - spectroscopic splitting factor of the neighboring sublevels of ion in the field of
a lattice), i.e. at five various values of the field /A (see Fig. 7 (b). Thus, as a result we
will observe the fine structure of the EPR line - the absorption line will consist of
group of lines (five lines).

The crystal field causes also two rather important effects: the so-called
"freezing" of the orbital moments and angular dependence of a resonant spectrum.
The first effect is that the strong crystalline field, affecting a moving electron in an
atom, spatially fixes its orbit and therefore the orbital magnetic moment cannot react
at the external magnetic field and ceases to take part in the process of electron
paramagnetic resonance. Meanwhile, the spin magnetic moment of electrons is not
affected by electric field of a crystal and as in case of the free atom it is freely
oriented in the field H according to the rules of spatial quantization. It causes all
features of electronic paramagnetic resonance.

The second effect is related to symmetry of the internal electric field of the
crystal that depends on lattice symmetry of the latter. The magnetic field H, acting on
an ion with different angles relative a crystal field, splits differently its energy levels

owing to what the position and the number of the resonance lines will depend on the
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angle & between H and crystal axes. In the first approximation the dependence of
distances (along the field H at fixed frequency ) versus the specified angle is
described by the function (3cos*@- 1).

Examination of the fine structure of the EPR-spectrum gives a lot both for
understanding the properties of a paramagnetic ion and for opinion about features of
the crystal field and its symmetry.

The character of interactions of the paramagnetic ion with its diamagnetic
environment can be such that observation either of a single line or a fine structure can
be impossible in usual conditions: thermal oscillations of the crystal lattice widen the
line so that it is necessary to cool down the crystal to the possible lowest (liquid
helium or nitrogen) temperatures for their observation.

The fine structure of EPR spectrum is observed only when there is the electric
anisotropy of the crystal lattice, i.e. the symmetry of charges surrounding a
paramagnetic ion is low enough. If the surrounding ions are located with high
symmetry it may happen that the fine structure of the EPR spectrum will be absent.
This appears, for example, for the case of the Mn? *ion, replacing the Ca’* ions in a
fluorite crystal (CaF,). The Mn?* ion is located at cube center in which corners the F~
ions are located. The crystal electric field in the location of the manganese ion has
high, cubic symmetry, and the fine structure of manganese spectrum is absent. Thus,

the EPR Mn?" spectrum in crystal CaF, should consist of one line, as for the free ion
(Fig. 4).
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3c). Hyperfine structure of EPR spectrum

The very essential feature of EPR spectra in many cases is the hyperfine
structure appearing, as in the case of optical spectra, as a result of interaction of the
magnetic moments of unpaired electrons with the magnetic moment of nucleus. We

will examine this using the manganese ion in fluorite as an example.

The spin of manganese nucleus is equal to | = 5/2. This means that in the
H=const H# const M,
V#const M, v=const

—  — +112 e

+5/2

Hyperfine splitting of levels M;=1/2 and M, =-1/2 of the ion Mn**

and transitions between them.

external field A the magnetic moment of nucleus can take 2I+1 = 6 various
directions. And this, in turn, means that the electronic magnetic moment will be
affected by the total magnetic field H+H,, able to take six various values. In this field
the magnetic moment s (or 1) will have six possible values of energy and as a result
each of the electronic Zeeman sublevels will split on six sublevels of a hyperfine

structure. As affected by the high-frequency field H, the transitions will appear
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governed by the following selection rules: AMs = 1. AM=0 (the nuclear moment at
the time of electronic transition does not change its orientation). As a result the given
EPR line of the fine structure will split on six components (see Fig. 8).

A manganese ion in a calcite, as we saw, has five lines of the fine structure; each
of them will split on six lines of the hyperfine structure. Hence, the EPR spectrum of
the Mn®" ion in a calcite will consist of thirty lines of absorption. Unlike for a calcite,
the EPR spectrum of the Mn®* ion in fluorite will have no fine structure, i.e. will
consist only of six lines of a hyperfine structure.

Research of hyperfine structure of EPR line gives the possibility to determine
the spin of a nucleus of a paramagnetic ion, allows to evaluate the state of its

unpaired electrons.

PROCEDURE AND TECHNICS OF EXPERIMENT

1. EPR radio spectrometers

Radio spectrometers of various types are used for recording the EPR spectra.

EPR spectrometers can be subdivided by methods of signal amplification into
the following types:

1) video spectrometer with low-frequency signal amplification;

2) radio spectrometer with double modulation of the magnetic field, resonant
amplification and synchronous detection at the second modulation frequency;

3) superheterodyne spectrometer with intermediate frequency amplification.

Sensitivity is the prime parameter of radio spectrometers.

The minimal number of the paramagnetic centers detected by a spectrometer in

the absence of the saturation effect without account of intrinsic noises of the

measuring circuit is equal to: N, =— kTAF
QVY R
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where a - constant depending on type of the device; Qo - resonator quality factor (Q-
factor); V - effective volume of the test sample; Af - pass band of a measuring track;
Py - microwave power.

At the same conditions: identical power of the radio-frequency field (of the
order of units of the milliwatt), Q-factor of the resonator, effective volume of the test
sample, etc., a superheterodyne radio spectrometer shows the greatest sensitivity, the
least - video spectrometer.

The problem of the sensitivity determination of any installation is rather
difficult, since not only the test sample parameters (EPR line width, configuration of
the sample, etc.) are of importance. Therefore the majority of experimentalists
determine the sensitivity of the installations on the substance called aa’-diphenyl-3-
picrylhydrazyl (2,2-diphenyl-1-picrylhydrazyl) (DPPH). Take the known batch of
this radical and by measuring a signal-to-noise ratio determine the sensitivity of the
installation. The spectrometer sensitivity enhances with frequency step-up of a
spectrometer. In average the sensitivity of various types of the spectrometers of a
three-centimeter band (X-band, frequency 10 GHz) is as follows: superheterodyne
spectrometer — 10'-10'2, spectrometer with double modulation — 10'°-10", video

spectrometer — 10™-10* magnetic centers per volume unit.

2. Description of Varian E-12 EPR-spectrometer

Radio spectrometer EPR E-12 of a three-centimeter band (X-band with
frequency around 9.5 GHz) is intended for observation and recording on a plotter the
EPR spectra of the free radicals, paramagnetic ions, radiation damage centers and
other paramagnetic particles.

The frequency of a microwave field at which there is an energy resonance

absorption by the paramagnetic sample (EPR frequency), as it is known, is related to
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the value of static magnetic field into which the sample is placed by the following
relation:
hv= uHg (17)

Thus, it is evident that the resonance absorption line can be observed at change of the
microwave field frequency and constant value of the magnetic field or at change of
the magnetic field value and constant frequency of the microwave field. In radio
spectrometer E-12, as well as in general in EPR spectrometers, the second variant of
observation of resonance absorption of the microwave field energy by substance is
used.

The graphic lines of the absorbed microwave energy by the sample registered by
a radio spectrometer versus intensity of the static magnetic field affecting the sample
Is the EPR spectroscopic lines of substance.

Spectrometer E-12 is the EPR-spectrometer of reflective type. The block
diagram of EPR-spectrometer E-12 is shown on Fig. 9.

Klystron generator (1) is used as the source of the energy in the microwave
range which frequency can change within a small band 8.8 — 9.6 GHz. The
microwave energy of the klystron generator enter into a spectrometer waveguide
transmission line through a gate (2) that prevents hit back of microwave energy into a
Klystron, reflected from a loading that can lead to malfunctions in generator
operation. The microwave energy, entering into the transmission line, if necessary,
can be attenuated on 30 dB (1000 times) by means of the step attenuator (3). The
smooth change of power is carried out by the adjustable attenuator (4). Hitting on the
circulator (5), the microwave energy is directed to the rectangular resonator (6) in
which it excites the oscillations Hyg, through a coupling aperture. Changing the
dimensions of a coupling aperture, it is possible to match the resonator with a
waveguide that brings microwave energy to it, i.e. to achieve, that energy hitting on
the resonator would completely, without reflection, be absorbed by the resonator and
dissipated in it. Usually it is not necessary to achieve full matching of the resonator

with a waveguide: part of the power should reflect from the resonator and, having
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transited through the circulator (6), hit on the microwave detector (7), creating a
current of 200-250 pA in it. In this case the detector will work in the linear mode and

have the maximum sensitivity.
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Fig. 9. Block diagram of Varian E-12 EPR spectrometer. 1 — klystron; 2 — gate; 3 -
step attenuator; 4 — smoothly adjustable attenuator; 5 — circulator; 6 — resonator; 7 —
microwave detector; 8 — unit for stabilization and magnetic field scan; 9 — generator
of the magnetic field modulation (100 kHz); 10 — modulation coils; 11 — narrow band
amplifier of EPR signal; 12 — synchronous detector of EPR signal; 13 — filter; 14 — X-
Y recorder; 15 — transmission line of automatic frequency control (AFC) generator
(70 kHz); 16 — narrow band amplifier of AFC transmission line (70 kHz); 17 -
synchronous detector of AFC transmission line; 18 — voltage summator; 19 -
directional coupler (directional-phase shifter); 20 — adjustable attenuator; 21 -
variable phase shifter; 22 — bypass microwave transmission line switch; 23 — power
unit of Klystron; 24 — windings of magnet; 25 — magnetic gaussmeter with detecting

element; 26, 27 — Hall probe of the magnetic field stabilization system.

30



/\/i

e

]

N ~_ 6
MI_\5

Fig. 10. The rectangular resonator with oscillations of the type Hyq, of Varian E-12
spectrometer. 1 — rectangular wave guide; 2 —resonator; 3 — coupling iris of a wave
guide with the resonator which hole dimension can be changed; 4 — branch pipe for test
sample 5 input into the resonator; 6, 7 — magnetic and electric field lines of a resonator.

=

The test sample is placed in the antinode of the magnetic component of the
electromagnetic field of the resonator which is introduced into the resonator via the
reach-through hole in a narrow wall of the resonator. The schematic setup of the
resonator and a pattern of the field lines of magnetic and electrical components of
electromagnetic field in it are shown in Fig. 10. At resonance conditions the sample
starts to absorb the microwave field power that leads to change of properties of the
resonator and, as consequence, to change of the power reflected from it. This change
Is registered in the form of EPR spectrum of the test sample.

For observation of the spectroscopic lines change slowly the magnetic field by
the power supply, stabilization and field scan unit (8) near the resonant value Hy with
the amplitude larger than the absorption line width. At the moment when the field
passes through the resonant value H, there is microwave energy absorption by the
paramagnetic sample which is registered by the microwave detector - the microwave
energy receiver. This is illustrated in Fig.11 which shows the magnetic field scan and
a view of microwave power curve on the microwave detector in the absence and in
the presence of the sample in the resonator.
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Fig. 11. Power curves of the microwave field on the microwave detector in
the absence of the sample in the resonator (curve a) and in the presence of the
sample in the resonator (curve b).

The absolute value of power absorbed by the sample is very small and only
slightly exceeds a noise level. To amplify the signal-to-noise ratio in the device a
method of double modulation of a magnetic field (the first modulation - sweep) is
used. The essence of the double modulation method is as follows: slowly changing
magnetic field is modulated by the high-frequency field with frequency 100 kHz (the
generator (9) in Fig. 9) and with amplitude that is several times smaller compared
with the absorption line half-width. For recording the very narrow lines the
spectrometer is provided with possibility to use the lower modulation frequencies: 10
kHz, 1 kHz, 270 Hz, or 35 Hz.

Two coils (10) glued to wide walls of the resonator are used as the modulating
device. The walls thickness in the location of coils is reduced to the value less than
the thickness of a skin layer for frequency 100 kHz (approximately to 0.05 mm) so
that the modulating field penetrate better through the metal walls of the resonator. If
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the slowly changing magnetic field has the value far from the resonant value, a
voltage on the microwave detector does not change. When approaching the resonance
the absorption of microwave power by a paramagnet increases, and since the value of

the magnetic field changes within the small limits with frequency of 100 kHz, the

Uﬂ.
[ ANV AN )
A D Tz VARV
A AN 6)
N - ::i“.:::::::::&\./;\::/\\./m tg)
t
= T H
+x F <F

t t o1t
U

Fig. 12. A signal on the microwave detector output at "small” modulation of the magnetic
field on wings (a, b) and at the center (c) of EPR lines. The output voltage of the synchronous
detector versus the magnetic field when crossing the EPR line.

microwave power, incident on the microwave detector, i.e. and the detector current,
with the same frequency starts to change. Fig. 12 shows that the alternating-current
amplitude with frequency of 100 kHz on the microwave detector output at constant
modulation amplitude of the magnetic field is the larger the greater is the slope of the
EPR line at the given field value H, and the alternating current phase differs on 180°
on opposite wings of the line (Fig. 12 a,b). If the magnetic field has the value Hy
(adjusted precisely on center of the EPR line), there appears a signal of small
amplitude with the doubled modulation frequency on the microwave detector and a
signal with frequency 100 kHz is absent (Fig. 12).

Thus, application of "small" modulation of the magnetic field allows to use

amplification of EPR signal after the microwave detector in the narrow frequency
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range (Af =10 kHz) at modulation frequency (100 kHz) by means of narrowband
amplifier (11) that essentially reduces the voltage of noise at output of registering
system that have "white" spectrum and increases a signal-to-noise ratio, i.e.
sensitivity of a spectrometer.

After the narrowband amplifier the EPR signal is rectified by the synchronous
detector (12) which output voltage is proportional to the input voltage amplitude and
the sign of the output voltage depends on the input voltage phase in respect to a
reference voltage. Figure 12 shows the output voltage of the synchronous detector
versus the magnetic field intensity. At the modulation amplitude of the magnetic
field, much smaller the EPR line width, the voltage at output of the synchronous
detector is close to derivative of the absorption line.

Having transited the synchronous detector with the reference frequency
100 kHz the signal after the additional filtration comes on two-coordinate recording
potentiometer (14). The horizontal sweep of a recorder is synchronized with slow
saw-toothed field scan. The scan time can be changed from 30 seconds to 16 hours,
the sweep amplitude — from 0.2 to 10000 Oe. When recording the signals on a
recorder the additional noise suppression by means of RC - filters (13) with time
constant from 0.3 to 100 s is provided that raises the sensitivity of the device.

For normal operation of the radio spectrometer it is necessary that frequency of
the Kklystron generator and the working resonator are precisely coincided. For
elimination of their possible mismatch the automatic frequency control (AFC)
scheme of a klystron on resonance frequency of the working resonator is used. The
principle of operation of the regulating system uses the possibility of frequency
change of a klystron by voltage change on its reflector.

The frequency control is carried out as follows. Apply additional voltage with
small amplitude and with frequency 70 kHz on a klystron reflector from the AFC
generator path (15) owing to that the frequency of a klystron appears to be
modulated. If the Klystron carrier frequency does not coincide with intrinsic

frequency of the resonator, it appears that the microwave power reflected from the
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resonator is modulated and consequently, and also the voltage on the microwave
detector. The amplitude and phase of this modulation are determined by the value and
sign of mismatch, i.e. the difference of the klystron frequency from the intrinsic
frequency of the resonator, therefore the voltage component at the output of the
microwave detector with frequency of 70 kHz can be used for stabilization of the
Klystron frequency, having amplified with the amplifier (16) and synchronously
detected with the detector (17). The regulating voltage from the synchronous detector
Is applied on a Klystron reflector through the summator (18) and polarity of the
connection is selected in such manner as to compensate the frequency drift of a
klystron from frequency of the working resonator.

If there is a necessity to carry out the EPR spectra measurements at very small
microwave power (for example, in samples with long times of spin-lattice relaxation),
it may appear that the microwave power reflected from the resonator is not enough to
bring the microwave detector to the linear mode (to the linear sector of its current-
voltage characteristic). At low power of the signal reflected from the resonator the
AFC system can cease to work. In this case the bypass microwave path is used. By
means of the directional coupler (19) a small portion of microwave power is tapped
from the basic path through the regulated attenuator (5) and the phase transformer
(21) directly on the microwave diode, bypassing a path in which the resonator is
included, containing the sample in which EPR is observed. If not necessary, this
bypass path can be disconnected by the cutout switch (22).

Except recording the EPR spectra with a recorder, the spectrometer has the
home-made automated control and data collecting systems which allows to control
the magnetic field scan and to record the spectrum in a digital form directly into the
computer memory. This system consists of the communication device with the built-
in analog-to-digital converter and the computer with the program, operating with
Windows XP.
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3. Preparation of the spectrometer for operation

Open the water gate for cold water supply to the heat exchanger unit. Switch
on the actuator (green button on a dashboard located on a wall near to the power unit
of the magnet) of electric power supply of power units of heat exchanger and the
magnet of a spectrometer, switch on the heat exchanger pump (tumbler on the heat
exchanger unit). Switch on the power supply sockets of the frequency meters,
computer, magnetic gaussmeter located over the magnet. Switch on the computer and
the interface of the spectrometer with the computer. Check up the position of the
tumblers and switches on the console of the spectrometer and the microwave unit.

Their positions should be as follows:

The radio-frequency unit:

© © 0 @

F 9

OO ® ©®
MODE switch (extreme left) shall be in STBY position;
LEVELED-UNCALIB switch — in LEVELED position;
ROWER handle- in position of not more than 0.2 mW (30 dB);
AFC switch — in NORM position;
AFC MODULATION switch — in position 5-7;
REFERENCE ARM - in ABS position;
PHASE - in midposition.

®
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Console:

The module of receiver and modulation (100 kHz):

RECIEVER GAIN (amplification of receiver) — in position 10 x 100;
MODULATION AMPLITUDE - in position 2 Gauss p-p;

OUTPUT ZERO - in midposition;

TIME CONSTANT - in position 0.30.
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SYSTEM FUNCTION SELECTOR:

CAVITY MODULATION (resonator) — in position | 100 kHz;
RECORDER INPUT - in position 100 kHz.

FIELD CONTROLLER

FIELD SET - 03300 G;

VARIABLE SCAN - in position CALIB
(UNCAL lamp is switched off);

SCAN RANGE - in position 1000 Gauss

4. Operation procedure with a spectrometer

Switch on the console power (the switch is at the left below on the console).

MODE switch (extreme left, microwave unit) turn to TUNE position, the
indicator flickers, the unit is turned on in 30 s (this delay is provided for klystron
warming up).

REFERENCE ARM - switch to OFF position. The klystron generation band is
observed on the oscilloscope (Fig. 13a).

Find and adjust the resonance dip at center of the generation zone band with

FREQUENCY handle (Fig. 13b).
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Achieve the maximum resonance dip by adjustment of matching device over
the resonator, up to a base line of the generation band.

Turn the REFERENCE ARM to ON (ABS) position. Achieve the symmetrical
resonance in the generation band by rotating REFERENCE ARM RHASE (Fig. 13d).
Turn REFERENCE ARM to OFF position.

f\m

KLYSTRON MODE CAVITY RESONANCE CENTERED MICROWAVE PHASE CONTROL
Arm Off) pr ly Adjusted; SET 900 OUT OF PHASE
H f Ar OffJ

m

REFERENCE ARM PHASE MICROWAVE PHASE CONTROL
PROPERLY ADJUSTED SET 1800 QUT OF PHASE

Fig. 13. Procedure for
adiustment of the resonator.

Turn MODE switch (extreme left, microwave unit) to OPERATE position.

AFC OUT indicator shall be in the middle of the scale (near to zero), showing
that AFC (automatic frequency control) operates. If not, then achieve the indicator
position nearby zero with handle FREQUENCY. If it is impossible or AFC OUT
indicator does not responding, it is necessary to return to TUNE position and to check
up a band and a dip.

If the indicator works well it is necessary to gradually increase the power by
ATTENUATION handle (reducing the attenuator index towards O dB),

simultaneously setting the adjustment of the resonator connection and achieving that

39



the current indicator DET CURR is around zero. After that return ATTENUATION
handle position back on 30 dB.

Turn REFERENCE ARM to ON position. DET CURR indicator shall be
between 150 and 300 pA.

Important! DO NOT set POWER LEVELER in OFF position when
REFERENCE ARM is in ON position.

By adjusting REFERENCE ARM PHASE achieve the maximum current on
DET CURR current indicator.

Reduce attenuation by ATTENUATION handle from 30 dB towards 0. At that
the current of DET CURR index shall remain constant within the whole power band.
If the current changes then adjust ATTENUATION on 40 or 50 dB. Record the value
of a current at this level then reduce ATTENUATION down to a minimum,
simultaneously maintaining the value of the recorded current value by small
adjustment of the resonator connection.

Adjust with handle AFC MODULATION the minimal noise level on the
oscilloscope or on the output indicator 100 kHz of RECIEVER LEVEL unit. If
necessary increase the amplification RECIEVER GAIN on the unit 100 kHz. The
optimum position of AFC MODULATION handle depends on the microwave power

level hitting into the resonator.

Measurements of spectra

After engaging and adjustment of spectrometer it is necessary to measure the
Klystron frequency. The frequency of a microwave signal is divided on 1000 by
Hewlett-Packard HP5260A divider and measured by frequency meter SEYFFER
GR1192-B. After that start the program on the computer for measuring the EPR
spectrum (double click on VarianPrim icon on a desktop). The program window is
shown in Fig. 14.

The main area of the program window is filled by graphic presentation of the

measured spectrum. A small yellow square on the top of this field shows the running
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number of the measured spectrum point. The running intensity in mV is shown in a
small yellow square on the right. The position of this small square along Y-axis
corresponds to the running positions of the measured point along Y-axis of the
spectrum plot.

E¥ VarianPrim - Data Acquisition Systemfor Varian E-12 EPR Spectrometer
File:

1 fooooeoee L -

2DC, mY
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Ade Range Scan Time . i : : : :
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Fig. 14. Window of program for EPR spectrum recording.

e Set the following parameters of communication and control device:
ADC range — 625 mV
Scan Time — 00:05 (5 minutes)

e Click on Capture button. The system will automatically set the magnetic field in
extreme left (low field) position of the set scan range.

e Start of measurement is carried out by pressing the button ». The button <«
starts spectrum recording in the opposite direction. Buttons with double triangles
allow fast rewind. The button ||| allows to pause temporarily the spectrum

record. The termination of spectrum record is carried out by the button m.
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At first it is necessary to make a trial record of spectrum for selection of the
amplification constant (RECIEVER GAIN). After that it is necessary to rewind the
index of running point of the spectrum to extreme left position and start the
measurement. At the beginning of recording it is necessary to pause the record ("
button), measure the value of the magnetic field by means of magnetic gaussmeter
[111-1 and frequency meter U3-34, record this value and the corresponding point
number of the spectrum in the loghbook. After that continue record of the spectrum by
pressing the » button. Near to the right end of the spectrum repeat the measuring
procedure of the magnetic field value.

After finishing of spectrum record it is necessary to record the digital data using
the menu File-> Save.

To turn the spectrometer to the reset state (record mode) it is necessary to press

the Release button.
Shutdown

Move the power adjustment handle ATTENUATION in MIN (60 dB) position.
MODE switch in STANDBY position.

Switch off the console power.

Switch off the heat exchanger, shut off the water.

Switch off the power.

5. Measurement of the magnetic field value

The magnetic field measurement is carried out by means of the magnetic
gaussmeter I111-1, allowing the measurements with accuracy up to few hundredth
parts of per cent at field inhomogeneity not exceeding 0.02% per 1 cm. The
measuring limits - from 250 to 25000 Oe.
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Operation principle of the magnetic inductometer I111-1

The operation principle of the magnetic gaussmeter "I111-1” is based on the
phenomenon of nuclear magnetic resonance (NMR). If the diamagnetic substance
with the paramagnetic nuclei (with the nuclei having the magnetic dipole moments) is
placed in the static magnetic field with the value H, the dipoles will start to precess
around the applied field direction. The precession frequency is given by the Larmor
equation:

w=MH
where @ - cyclic frequency of precession, y - gyromagnetic ratio of the nucleus.

To detect a precession of the magnetic dipoles the substance is placed in the
inductance coil of the sensor which is a part of LC-tank of the high frequency
generator. Change smoothly the frequency of the generator. When the frequency of
the generator becomes equal to the precession frequency of the nuclei, there is the
resonance phenomenon, i.e. energy absorption of the high-frequency magnetic field
by nuclei of the working substance. This energy absorption, equivalent to reduction
of a LC-tank Q-factor and, hence, equivalent to resistance of the generator circuit,
causes the amplitude reduction of the generated oscillations. The generator works in
the small oscillations mode at which the largest sensitivity to reduction of a Q-factor
of the high-frequency coil of the sensor at the moment of NMR is provided. The
magnetic field modulation by alternating current with frequency of 50 Hz with the
help of the modulation coil of the sensor is provided owing to the NMR requirements
are repeated twice during the modulation period.

At periodical change of the magnetic field intensity near the resonant value the
amplitude change of the generated oscillations is converted after detection into the
alternating current signal - NMR signal. Record the NMR signal and measure the
frequency of the generator, find the magnetic field value from the equation:

H=C {
where f - frequency of the generator, C - constant of the measuring sensor. The sensor
uses the NMR of hydrogen (protons) for which C =0.234874 Oe/kHz.
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Preparation for measurements

1. Set the toggle switch "Power (Cets)" in the position "Power On (Bkin)", at
that the indicator shall light up. Warm up the device for 15 minutes.

2. Press the button “Beam centering (LleatpoBka ay4a)”, then set the beam at the
mark on screen center with the rotary knob “Beam centering (LleatpoBka j1yua)”.

3. Set the rotary knob "Frequency (Hacrora)" on a mark corresponding to the
measured induction, for that use the approximate calibration curves placed on the
front panel of the device. At measurements the sensor 3 is used, the handle "Feedback
coupling (O6parnas cBs3p)“ is set in position 11I.

4. Set a voltage of the generated oscillations within the limits corresponding to
4-10 pA on a pointer indicator. Set the rotary knob "Amplification (Ycunenue)" so
that the oscilloscope screen will show the device noise.

5. Set the switch “Level control (KouTtposs ypoBHs)” in position “Modulation
(Monymsmmst)”. Set the current of modulation corresponding to 4-10 pA with a

pointer indicator by the rotary knob “Modulation (Moaynsims)”.

Measurements operation
1. Place the sensor in the magnetic field. By slowly rotating the rotary knob
"Frequency (Yactora)" achieve appearance of the NMR signal on the screen
(Fig. 15). Decrease the modulation current to the minimum possible value at which
the NMR signal is clearly observed on the oscilloscope screen with the rotary knob

“Modulation (Moaymsiius)”.
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Fig. 15. NMR signal on the screen of the magnetic inductometer 1111-1.

2. Achieve intersection of the resonance curves with the rotary knob "Phase
(daza)". Match the intersection point of the resonance curves with the mark in the
screen center with the rotary knob "Frequency (Yacrora)'. This adjustment
corresponds to occurrence of the NMR signal at current passage in the modulation
coil through zero values, and the generator frequency in this case precisely
corresponds to the requirement H = Cf (NMR requirement), where H — the value of
the measured magnetic field.

3. Measure the device generator frequency with a frequency meter and

determine the magnetic field intensity.
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CALCULATION PROCEDURE FOR SPIN HAMILTONIAN CONSTANTS
OF THE Mn** ION IN CaF, CRYSTAL

The crystal CaF, (fluorite) belongs to the cubic crystal system and has face-

centered space lattice (space group Oy’). Each Ca® *

ion (or isomorphically
substituting it Mn** ion) is located at center of the cube which vertexes are filled by
the fluorine ions. In a lattice in the direction of the fourfold axis these cubes are
alternated with cubes in which center the cation is absent, and the cations nearest to
the given cation are located in the center of the twofold axis of the same cubes.

According to high symmetry of the nearest environment the Mn?* EPR spectrum
in fluorite has no fine structure, consists of six lines of the hyperfine structure
(Fig. 16) and is described by the following spin Hamiltonian (the axis z coincides
with the static magnetic field direction):

H=g/HS,+A (Slx+Syly+S,1,).
The first term describes interaction with the external magnetic field (Zeeman
splitting), the second one - interaction with the magnetic moment of the nucleus
(hyperfine spectrum structure).

Here g - factor of spectroscopic splitting, - Bohr magneton, S,, S,, S, - moment
operators of the ion electronic shell, A” - hyperfine structure constant, I, I, I, -
moment operators of the nucleus of the ion. The values of g-factor and hyperfine
Interaction constant can be determined from the EPR spectrum analysis.

The observed EPR spectrum indicates that the term of the Hamiltonian that
describes the hyperfine structure is small compared with the Zeeman energy.
Therefore the interpretation of spectra is carried out with the assumption that the
Zeeman energy is the main unperturbed part of the Hamiltonian and the hyperfine

interaction is considered in the form of the perturbation V.
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The eigenvalues of the Hamiltonian can be found as follows. Using the

electronic wave functions of operator S, we find the eigenvalues taking into account

3Ken

N H
: : : Teop

"AH Hpan

Fig. 16. EPR spectrum (primitive and
derivative) of the Mn?* ion in CaF, crystal. The
EPR line of the free DPPH radical is observed
near the spectrum center thus allow to measure
the Mn?* ion g-factor without measurement of
the spectrometer frequency.

the second order of perturbation theory:
Ev=En®+En V+En P=gsHM +<M|V|M> +Zy [(|<M|VIM>*)/(En®-En‘?),

where Ey?, Ey®, Ey® — are the energy level values in the zero, first and second
approximations; M and M’ - magnetic quantum numbers of the electronic shell of an
ion.

The resonance values of the magnetic field in which the EPR-transitions M, m —
M#1, m (m - magnetic quantum number of the nuclear moment of an ion) are
observed, with accuracy up to the second approach will read as follows:

Hu, m-ma. m=Ho — Am — (4%/2H,) [35/4 — m* —m (2M-1)].
Here Hy = (hv/igp), where v - measuring frequency and the hyperfine interaction

constant A is expressed in ggunits (A = A7(g/)) and is measured in Oersted.

47



It is better to determine the Hamiltonian constants according to the following
scheme. If we write the values of fields for each value of the quantum number of the
nuclear moment m we will obtain the following equations:

Hw, sr2 - a1, 52=Ho — (5/2) -A — (4°12Ho)- [10/4 — (5/2) -(2M-1)];
Hw, 32 - a1 32=Ho — (3/2) -A — (4°12Ho)- [26/4 — (3/2) -(2M-1)];
Hw, 12 - a1 12=Ho — (112) -A — (4°12Ho)- [34/4 — (1/2) -(2M-1)]; (18)
Hu-12 - et -12=Ho + (112) -A = (4°12Ho) - [34/4 + (1/2) -(2M-1);]
Hui2 -t -2=Ho + (3/2) ‘A — (4°12Ho) - [26/4 + (3/2) -(2M-1);]
Husi2 - sz, 52=Ho + (5/2) -A = (4°/2H,)- [10/4 + (5/2) -(2M-1)]
It is easy to see that if we take differences for pairs:
HM,-m—Mil,-m - HM m-—M=+1L, my
they will be independent on corrections to within the second order of a perturbation
theory, namely:
Hag-m - vz1,m — Hag, m— a1, m = 2AM.
Taking m values from +5/2 to +1/2, we obtain three relations that allow to determine
the values of the hyperfine interaction constant from the experimentally measured
values of the resonance fields:
Hys-52 - ar1,-52 = Hag 572 - ma 520 = OA,
Has-32 - 1,-32 = Hag 30 - a3 = 3A,
Has-12 - p#1,-12 = Hag 12 - 10 = A
We then obtain A values from each relation and taking the average.

To determine the spectroscopic splitting factor g it is supposed that the g-factor
of the Mn** ion is equal to the g-factor of the free radical (o,o’-diphenyl-p-
picrylhydrazyl) and is equal to 2.0036, and from equations (18) one calculates the
theoretical positions of lines with this g-factor, taking the measured field as Hy in
which the EPR line of the free radical is observed. Taking differences of the
theoretical calculations with the experimentally observed resonance values of the
fields, we obtain the shift AH of each EPR line due to deviation of the g-factor of the
Mn*" ion from the g-factor of the free radical.
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From the shift AH averaged over all lines we determine the true value of the
spectroscopic splitting factor:
9 = (9paoHpa0) I (Hpaoz4H).
The field of radical is usually measured at experiment. The sign of AH is taken
depending on what prevails: theoretical calculations or experiment. If the theoretical
calculations give the overestimated values of the resonance fields then take the sign

“.“ 1f underestimated “+”.

RESEARCH TASK

Research the EPR spectrum of the Mn?* ion in CaF, fluorite:

1. Measure the resonance values of the static magnetic field Hges for all
observable EPR-transitions, including the EPR line of DPPH radical,

2. Calculate the constants g and A of the spin Hamiltonian.

WORK PROCEDURE

1. Study the EPR theory, procedure of experiment and experimental technique,
description of the devices used in installation.

2. Pass the test according to section 1 and obtain the permit-to-experiment.

3. Perform the experimental research of the EPR spectra.

4. Perform the calculations specified in the research task.

5. Pass the test according to sections 3 and 4.
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PART 2

1. Basics of EPR theory of rare-earth ions in ionic crystals

1.1. Free ions

The family of the rare earth ions or lanthanides forms a special group of the
elements which chemical properties are very similar. Their valence is usually equal to

three. The closed electronic shells correspond to the atomic core of xenon:

15? 25? 2p° 3s% 3p® 3d'° 4s? 4p°® 4d™° 5% 5p°;
the La®> ion is in this state. In the subsequent ions the electrons gradually fill a 4f-
shell; the Lu®*" ion has the filled 4f-shell. Table 1.1 shows the basic characteristics of
triple-charged ions.

Outside of the atomic core of a xenon the electrons have a configuration 4f ", where
n =2Z - 57 and Z — atomic number of lantanide. In almost all cases the magnetic
properties of ions are determined by the number of electrons in a 4f-shell. The
coupling of electrons is close to LS-type (Russell-Saunders coupling), at that the
ground state of the ion is determined by the Hund’s rule. The total moment of
gyration (angular moment) is described by the quantum number J =L+ S (L and S -
are the orbital and spin moments) and the corresponding value of Lande splitting
factor (g-factor):

3 L(L+1)-S(S+1)

977 2J(3 +1) 0

The resulting electronic magnetic dipole moment is equal to:
B, =—0;4J, (2)
where u; =eh/2mc — Bohr magneton. Equation (2) is valid while it is possible to

neglect all interactions which mix the states with different J.
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The Hamiltonian of spin-orbit interaction §(I s) in LS — coupling approach may be
written as follows:

Hso = 4 (LS). (3)
For the basic terms obeying the Hund’s rule (i.e. the terms with the maximum spin S),
A =%(&/2S). Plus and minus signs correspond to the electronic shells that are less or
more than half filled, respectively. The spin-orbit interaction splits the given term on

a multiplet of levels with different values of the full angular moment J.

The energy of level J is determined by the equation:
EJ:%/I{J(J +1)-L(L+1)-S(S+1)}, (4)

from which the Lande intervals rule is as follows:
EJ_EJ_l =\ J. (5)
Experimentally these intervals are determined from the optical absorption and

luminescence spectra.
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Table 1.1

_ Lande Energy of
Atomic Electron . _ _
_ Ground | splitting | Excited | excited
Element number | lon confi-
_ state factor state state,
Z guration .,
g3 cm
Lanthanum 57 Lat 4f °
Cerium 58 ce** 4f ! °Fe), 6/7 °F. 2200
Praseodymium | 59 Pr* 4f * *H, 4/5 *Hs 2100
Neodymium 60 | Nd** | 4f° “lo 8/11 L 1900
Promethium 61 Pm* | 4f*? 4 3/5 s 1600
Samarium 62 sm¥ | 4f° °H; 217 °H,,, 1000
Europium 63 Eu™ | 4f° Fo 0 F, 400
Gadolinium 64 | Gd**| 4af’ 83, 2 °p., 30000
Terbium 65 Th** 4f ® Fe 3/2 "Fe 2000
Dysprosium 66 | Dy** | 4f” °Hys) 4/3 °Hiap 3400
Holmium 67 Ho®" | 4f% °lg 5/4 3, 5000
Erbium 68 Erft | 4fH g 6/5 a0 6500
Thulium 69 ™Tm* | 4f'° *H, 716 *H; 8200
Ytterbium 70 Yot | 4f B °F7/2 8/7 “Fe) 10000
Lutetium 71 Lu* | 4f%

1.2. Lanthanide compounds

The lanthanide ions enter into many chemical compounds, but we will restrict
ourselves to discussion of only several types of compounds, in which the local
symmetry is not reduced to below the axial one and in which a series of the Ln** ions

has been studied.
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The first compounds of these type are ethylsulphates of lanthanides
LNn(C,HsS04)3-9H,0. The space symmetry group of ethylsulphates is P6s/m, a point
symmetry group of the Ln®*" ion environment — Cg,. This ion has nine molecules of
water as the nearest neighbors: six of them form a triangular prism, at that three
molecules are located above, and three — below the mirror plane containing three
remained water molecules and Ln*" ion. In water molecules the oxygen atoms are the
nearest to the rare-earth ion; in erbium ethylsulphate, for example, the distances from
the Er** jon to the six O ions forming a prism, are equal to 2.37 A, and the distances
to three O atoms, lying in the symmetry plane, — 2.52 A. The symmetry of the
nearest environment of the Ln** ion is close to D3, (the symmetry elements of group
Dan — vertical triad axis, horizontal plane and three vertical symmetry planes).

The second group of compounds very similar with ethylsulphates from EPR
results, form anhydrous trichlorides of type LaCl; which crystallize in structure with
space symmetry C6s/m; the point symmetry of environment of ion is Cs,. The nearest
neighbors of the La>* ion are the nine approximately equidistant CI” ions. Three ions
of chlorine lie in one plane with La** at a distance of 2.97 A from it. Six other ions
are located at a distance of 2.99 A from the La®* ion, at that three of them lie above in
the parallel plane, and three - in the parallel plane below La**. All rare-earth ions
introduced into LaCl; as an impurity do not change the structure of this compound,
but the major part of undiluted trichlorides with the heavier ions have different
structure (orthorhombic), similar to that of YCls.

The third group with a bit different symmetry are formed by a nitrates of the
type Ln,Mgs(NO3)1,-24H,0. These are the rhombohedric crystals with the space
group R3. The Ln** ion is surrounded by twelve atoms of oxygen with the distances
to which are 2.64 A in average; These atoms belonging to (NO;)™ are located in the
corners of the distorted icosahedron. Research of optical spectra and EPR confirmed
that the crystal electric field has symmetry close to icosahedral. The point symmetry
group of the Ln®* (Ln = La, Ce, Pr, Nd) ion environment are close to Cs, but in

general the optical spectroscopy and magnetic resonance data were interpreted with
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Csv symmetry. The nitrates are remarkable in the sense that the rare-earth ions in
them are separated by large distances, e.g. in cerium-magnesium the nearest Ce** ions
are located at a distance of 8.56 A. Due to strong natural dilution the nitrates
(especially cerium-magnesium) are used in ultralow temperature equipment — as
paramagnetic salts in the adiabatic demagnetization refrigerators and thermometric
compounds. Ethylsulphates of lanthanides are also magnetically diluted, the nearest
Ln** ijons in them are separated by the distance of 7.1 A (along the c axis). In
trichlorides the nearest rare-earth ions are also located along the ¢ axis but the
distance between them is much smaller — 4.3 A.

The fourth group of compounds is formed by tetrafluorides of lanthanides
LiLnF4; (Ln = Tb, Dy, Ho, Er, Tm, Yb and Y). They have tetragonal structure of
scheelite (CaWQ,), space symmetry group l4,/a. The point symmetry group of the
Ln** ion is S4; the lanthanide ion fills two positions in a unit cell, but these positions
are related by (001) plane reflection and are therefore the magnetically equivalent.
The nearest environment of the Ln®" ion consists of the eight F~ ions at the distance of
2.3 A, while the lithium ion has the tetrahedral environment with tetragonal
distortion.

The fifth group of crystals consists of phosphates, arsenates and vanadates of
lanthanides LnBO, (B = P, As, V). At room temperature these crystals have

tetragonal zirconium structure (ZrSiO,), space symmetry group 14,/amd . The point

symmetry of the Ln®* ion environment — D,q, the nearest environment is the four 0%
ions at a distance of 2.3 A.

Finally, the sixth group is the crystals with cubic structure of elpasolite. Their
joint formula — A,BLnClg, space symmetry group (at room temperature) — Fm3m, the
point symmetry of the Ln*" ion environment (also for univalent ions A" and B*) -
cubic. The Ln*" ions are located in the sites of face-centered cubic (fcc) lattice, the
distance between them is approximately 7 A. Each lanthanide ion is in the center of

regular octahedron of the CI” ions, the same environment has the B*ion. The A" ion is
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located in the center of cube at that the four B* ions and the four Ln*" ions are located
in this cube sites, and CI" is in the center of each facet.

In many cases the lanthanide ions may be implanted in the foreign compounds
instead of the bivalent metal ions like cadmium, calcium, lead, magnesium, etc. For
example CdF,, CaF,, SrF,, PbF, and BaF, may be doped by Ln**. These crystals have
cubic symmetry, their lattice parameters are equal to 5.40 A, 5.45 A, 5.86 A, 5.93 A
and 6.19 A, respectively. The CaF, structure may be considered as simple sequence
of cubes formed by the F ions with the Ca®* ions located in the center of every
second cube. Thus the calcium ion is located in the center of a cube formed by eight
fluorine ions, the Ca-F distance is 2.36 A. The rare-earth ion replace calcium,
however the symmetry of their environment is not always the cubic one. If the nearest
vacant interstitial site (center of the neighboring cube) is occupied by the excess F
ion, then there is a tetragonal symmetry. The trigonal symmetry of the Ln®* center is
realized in the case when the oxygen (O%) ion replaces the F ions in one of the cube
vertex. The paramagnetic La>* centers with cubic symmetry are observed when
compensation of the electric charge is not nearby the rare-earth ion, but at the remote
sites. It shall be noted that crystals of the type CaF,, CaWwQ,, KMgF; and others,
doped by the triple-charged rare-earth ions have wide application as active substances

of the optic quantum amplifiers and generators (lasers).

1.3. Crystal electric field

We will take into account the interaction approximately between the free ions
in a crystal, considering that each ion is in some electric field created by all
surrounding particles. This field we will call the crystal field. The idea about the
crystal field put forward by Becquerel, thanks to works of Bethe, Kramers, Van-

Fleck, Elliott and Stevens, transformed into the well-developed theory and allowed to
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explain the diverse physical and chemical properties of compounds with transition

group elements.

A crystal field effect is always weaker compared with Coulomb interaction
between electrons in atom. Therefore we can use a self-consistent field method and to
consider the configuration of electrons forming an open shell of a paramagnetic ion.
The self-consistent field method does not consider completely the electrostatic
interaction between the electrons. Therefore, it is necessary to know for the
calculations that are usually carried out by a perturbation technique in what relation
there are the missed part of a coulomb repulsion between the electrons, magnetic
coupling between their spin and orbital moments and crystal field forces. The crystal
field is considered as intermediate if its effect is stronger compared with the spin-
orbit coupling of electrons, but is much weaker compared with interactions between
the separate electrons. This case is realized in compounds of iron elements group. As
to rare-earth compounds, a weak crystal field which is not able to disturb the coupling
between the orbital and spin moments of all open electronic shell is acting in it.

The character of energy levels splitting of paramagnetic ions by a crystal field
depends on symmetry of this field and is easily determined by means of the group
theory methods. Tables 1.2a and 1.2b show the number of energy sublevels appearing
in the field of the corresponding symmetry for the integer and half-integer values of

quantum number J; the numbers in brackets denote a degeneracy of these sublevels.

Table 1.2a
Splitting in the crystalline field of
J : trigonal tetragonal rhombic
cubic symmetry
symmetry symmetry symmetry
0 1(2) 1(2) 1(1) Complete
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2=1 (1) +1 2=1 (1) +1 splitting
1(3)
(2) (2)
3=1(1) +2 4=3 (1) +1
2=1(2) +1 (3)
(2) (2)
5=3 (1) +2 5=3 (1) +2
3=1(1) +2(3)
(2) (2)
4=1 (1) +1 (2) +2 6=3 (1) +3 7=5 (1) +2
3) (2) (2)
7=3 (1) +4 8=5(1) +3
4=1 (2) +3 (3)
(2) (2)
6=2 (1) +1 (2) +3 9=5(1) +4 10=7 (1) +3
3) (2) (2)
6=1 (1) +1 (2) +4 10=5 (1) +5 11=7 (1) +4
7
3) (2) (2)
7=1(1)+2 (2) +4 11=5(1) +6 13=9 (1) +4
8
3) (2) (2)

From Table 1.2b we see that in the case of a half-integer spin the energy sublevels
remain always at least twice degenerate. This fact is a consequence of the general

Kramers theorem that has the fundamental value for the theory of paramagnetism.
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The theorem says: electrical forces are not able to remove completely the degeneracy

of the energy level of the system that contains the odd number of electrons.

Table 1.2b
Distribution in crystal field of
J
cubic symmetry lower symmetry
172 1=1 (2) 1(2)
3/2 1=1 (4) 2(2)
5/2 2=1 (2) +1 (4) 3(2)
712 3=2(2) +1 (4) 4 (2)
9/2 3=1(2) +2 (4) 5(2)
11/2 4=2 (2) +2 (4) 6 (2)
13/2 5=3 (2) +2 (4) 7(2)
15/2 5=2 (2) +3 (4) 8 (2)

This implies that the paramagnetic resonance, as a rule, can be observed on the
paramagnetic ions containing the odd number of electrons since the magnetic field,
removing degeneration of the basic energy level, may cause the splittings lying in the
radio-frequency band. It is necessary only that the transitions between the magnetic

sublevels are not forbidden. If the number of electrons is even then already in the
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absence of a magnetic field all levels may be undegenerate and so far apart from each
other that it is not possible to observe a paramagnetic resonance at any values of the
really achievable magnetic fields.

For calculation by a perturbation technique of crystal field effect on energy
levels of paramagnetic ions it is necessary to calculate first the matrix elements of
energy Hyp of electrons of the open shell in a crystal electric field. It is possible to

present the energy Hxp in a form

Hep =D —eV (X%, Vi, ), (6)

i
where V — crystal field potential, x;, y;, zi — i-th electron coordinates of the open shell.
Supposing that electronic shells of paramagnetic atom and particles surrounding it do
not overlap with each other and that, hence, the potential V satisfies the Laplace

equation, we can perform for it the spherical harmonic expansion:

The signs of spherical harmonics are defined so that qu* = (—1)q Y, . The symmetry

||| M’“

Y1 (0,0)=> V. )

of an environment imposes some restrictions for the coefficients B} . For example, in

the presence of inverse center in expansion (7) the harmonics with odd k are absent;

besides, owing the reality of potential it is necessary, that the following requirement
is satisfied B9=(-1)"BY .

We will be interested in not the absolute energy level shifts, but only their
splitting in a crystal field. Therefore we can, without loss of generality, omit the term
with k = 0 in expansion (7).

Now the problem is reduced to evaluation of matrix elements of a crystal field (or
crystal-field potential) between the wave functions W which are the Slater
determinants or their linear combinations. Each determinant will be of the type

(Hrees I+ @i @p ). The first N one-electron functions ..., 7y correspond to

the filled shells; they are identical in all Slater determinants appearing in the
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expansion of states W of a paramagnetic ion. The other one-electron wave
functions ¢, ..., @p correspond to magnetic electrons of the open shells; hence, it

Is the functions of the type |I, m, ms>, where | = 2 for d-electrons and | = 3 for f-

electrons. The potential of a crystal field V =ZVi IS the sum of the one-electron
i

operators. Accordingly, each matrix element <\P|\/|‘P’> Is the sum of the one-
electron matrix elements <‘Pa|\/|‘Pb> where ¥, ¥, — wave functions of electrons

y of the filled shells and functions of electrons ¢ of the open shells. The

contribution of the filled shells to a matrix element <‘P|\/|‘P’> looks like

N
Z<Zj |V|;(J> and is equal to zero since we have omitted the term with k = 0 in
1

expansion (7). Therefore in general we cannot consider the filled shells and to

write our Slater determinant in the form ((pl,...,gop), I.e. to construct it of the wave

functions of magnetic electrons only. Then the one-electron matrix element is

written in the following form:
§<I, my, mg M1, my, m;>= Zk:<rk>;BE<l, m, )1, m,’>5(ms, my), (8)
where rie <rk>=T|f|(r)|2rkr2dr,
0

and f,(r) — radial wave function. The matrix elements of the operator V,! are zero if

the following requirements are violated:

k<Il, m =q+mj. (10)

The selection rule k < 1 essentially reduces the number of the parameters

necessary for description of the crystal potential. Besides, even in the absence of the

symmetry center it is possible to omit the terms V,' with odd k since the

corresponding matrix elements are equal to zero.
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The number of terms of series (7) decreases only owing to symmetry of the
environment. If the environment has a symmetry axis of the second order, parallel to
the quantization axis, or symmetry plane, perpendicular to it, then only the terms with
the even coefficient q are remained. If there is the third order axis there are only q
values, multiple of three.

In the presence of a plane symmetry, perpendicular to the quantization axis of
the third order (Cz, symmetry), the coefficients Bl‘(q‘ can be made real by a

corresponding choice of plane xOz. In the case of Cz, symmetry the terms with g = 0

at | = 2 are absent, and at | = 3 there is only one term:

6, Rpb* 6 pb* 6 \6*
BSYS + BgY, ° =B{YL + BEYS = M(YBG +Y66*)_ Be 2'86 Y _Ye
| I

by transformation of rotation around the axis z it is always possible to achieve that
BS — B =0. The same type of considerations lead to the similar relations in case of

Can or D4 symmetry when only the terms with |g | = 0 and |g | = 4 are different from
zero.

If the potential has cubic symmetry then there exists only one combination of
spherical harmonics of the fourth order, invariant relative the cubic group, and only

one — of the sixth order:

14 5 _
k=4, V,=b, r4{\/;Y4° + \/% (Y, +Y, 4)}; (11)

k=6, V,=b, rﬁ{%\(g’— ;—;(Y64+Y64)} (12)

The coefficients b, and bg are defined so that functions V,/b, and Vg/bg were
normalized to unity on unit sphere.

Though the expansion of crystal potential of the type (7) is more natural, in the
literature it is usually accepted to expand it on the homogeneous polynomials of the

power k, each of them represents a certain combination of spherical harmonics,
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without paying special attention on normalization of these polynomials. If symmetry
is such that the coefficients B, in the expansion (7) are real, then this new expansion
looks as follows:

V=>> AlR(x, Y, 2), (13)
k

q>0
where P4 — unnormalized homogeneous polynomials proportional to r"(qu +qu*)
which should not be confused, however, with Legendre polynomials designated in a

similar fashion. Table 1.3 shows the polynomials in the case of tetragonal, hexagonal

and cubic symmetry of the crystal field, and also the relation between the coefficients
A/ in expression (13) and B/ in (7).

In case of cubic symmetry the polynomials:

P4:P4°+5P44:20[x4+y4+z4—§r4j, (14)

P.=P)-21P*= —14.16{x6 +yo+2° +%(x4y2 +y*xe o+
15

4_2 4.2 4_2 4.2 15 6} ( )
+x*2% + %% + y'z +zy)—Zr ,

are introduced and the cubic potential is written as follows:
Veuee = APy + AR, (16)

where the coefficients 4, and Ag are related to coefficients b, and bg in expressions
(11) and (12) through the following relations:

A~ Lt 3 \ﬁm, Ao L 3, an
N2 16V 6 N2r 64
The coefficients 4, and A can be calculated in the so-called “point charge

approach” by expansion of the quantity Z% here the vectors R; determine the
T |r—

Ri\

position of charges that create the potential. The electrostatic energy of electron with
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charge —e in the field of six charges —Ze, located in vertexes of the regular
octahedron, is given by the equations (14) - (17), and

7 Ze? 3 Ze?

A4(OCTAHEDRON): E ) ?’ 6(OCTAHEDRON )™ a ) W (18)

Here R — distance of each charge —Ze from octahedron center.

If the paramagnetic ion is surrounded by eight charges located in vertexes of a cube,

Table 1.3

Pl =322 -r” P} =x"-6x2y? +y*

P) =35z* -30z°r% +3r* P’ = (1122 _ rz)(x“ _6x%y% + y4)

P =231z° —-3152*r* +105z°r* —5r® P =x° —15x*y® +15x%y* — y°

AOZL.\/EBO A‘EL-@B“

2 N2 \8 2 4 N2 8 4
a1 32 a1 3J13-28 o,
N “ Jor 32 6
a1 V26 40 po_ 1 132122 ¢
6~ 6 6~ 6

N2 32 N2 32

7 Ze? 1 Ze?
A4(CUBE): _E'?r AG(CUBE):§°?’ (19)

where R is again the distance of each charge —Ze from the cube center.

1.4. Equivalent operators

Having obtained the expansions (7) or (13) for the crystal field potential we are

faced with the problem of evaluation of the matrix elements (W|V|¥’). The
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rectilinear approach would consist in expansion of functions ¥ and ¥’ on Slater
determinants that would allow to reduce the matrix element (¥V|¥") to the sum of
the one-electron matrix elements of the type <I,mI |V|I,m|'> 5(mg,mg).

It is much more preferable to express the functions ¥ and W' via eigenstates

|L,S,J,MJ> of operator J and to apply the Wigner-Eckart theorem. From the

components J,, Jy, J, of vector J we compose the so-called “equivalent operators” —

the tensor operators O, possessing the same properties of transformation, as the

polynominals qu defined in Table 1.3. Then within each set of functions with the

given J we can write the equality:
<J, M, 2R (r)
1

where summation »" s carried out with all electrons. The matrix elements » B!
i

J,M3>=ak<rk><J,I\/IJ‘qu(J)‘J,M3>, (20)

of the corresponding equivalent operators coincide to within some common factor,
identical for all functions with equal k. Thus, the cumbersome direct calculations of
the matrix elements of the crystal field potential can be replaced by simple
evaluations of matrix elements of polynomials of the second, fourth and sixth degrees
of Jy, Jy, J;.

Direct calculations nevertheless are necessary for determination of common

factor a,, as, ag. In the literature these factors are called the Stevens coefficients and
designated, accordingly, as o, B, y or (J]e||d),(3|B]3).(I]y]I). The Stevens
coefficients for all rare-earth ions can be determined by means of the wave functions
corresponding to the states with maximum J,, by transition from the representation J,
J, to the representation L,, S, and then to the representation |,, s,. The values of the
coefficients o, g, and yare given in monographies [1, 2].

Construction of polynomials O, is nontrivial, since the components J, J, J;

do not commute with each other. Therefore, if we find the expression x*y#z” in a
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polynomial B?, in polynomial O,' it is replaced not by JfJ)‘,‘JZV, but by a

symmetrized product, i.e. by an average of every possible products in which Jy, J,, J,

are met A, u, vtimes, respectively. It is possible then to simplify this average, using

the commutation rules of the operators J,, Jy,, J,. In Table 1.4 we give the list of some

1

equivalent operators O/, using the designation {A, B}¢ =§(AB+ BA). The matrix

elements of operators O,' are tabulated in [1, 2].

Table 1.4

0, =3J;-J3(J+1)

00=353%-30J(J +1)32+25J2-6J(J +1)+33%(J +1)°

00 = 23138 3153 (3 +1)JF + 73534 +10512(J +1)° 32 -
5253 (3 +1)32 429432 -51%(J +1)° +4032(J +1)" =603 (J +1)

o;‘:%(JjNi‘)

ok :%{(11322 ~J(J+1)-38)(J%+ Jj‘)}s

o¢ =%(Jf +3°)

Summing the abovementioned we can write the crystal field potential in the

following form:

V=3 >aAl(r)of=>>aciof;
q k g

k=2,4,6

(21)

here <rk> — the average value of r obtained by averaging on atomic wave functions.

In most cases neither the coefficients A}, nor the radial parts of atomic wave
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functions are not precisely known; therefore the products Aﬂ<rk>:CE can be

considered as fitting parameters. They are called a "crystal field parameters” and are
found, as a rule, from optical spectra of rare-earth ions in crystals.

The result of effect of potential (21) within a set of states with given J can be
illustrated rather simply. The equivalent operators of the type Of contain only J,

and, hence, have only diagonal matrix elements for 2J+1 states characterized by
various values of the magnetic quantum number J, or M. These diagonal matrix
elements are identical for the states +J, and —J, since the operators contain only even

degrees of J,. The states with different |J, | values have, generally speaking, different

energies; therefore the crystal potential containing only operators Ok0 will lead to
occurrence of some doublets of the type [+M | and one singlet |O), if J is integer.
The operators qu for which g=0 have only the nondiagonal matrix elements

and, hence, mix the states with various M, so the resulting wave functions have the

form:

D> Culd. M), (22)
M
where, of course, ZC,@I =1 to satisfy the normalization requirement. In any such
M

combination the consecutive M values differ on quantity g. For example, the presence
of equivalent operator 066 in (21) leads to occurrence of states with the wave
functions:

Cumis|dM +6)+Cy[I,M)+Cy,_¢|I,M —6),

in which the number of terms does not exceed three, since the maximum value of J in

the ground state is equal 8 (Ho®*ion, 4f *°, °I).
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1.5. Zeeman effect

When the secular equation is solved, i.e. the ion energy levels in a crystal field and
the corresponding wave functions are found, it is necessary to evaluate the splitting
of these levels by an external magnetic field. We know (see Tables 1.2) that under
the effect of a crystal electric field, either doublets and quadruplets (ions with odd
number of electrons), or singlets, doublets and triplets (ions with an even number
of electrons) do appear. Since the intervals between the energy levels in a crystal
field are much larger the Zeeman splitting in usual magnetic fields, the magnetic
resonance transitions are observed, as a rule, only between the components of
Stark energy levels. The spin-lattice interaction in compounds with rare-earth
elements is very strong at room temperature, therefore the experiments should be
performed at such low temperatures that only the lowest level is actually
populated. It is clear that EPR observation will be possible if this level is not a
singlet.

To determine the resonance condition it is necessary to calculate the Zeeman
effect for the lowest level. In the first approximation, when only the matrix elements

between the states with the given value J are considered, the Zeeman operator

H, = ug (L +2S)H is reduced to the simple from: H ,=g,uzHJ. Thus, calculation

of the Zeeman effect of the first order is reduced to finding the matrix elements

Jx» Jy, J, for the lower group of states. Suppose that the doublet is the lowest Stark

energy level of a rare-earth ion. Suppose also that the crystal electric field has the

axial symmetry (trigonal, tetragonal or hexagonal). Then the matrix elements J, u J,
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are equal, but differ, generally speaking, from the matrix element J,, so the Zeeman

effect within the lower doublet is described by the spin Hamiltonian with effective

spin S=1/2 and anisotropic g-tensor:
Hs=0,u5H,S, + 9, 15 (HyS, +H,S, ), (23)
Here
0 =29, (+3.[+), 9, =9, (+[3.]-), (24)
and |+)and |-) — two components of a doublet of the type (22). For conservation of
exact sign of ¢ which is important for some purposes, two states |+1/2) and |-1/2)

of the effective spin shall be chosen so that the identity shall be satisfied:
9, (+1/2[S,]-2) =g, (+[3.]-).
Physically this identity is required in order that the spin Hamiltonian gave the exact
intensities of the resonance transitions caused by the variable magnetic field A; with
the circular polarization.
In the case of strong magnetic fields when the Zeeman energy is not so small in
comparison with the splittings in a crystal field, it can appear that it is necessary to
consider the higher order effects, not only the first one. The Zeeman effect of the
second order leads to that both sublevels of a doublet are shifted on the same value,
proportional to H?; this does not change the frequency of transition between the
doublet states. The Zeeman effect of the third order affects the frequency of
transition since it can have different signs for two components of a doublet and
shifts them in the opposite directions. This splitting can be considered as a by-
effect of the second order Zeeman effect. Really, the latter changes the wave

functions of the lower doublet in such a manner that they take the form

¥)ju{)+o

states and is proportional to the field H. If now we calculate the Zeeman splitting

{[+)+e

—’>}. The coefficient o determines the impurity of the other

of the first order, using the new states, then, besides the main term proportional to

H, we will obtain the correction to the energy, proportional to Ho ?, i.e. H. This
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effect has the greatest value for the doublets which do not split in the magnetic
field perpendicular to the axis c in the first approximation (g,=0), but may split in

the third order and give a weakly allowed transition in the strong magnetic fields.

1.6. Magnetic hyperfine interaction

Let's consider the interaction of the nuclear magnetic moment with the local
magnetic field created by environmental electrons. This field is caused partly by
the orbital motion of electrons and partly by their spin magnetism. For the free ion
In the case of LS-coupling the resulting field created by electrons quickly precesses
around a vector of the total moment of momentum J. With close approximation it
IS possible to restrict the consideration of only the field component which is
parallel to J and, hence, is conserved at motion. It gives the possibility to reduce

the magnetic hyperfine interaction Hamiltonian to the simple form:

H = AJL. (25)

The operator of the magnetic interaction of a nucleus with electrons is generally has
the following form:

H pe=7hl -2ﬂ82{%—%+?’(5;i—§)”+8§si5(n )} (26)

The main electronic configuration of the paramagnetic ion does not contain the

unpaired S-electrons, therefore the last term in curly brackets (26) usually does not

contribute to the hyperfine interaction constant of the free ion A; in (25). If the

ground term of a paramagnetic ion has at least slight "impurity" of the excited

configurations containing unpaired S-electrons (they are called s-configurations) then

the contribution of the contact interaction in A; becomes different from zero. As

experience shows, in case of the rare-earth atoms the contact contribution to the
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hyperfine interaction is insignificant, therefore we can neglect it. Then for the

hyperfine interaction constant we have:
Ay =2ugyh(r*}(JN]J); (27)
here y - gyromagnetic ratio of nucleus of a rare-earth ion, <J ||N||J> — coefficient

which value can be found in Tables (see [1, 2]).

Within the approach that takes into account only the matrix elements between
the states with given J, the calculation of the magnetic hyperfine interaction is very
simple, since, as well as for the Zeeman effect calculation, only the matrix elements
of the operator J are required here. Hence, there is the linear relation between the
hyperfine and Zeeman interactions. For some subspace with (2J+1) states which can

be represented by fictitious spin S and for which the Zeeman interaction has the form
ugH - §6S, the hyperfine interaction will look like S-Rb1, where A - a tensor

which, obviously, has the same main axes, as the g-tensor. The principal values of
these tensors are related by a relationship:
A_N_A_A 9
O« 9y 9; GO,
This relationship means that at measurements with fixed frequency in a changing
magnetic field the hyperfine splittings in EPR spectra will be identical for field
directions along each of the main axes. In the presence of anisotropy for any field

directions this relationship will be invalid because of difference of transformation
properties of §and X (see [2], chapter 3):
g° =1%gy +m?gy +n’g;, (29)
g’ A? =12g5 AT + m*gl AL +n’gl A (30)
here I, m, n — direction cosines of the field H relative the main axes of the g-tensor.

From (28) it follows also that we can, without data on the crystal field, find the value

of A, only from the magnetic resonance experiments using the experimental values

of & and X along the main axes.
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Table 1.5

Atomic lon Isotope Nuclear spin Ay,
Abundance, %
number I MHz
59 Pr* 141 100 5/2 +1093 (10)
60 NG 143 12.3 712 -220.3 (2)
145 8.3 712 -136.9 (1)
61 Pm** 147 radioactive 712 (+) 599 (6)
6 . 147 15.0 712 -240 (3)
m
149 13.9 712 -194 (3)
65 Tb** 159 100 3/2 +530 (5)
o6 v 161 19.0 5/2 -109.5 (22)
y
163 24.9 5/2 +152.4 (30)
67 Ho®* 165 100 712 +812.1 (10)
68 Er” 167 22.9 712 -125.3 (12)
69 Tm®* 169 100 1/2 (-) 3935
. . 171 14.4 1/2 +887.2 (15)
173 16.2 5/2 -243.3 (4)

These simple results lapse when the crystal field mixes the states with different

J. The reason is that though the matrix elements of the hyperfine interaction operator

can be always bound with the matrix elements of the Zeeman operator, the constants

of proportionality for these two operators change unequally. Thus, practically one

appraises about applicability of the approach, in which J-mixing is neglected, to what

extent the relation (28) is satisfied.

Table 1.5 shows the values of the magnetic hyperfine interaction constants A,

for free trivalent ions found from the EPR spectra in the ionic crystals.
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2. Examples of EPR spectra calculations of rare-earth ions in ionic crystals

2.1. The Nd*>* ion in neodymium ethylsulfate

Let's perform a calculation of EPR spectrum of the Nd** ions in ethylsulfate at
the liquid helium temperature. The crystal field in ethylsulfates has a Cg, symmetry

and is described by the Hamiltonian
V =aCJO) + CO; +yCJOJ + yC208. (31)
The values of the crystal field parameters have been found from the optical spectra of
the Nd** ions in La,_Nd, (C;HsSO,) 3-9H,0 crystals:
C)=58.2cm™, C? =-68.2cm™, C) =—42.7cm™, C$ =595cm ™,

The Stevens coefficients are known from tables (see [1,2]):

x=—2 2’ﬂ_ 323#’7:_35‘17.319 7
3°-11 3-11°-13 3-7-11°-13
To calculate the splitting by the crystal field of the ground level *Ig;, of the
Nd** ion (J=9/2) it is necessary to calculate the matrix elements of the operator (31)

by means of wave functions |J =9/2, M > where M =9/2 7/2, ...,-9/2. The diagonal

matrix elements (M V|M ) and elements of the type (MV|M +6) will be different

from zero. Using the tables of matrix elements of equivalent operators in [1, 2] we
write a perturbation matrix (in cm™) (Table 2.1). The secular equation can be easily

solved since the matrix partitions into submatrices of the first and second orders.
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Table 2.1

M 9/2 712 5/2 3/2 1/2 -1/2 =3/2 —5/2 =712 —9/2
9/2 41.0 -74.6
712 -131.1 -113.9
52 55.6 -113.9
3/2 60.8 —74.6
1/2 -26.4
-1/2 -26.4
-3/2 —74.6 60.8
—-5/2 -113.9 55.6
—7/2 -113.9 -131.1
~9/2 ~74.6 41.0
M +7/2 nd/2 Table 2.2
+7/2 -131.1 -113.9
nb/2 -113.9 55.65
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All levels appear to be doubly degenerate (Kramers doublets), their energy is equal to
~185,-26,-23, 108 and 126 cm™, respectively. The lower level energy E =-185 cm™
Is obtained from the two submatrices (see Table 2.2). It is evident from the table that
the lower level is a doublet:

|£)=C.0pp [£712)+Cpg)p |15/ 2).

The coefficients in the wave functions are found from the normalization requirement

2

(Curra) +(Cogrz) =1 and the equation is (~131.1-E)C,,,,~C,g, 113.9=0 in which

+7/2
we put E =—185 (cm™). As a result we obtain the wave functions of the lower doublet:
E3) :0.905|i7/2>+0.431|n5/2>.

The Lande factor of the free Nd** ion is g; = 8/11, therefore for the g-tensor

components (24) we find:

9, =29, <+|JZ|+>:3,48,

g, = g, <+|J+|—>:2,27.
The agreement with the experimental values gH:3.535and g, =2.072 can be

improved if we consider an impurity of excited states *1,4» for the calculation of the
perturbation matrix.

It is necessary to bear in mind that EPR observation on Kramers doublet is not
always possible. For example take the topmost doublet with the energy of 126 cm™;

the following wave functions correspond to it:
|+) :0.655|i9/2>+0.756|n8/2>.

Unlike functions |+)and|-) of the conjugated Kramers states AM = 9/2 — 3/2 >1 and

consequently g, = 0. If we direct a static magnetic field along the c axis of the crystal
(H||2) then the EPR effect will be absent, because the probability of a magnetic
dipole transition between the Zeeman sublevels is equal to zero (irrespective of the
magnetic field direction). If the magnetic field is perpendicular to the c axis of crystal

then there is no Zeeman splitting.



2.2. The Ce ** ion in the crystal field with cubic symmetry

The field with cubic symmetry is described by the Hamiltonian
V = BCJ (07 +50; | +7CJ(0f 210§ (32)
For the Ce* ion in the ground state J = 5/2, therefore it is possible to set ¥ =0 in (32).
According to Table 1.2 the sixfold degenerate level ’F.,, of the free ion is split on one

doublet and one quadruplet. The perturbation matrix is given in Table 2.3. From it we

find the energies and the corresponding wave functions:
1 5 :
E,,=—2405C), ¥, , =\fg|i5/2>—\f§|n3/2>,

S 1
By 456=1205C;, ¥, =\fg|i5/6>+\fg|n8/2>,
Yoo =|£1/2).

For the Ce®" ion the Stevens coefficient is A= 7 25 => 0, therefore in the case of

positive value of the parameter C the doublet
1 5
|+) = \/%|n5/2>—\/%‘i3/2>

M 5/2 312 12 | <12 | =312 | -5/2
5/2 1 J5
3/2 -3 J5
1/2 2
~1/2 2

=32 | 5 -3
~5/2 J5 1

Table 2.3

xB60BCy°

Is the lowest Stark level with the isotropic g-tensor:
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3. Problem

1. Compose an energy matrix of the Yb** ion (°F+,) in the crystal electric field
of cubic symmetry. Find the energy levels and the wave functions of the Yb* ion.
Calculate the g-factors of the doublets I'g (+7/2, u1/2) and I'; (£5/2, n3/2)

Instructions. 1) The Hamiltonian shall be presented in the form
Hyp = BCJ(0] +50; ) +7C¢(0g — 210 );
here S, y— Stevens coefficients,
Cy,C¢ — crystal field parameters,
07, O;,0F, O, - equivalent operators.
2) Subdivide the 8th order matrix into four 2nd order matrices.
3) Write the matrix elements using the common factors F(4) and
F(6);
For example, (+7/2[H,,|mi/2) =
= ACy -5(+7/2|0f| m1/2) - yCf - 21(+7/2|0g | my/2) =
= C{ - F (4)4/35 - CJ - F (6)3V/35.
4) At diagonalization of matrices separate the matrix elements on

yCgF (6) and use the abbreviation
SO (4)/C3F (6) =
For example, (+7/2|Hp| ml/2) = /350 —34/35.

5) Use the crystal field parameters for energy calculation of the

electronic states
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C; =-240cm™", CJ =41,8cm ™
B=-1,7316-10"2,  =1,48-107*,
F(4)=60, F(6)=1260.
6) Calculate the g-factors of the doublets I's, I'; from the equation
9(r;)=29, -‘<rj|JZ|rj>‘.
2. Calculate the parameters of the spin Hamiltonian (S = 1/2) of the ground

electronic doublet of the Yb®" ion in the cubic crystal field of PbF,:
Hy =gugHS + ASI.

Calculate the energies of the electron-nuclear states and construct the energy level
diagrams for even and odd isotopes (see Table 3.1).

Table 3.1

Isotope Natural abundance, % Nuclear spin, |
1%8yvh 0.1 0

b 3.2 0

2vh 21.9 0

b 31.6 0

1%vh 12.6 0

v 14.4 1/2
13vh 16.2 5/2

Calculate the resonance fields of extreme lines in the EPR spectra of both odd
isotopes.
Instructions. 1) Consider the field H applied along the axis z and use the

simplified form of the spin Hamiltonian:
H=hS, + AS, I, +%A(S+I_ +S_1,)

(h=gus H).
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2) At evaluation of the parameters *"*4 and *"°4 use the following
values of the hyperfine interaction constants:
1 4,/h = 887.2 MHz, '°4,/h =243.3 MHz.
3) Reduce the energy matrices of the electron-nuclear states (4th
order for *"*Yb and 12th order for **Yb) to 2nd order matrices.

4) Prove the validity of the relations:
12
H 2 171A2
171
| A‘:ZgyBﬁ[ L+— | -1}

_ »
H2 173A2
‘173A‘:10gy8ﬁ (l+ -1

here g — factor of spectroscopic splitting of the ground doublet

of the Yb®* ion, H, — resonance field of even ytterbium isotopes
(in Oersteds), *A and *"A — intervals between the extreme
lines of EPR spectra of odd ytterbium isotopes (in Oersteds).

3. Perform recording of the EPR spectrum of the Yb® * ions in PbF, crystal at
temperature 4.2 K. Measure the resonance fields and identify the spectral lines. Find
the parameters of the spin Hamiltonian (g, '™A, '®A) from the EPR spectrum and
compare these with calculations (take the g-factor of the free DPPH radical equal to
2.0057).
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