Task
 "Verifying Ohm's law in an alternating-current circuit and determination of inductivity and capacity"

Task 1. Determination of inductivity.

Generator of harmonic oscillations ("GZ-118") is connected to the terminal labelled " \sim V" in all circuits (Fig. 1). Set the generator output amplitude to the maximal value. The voltmeter "V" and milliammeter "mA" (or suitable multimeters) should be switched to the corresponding measuring regime (Fig. 2). The circuits can be modified by setting and removing jumpers on/from pin contacts labelled JP1-JP3. The jumper (a piece of conductor in plastic insulation) closes up a circuit when it is placed on the pins.

Figure 1: Generator. The produced frequency is derived as $f=(\mathrm{xy} . \mathrm{z} \times$ multiplier $)$ Hz. In this picture $f=18.0 \times 10^{2}=1800 \mathrm{~Hz}=1.8 \mathrm{kHz}$.

1. Assemble the electric circuit according to the scheme in Fig. 2a, where L is a coil with the inductivity L to be measured and a known resistance of $R_{0}=10 \Omega$, and R is a constant resistance of 220Ω.
2. Measure and write down the values of the current $I_{i e f}$ (amperes) and voltage $U_{i e f}$ (volts) at five different values of the frequency produced by the generator $\left(f_{i}\right)$ chosen between 1 and 2 kHz in more or less uniform steps. Rewrite the values f_{i} as angular frequencies $\omega_{i}=2 \pi f_{i}$.

Figure 2: Connection schemes.
3. For each value of $I_{i e f}$ and $U_{i e f}$ calculate the impedance of the coil using the formula $Z_{L i}=U_{i e f} / I_{i e f}$.
4. Calculate the inductivity values using the equation

$$
L_{i}=\frac{\sqrt{Z_{L i}^{2}-R_{0}^{2}}}{\omega_{i}}
$$

find the mean value $L_{a v}$ and estimate the inaccuracy.
5. Find the phase shift angles (in degrees) between the current and voltage as follows:

$$
\varphi_{i}=\arctan \left(\frac{\omega_{i} L_{a v}}{R}\right)
$$

Task 2. Determination of capacity.

1. Assemble the electric circuit according to the scheme in Fig. 2b with a capacitor C having an unknown capacity C.
2. Repeat step 2 from task 1. For each measurement $I_{i e f}$ и $U_{i e f}$ calculate the reactance of the capacitor as $X_{C i}=U_{i e f} / I_{i e f}$.
3. Calculate the capacity using the formula

$$
C_{i}=\frac{1}{\omega_{i} X_{C i}}
$$

find the average $C_{a v}$ and estimate the inaccuracy.

Task 3. Verifying the Ohm's law in general form.

1. Assemble the electric circuit according to the scheme in Fig. 2c.
2. Repeat step 2 from task 1. For each measurement $I_{i e f}$ и $U_{\text {ief }}$ calculate the impedance of the sequential $L R_{0} C$-circuit as $Z_{L C i}=U_{i e f} / I_{i e f}$.
3. Using the values of $L_{a v}$ and $C_{a v}$ obtained in tasks 1 and 2, find $Z_{L C i}^{\prime}$ using the theoretical formula $Z_{L C i}^{\prime}=\sqrt{R_{0}^{2}+\left(X_{L i}-X_{C i}\right)^{2}}$, where $X_{L i}=\omega_{i} L_{a v}$.
4. Compare the value $Z_{L C i}$ with $Z_{L C i}^{\prime}$ obtained in steps 2 and 3 of this task and approve the Ohm's law for the AC current. In case of discrepancies, explain their possible reasons.

Questions

1. Alternating current. Ways of generating AC. Quasistationary current.
2. Behaviour of a resistor, inductor and capacitor in an AC circuit.
3. Inductive and capacitive reactance. Method of vector diagrams in calculations of AC circuits.
4. Power, amplitude, and effective values of current and voltage.
5. Ohm's law for AC current. Total resistance (impedance) of a circuit. Phase difference between current and voltage.
6. Series resonance.
