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Abstract—Precise robot localization is important for all 
mobile robots, which has to deal with accumulating odometry 
errors, onboard sensory noise, harsh environmental conditions, 
unstable or missing GPS signal, and absence or uncertainties of 
a global map. Yet, localization is considered in Smart 
Environments applying dynamic connectivity with external local 
sensors within the Internet of Things (IoT) paradigm. This paper 
presents experimental results of robot indoor localization using 
a single external smart RGB-D camera. The virtual experiments 
were performed in the ROS Gazebo simulator with Turtlebot3 
Waffle Pi mobile robot model. Three types of robot motion 
within a virtual office environment were considered: static state, 
linear motion, and three different cases of curvilinear 
locomotion. In all cases, external RGB-D camera usage allowed 
to obtain a reasonably accurate location of the robot. 

Keywords—Robot Localization, Robot Recognition, Smart 
Environments. 

I. INTRODUCTION 
Mobile robots often experience difficulties in determining 

their position due to various problems. As a building’s size 
and the number of rooms increase, it becomes difficult for a 
robot to localize itself within the building. Wrong localization 
causes errors in global planner algorithms and current location 
data publishing, which in turn makes the robot behavior 
irrational and incorrect. It also prevents proper execution of 
an intended task and, in a worst-case scenario, might lead to a 
complete loss of the robot [2]. It is necessary to support robot 
localization in a closed indoor environment with a help of an 
external RGB-D camera (considering IoT infrastructure 
available within the building, Fig. 1) that communicates with 
a robot and informs the robot about its position within a room.  
Such technology can be used in the robot location tracking 
over time.  

II. SOLUTION APPROACH 
There exist different methods for computing a distance to 

an object using a monocular camera. This approach is often 
used by vehicles for analyzing road safety. Nienaber et.al. 
used monocular depth estimation for pothole distance 
estimation [6]. Joglekar et.al. [7] estimated a distance to 
objects on a road to help a driver to avoid obstacles [8] and 
traffic accidents. Yet, these approaches require proper camera 

calibration, so we have used an RGB-D camera for a 
simplified estimation of a distance to an object. 

IoT framework-based localization of a robot within a 
closed indoor environment is applied together with smart 
sensor networks in urban search and rescue scenarios [9]. To 
test the proposed solution, we constructed a typical office 
environment with a help of an automatic tool [10] for the 
Gazebo simulator [11]. A random room was selected within 
this environment and an RGB-D camera was mounted on a 
wall of the room. Next, the Turtlebot3 Waffle Pi [12] robot 
position within the room was tracked with the camera using 
the find_object_2d package [1]. A robot position tracking had 
certain inaccuracies that we carefully measured to estimate 
the packaging accuracy for a robot localization task with an 
RGB-D camera. 

 
Fig. 1. Testing environment in the Gazebo simulator. 

III. FIND_OBJECT_2D PACKAGE OVERVIEW 
Find-Object [3] is a simple application that allows finding 

a particular object within an image from a pre-created 
dictionary of objects employing different types of OpenCV 
[13] detectors and descriptors. We employed find_object_2d 
[1] package, which is the Robot Operating System (ROS, [4]) 
wrapper of the original application. The package uses an RGB 
camera for object detection and an RGB-D camera for object 
detection, localization, and SLAM tasks [5].  
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Fig. 2 The robot snapshot used by find_object_2d. 

Find_object_2d subscribes to a ROS topic [14] with a 
camera image, finds known objects that it already knows 
(after familiarizing with them at the learning stage), and then 
publishes detected objects back into the ROS topic with 
information about their positions and orientations. The 
package uses RGB and RGB-D types of cameras with RGB 
cameras. The package only detects objects in an image, but 
with the RGB-D camera, it computes the 3D positions of 
detected objects relative to the camera.  

To find an absolute position of a detected by a camera 
object the following steps are performed, Package 
find_object_2d publishes coordinate frames to ROS via tf [15] 
package, which is used for transformations between 
coordinate frames. When tf knows where the camera is, it 
publishes information into the ROS topic about the camera's 
child coordinate frames in absolute coordinates. These are 
camera frames, which in turn contain the detected object and 
thus the object position could be extracted. 

Package find_object_2d supports different combinations 
of feature detectors and descriptors algorithms and provides 
an extensive number of configurable parameters. ORB 
(Oriented FAST and rotated BRIEF) [16] is selected as the 
most suitable combination of a detector and a descriptor [17‒
19] for the task of moving robot tracking and localization. 
ORB is a combination of FAST (Features from Accelerated 
Segment Test) detector [20] and BRIEF (Binary Robust 
Independent Elementary Features) descriptor [21].  

ORB works fast and has appropriate performance, which 
is important for moving object tracking. In the beginning, the 
package requires a vocabulary with snapshots of objects. 
When the package finds feature points in an image, it 
compares them with feature points of objects from the 
vocabulary. If the similarity percentage is sufficient, the 
package informs on known object detection. If the RGB-D 
camera is used, the package [22] publishes a computed 
position of the detected object. We have tested different types 
of vocabulary and finally selected a case that provides enough 
accuracy.  

To initialize the detection and recognition system, an 
image of an object is required, for example, a snapshot of a 
robot. The algorithm accuracy strongly depends on initial 
image quality, therefore selecting a proper location for a robot 
to obtain its snapshot is important. To provide the best 
coverage of a room with the camera, we placed the camera in 
the room center on a ceiling and pointing downwards (to a 
floor). Yet, a snapshot of the robot standing in the room’s 
center directly under the camera was one of the worst cases 
since in this case at the initialization stage the camera saw it 

as a flat object. Then, as the robot was moving away from the 
center and obtaining a 3D shape (from the camera 
perspective), the detection rate decreased drastically due to 
feature points’ detection. To solve this issue, the robot 
initialization snapshot (Fig. 2) was taken while it appeared 
between the room center and the boundary. In this position, 
the detector “saw” feature points of the robot’s side. Thus, the 
detector was properly tracking the robot which was moving in 
a different direction around the room. For the detection 
process, all default configurations of find_object_2d were 
kept except disabling the nndRatioUsed parameter, which 
significantly improved package algorithms’ performance. 

IV. TESTING ENVIRONMENT AND EXPERIMENTS 
To test the proposed solution, we constructed a typical 

office environment (Fig. 1) with a help of an automatic tool 
[10] for the Gazebo simulator. A random square office-like 
empty room of 6x6 meters size was selected within this 
environment and an RGB-D camera was mounted on a wall 
of the room. Turtlebot3 Waffle Pi mobile robot was selected 
for experiments with the robot's base coordinate frame 
base_link located in the center of the robot's bottom. 

Localization inaccuracy, which inevitably appears while 
using find_object_2d, is calculated as a distance between the 
real pose of the robot's base_link and a coordinate frame of a 
detected object (that should be the closest point of the robot 
body to the camera) received from this package. For 
computations of the localization inaccuracy, only projections 
of the robot and a detected object on the XY plane were 
utilized.   

We constructed ROS plugin tf_listener (Listing 1) for 
computing inaccuracies of robot localization. It calculates a 
distance between the base_link frame and a coordinate frame 
of the detected object. Computation frequency is 10 iterations 
per second, which equals to find_object_2d package 
configuration of the camera’s frame rate (10 fps). The plugin 
computes a distance between two frames (distance is the 
inaccuracy of the detector and descriptor algorithms) and 
writes computed values into a log file. The distance between 
the two coordinate frames is calculated as follows. 

 
                              𝑙𝑙
�  ��𝑋𝑋� � 𝑋𝑋��� � �𝑌𝑌� � 𝑌𝑌���  ,                            �1� 

 
where 𝑋𝑋�  and 𝑌𝑌�  are coordinates of base_link frame and 𝑋𝑋� 
and 𝑌𝑌� are coordinates of the detected object within a current 
camera frame concerning the corresponding axis. To compute 
inaccuracies of localization, 3 types of experiments were 
considered: static state, linear motion, and curvilinear motion. 
For static state we measured the distance for 100 iterations, 
for linear motion we measured the distance for 250 iterations, 
and for curvilinear motion, we measured the distance for 1000 
iterations. Each iteration means a computed value of the 
localization inaccuracy. 

For static state experiments, the room was divided into 9 
squares and the robot was placed in a center of each square to 
test the localization accuracy in different parts of the room 
(the left image in Fig. 3). For linear motion experiments, we 
selected eight straight segment paths throughout the room 
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from one corner to another (Fig. 4). For curvilinear motion, 
we constructed five different paths: one root with a large 
radius circle (2.0 m) [23], one root with a small radius circle 
(1.25 m) [24], and three chaotic locomotion scenarios [25‒27]. 
Circular paths of different radii allowed to test localization 
accuracy while the robot turns (the right image in Fig. 3). Each 
path was applied 10 times to obtain average values. 
 
import rospy 
import tf 
import math 
 
if __name__ == '__main__': 
  rospy.init_node('tf_listener') 
  listener = tf.TransformListener() 
  rate = rospy.Rate(10.0) 
  file = open('dataset.txt', 'w') 
  while not rospy.is_shutdown(): 
    try: 
      (trans,rot) = 
listener.lookupTransform('/base_link', '/object_1', 
rospy.Time(0)) 
      trans = str(trans).replace(' ', '')[1:-1] 
      arr = trans.split(",") 
      x = float(arr[0]) 
      y = float(arr[1]) 
      d = math.sqrt(x*x + y*y) 
      file.write(str(d) + '\n') 
    except (tf.LookupException, 
tf.ConnectivityException, 
tf.ExtrapolationException): 
      continue 
    rate.sleep() 
  file.close() 

 
Listing 1. Source code of tf_listener plugin. 

 

    
Fig. 3. The red dots denote the robot positions in static state experiments 
(left image). Routes for circular motion experiments, with a large and a 

small radii (central and right image respectfully). 

 
Fig. 4. The red lines depict routes for linear motion experiments. 

V. RESULTS OF VIRTUAL EXPERIMENTS 
To analyze obtained measurements, each type and case of 

locomotion data were clustered to form two distinguishable 
clusters: with localization error less than 0.25 meters (dense 
results with over 80% of data within the cluster) and over 0.25 
meters (sparse results). Thus, we formed two types of labels 
for localization error: “Good” cases label with acceptable 
localization results, which were featured with a localization 
error that is less than 0.25 meters, and “Bad” cases with a 

localization error that are greater than or equal to 0.25 meters. 
The third label is “Unknown” data, which was selected when 
find_object_2d could not find the robot within the camera 
frame, and thus no new data could be sent to the 
corresponding ROS node. When the tf_listener plugin does 
not receive a new position from find_object_2d (i.e., tf 
package keeps publishing last remembered data until it 
receives a new transformation, which produces two or more 
repeated values in a row), the localization error is marked with 
“Unknown” label. Thus, “Unknown” datasets contain only 
duplicated values and this denotes that find_object_2d did not 
find the robot in the camera frame. 

 
Fig. 5. Flow diagram of robot localization algorithm accuracy computing 

using an RGB-D camera. 

The algorithm for determining the robot localization 
accuracy with an RGB-D camera using the find_object_2d 
package consists of the following steps (Fig. 5):  

(1) A robot (e.g., Turtlebot3) moves along its pre-planned 
path 

(2) find_object_2d package detects the robot and computes 
its position 

(3) tf_listener plugin calculates localization inaccuracy 
value and collects these values into datasets 

(4) Datasets are clustered and labeled. 
(5) Average values of localization data are selected only 

within data that are labeled as “Good”  
 

 
Fig. 6. Diagram example for one of the routes of the third type of curvilinear 
motion. The horizontal axis is the measurements’ iteration. The vertical axis 
is the computed distance between two frames. 

For analyzing localization accuracy, only data with “Good” 
labels were used. “Bad” and “Unknown” labeled data were 
used for counting cases with computational errors or false-
negative errors (Fig. 6). Each locomotion type (9 static states, 
8 linear paths, and 5 curvilinear paths) was tested 10 times to 
obtain average measurements. The analysis result (presented 
in Table 1) showed that the find_object_2d package with ORB 
detector and descriptor succeeded in correctly detecting and 
localizing the robot in about 82% of cases with an average 
inaccuracy distance of about 0.13 meters. The average 
minimum value of localization inaccuracy was not close to 
zero, so it could not be perfectly accurate while the 

Authorized licensed use limited to: Kazan Federal University. Downloaded on April 07,2022 at 12:54:03 UTC from IEEE Xplore.  Restrictions apply. 



659

3rd IEEE Eurasia Conference on IOT, Communication and Engineering 2021

localization with the find_object_2d package provides 
acceptable results. As expected, the localization accuracy is 
higher for a static state of a robot and linear paths rather than 
for curvilinear paths. 

TABLE 1. STATISTICS FOR ALL TYPES OF PATHS 

 Static 
state 

Linear 
motion 

Curvilinear 
motion 

Average 
value 

Average percent of 
"Good" values (%) 83,30 83,82 79,04 82,05 

Average percent of 
"Bad" values (%) 

3,48 9,27 9,66 7,47 

Average percent of 
"Unknown" values 
(%)  

13,22 6,91 11,30 10,48 

Average math 
expectation of 
inaccuracy (metres) 

0,125 0,136 0,125 0,129 

Average dispersion of 
inaccuracy (metres) 0,013 0,002 0,003 0,006 
Average Minimum of 
inaccuracy (metres) 0,081 0,028 0,006 0,039 

VI. CONCLUSIONS  
This paper presented the experimental results of robot 

indoor localization using a single external smart RGB-D 
camera. The virtual experiments were performed in the ROS 
Gazebo simulator with Turtlebot3 Waffle Pi mobile robot 
model. Three types of robot motion within a virtual office 
environment were considered: static state, linear motion, and 
three different cases of curvilinear locomotion. In all cases, an 
external RGB-D camera usage with the find_object_2d ROS 
package allowed to obtain a reasonably accurate location of 
the robot in 82% of cases on average while keeping the 
average error of localization within 0.14 meters. Future works 
consider comparing the precision of odometry-based 
localization [28] and IoT-based approach to localization with 
an RGB-D camera using the find_object_2d package. 
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