
656ISBN: 978-1-6654-4516-0

3rd IEEE Eurasia Conference on IOT, Communication and Engineering 2021

Virtual Experiments on Mobile Robot Localization
with External Smart RGB-D Camera Using ROS

Kirill Kononov

Laboratory of Intelligent Robotics
Systems (LIRS),

Higher School of Information
Technologies and Intelligent Systems,

Kazan Federal University
Kazan, Russia

Roman Lavrenov
Laboratory of Intelligent Robotics

Systems (LIRS),
Higher School of Information

Technologies and Intelligent Systems,
Kazan Federal University

Kazan, Russia
lavrenov@it.kfu.ru

Tatyana Tsoy
Laboratory of Intelligent Robotics

Systems (LIRS),
Higher School of Information

Technologies and Intelligent Systems,
Kazan Federal University

Kazan, Russia

Edgar A. Martínez-García

Department of Industrial Engineering
and Manufacturing,

Institute of Engineering and Technology,
Autonomous University of Ciudad Juarez

Juarez, Mexico

Evgeni Magid
Laboratory of Intelligent Robotics

Systems (LIRS),
Higher School of Information

Technologies and Intelligent Systems,
Kazan Federal University

Kazan, Russia

Abstract—Precise robot localization is important for all
mobile robots, which has to deal with accumulating odometry
errors, onboard sensory noise, harsh environmental conditions,
unstable or missing GPS signal, and absence or uncertainties of
a global map. Yet, localization is considered in Smart
Environments applying dynamic connectivity with external local
sensors within the Internet of Things (IoT) paradigm. This paper
presents experimental results of robot indoor localization using
a single external smart RGB-D camera. The virtual experiments
were performed in the ROS Gazebo simulator with Turtlebot3
Waffle Pi mobile robot model. Three types of robot motion
within a virtual office environment were considered: static state,
linear motion, and three different cases of curvilinear
locomotion. In all cases, external RGB-D camera usage allowed
to obtain a reasonably accurate location of the robot.

Keywords—Robot Localization, Robot Recognition, Smart
Environments.

I. INTRODUCTION
Mobile robots often experience difficulties in determining

their position due to various problems. As a building’s size
and the number of rooms increase, it becomes difficult for a
robot to localize itself within the building. Wrong localization
causes errors in global planner algorithms and current location
data publishing, which in turn makes the robot behavior
irrational and incorrect. It also prevents proper execution of
an intended task and, in a worst-case scenario, might lead to a
complete loss of the robot [2]. It is necessary to support robot
localization in a closed indoor environment with a help of an
external RGB-D camera (considering IoT infrastructure
available within the building, Fig. 1) that communicates with
a robot and informs the robot about its position within a room.
Such technology can be used in the robot location tracking
over time.

II. SOLUTION APPROACH
There exist different methods for computing a distance to

an object using a monocular camera. This approach is often
used by vehicles for analyzing road safety. Nienaber et.al.
used monocular depth estimation for pothole distance
estimation [6]. Joglekar et.al. [7] estimated a distance to
objects on a road to help a driver to avoid obstacles [8] and
traffic accidents. Yet, these approaches require proper camera

calibration, so we have used an RGB-D camera for a
simplified estimation of a distance to an object.

IoT framework-based localization of a robot within a
closed indoor environment is applied together with smart
sensor networks in urban search and rescue scenarios [9]. To
test the proposed solution, we constructed a typical office
environment with a help of an automatic tool [10] for the
Gazebo simulator [11]. A random room was selected within
this environment and an RGB-D camera was mounted on a
wall of the room. Next, the Turtlebot3 Waffle Pi [12] robot
position within the room was tracked with the camera using
the find_object_2d package [1]. A robot position tracking had
certain inaccuracies that we carefully measured to estimate
the packaging accuracy for a robot localization task with an
RGB-D camera.

Fig. 1. Testing environment in the Gazebo simulator.

III. FIND_OBJECT_2D PACKAGE OVERVIEW
Find-Object [3] is a simple application that allows finding

a particular object within an image from a pre-created
dictionary of objects employing different types of OpenCV
[13] detectors and descriptors. We employed find_object_2d
[1] package, which is the Robot Operating System (ROS, [4])
wrapper of the original application. The package uses an RGB
camera for object detection and an RGB-D camera for object
detection, localization, and SLAM tasks [5].

20
21

 IE
EE

 3
rd

 E
ur

as
ia

 C
on

fe
re

nc
e

on
 IO

T,
 C

om
m

un
ic

at
io

n
an

d
En

gi
ne

er
in

g
(E

C
IC

E)
 |

97
8-

1-
66

54
-4

51
6-

0/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
EC

IC
E5

28
19

.2
02

1.
96

45
64

4

Authorized licensed use limited to: Kazan Federal University. Downloaded on April 07,2022 at 12:54:03 UTC from IEEE Xplore. Restrictions apply.

657

3rd IEEE Eurasia Conference on IOT, Communication and Engineering 2021

Fig. 2 The robot snapshot used by find_object_2d.

Find_object_2d subscribes to a ROS topic [14] with a
camera image, finds known objects that it already knows
(after familiarizing with them at the learning stage), and then
publishes detected objects back into the ROS topic with
information about their positions and orientations. The
package uses RGB and RGB-D types of cameras with RGB
cameras. The package only detects objects in an image, but
with the RGB-D camera, it computes the 3D positions of
detected objects relative to the camera.

To find an absolute position of a detected by a camera
object the following steps are performed, Package
find_object_2d publishes coordinate frames to ROS via tf [15]
package, which is used for transformations between
coordinate frames. When tf knows where the camera is, it
publishes information into the ROS topic about the camera's
child coordinate frames in absolute coordinates. These are
camera frames, which in turn contain the detected object and
thus the object position could be extracted.

Package find_object_2d supports different combinations
of feature detectors and descriptors algorithms and provides
an extensive number of configurable parameters. ORB
(Oriented FAST and rotated BRIEF) [16] is selected as the
most suitable combination of a detector and a descriptor [17‒
19] for the task of moving robot tracking and localization.
ORB is a combination of FAST (Features from Accelerated
Segment Test) detector [20] and BRIEF (Binary Robust
Independent Elementary Features) descriptor [21].

ORB works fast and has appropriate performance, which
is important for moving object tracking. In the beginning, the
package requires a vocabulary with snapshots of objects.
When the package finds feature points in an image, it
compares them with feature points of objects from the
vocabulary. If the similarity percentage is sufficient, the
package informs on known object detection. If the RGB-D
camera is used, the package [22] publishes a computed
position of the detected object. We have tested different types
of vocabulary and finally selected a case that provides enough
accuracy.

To initialize the detection and recognition system, an
image of an object is required, for example, a snapshot of a
robot. The algorithm accuracy strongly depends on initial
image quality, therefore selecting a proper location for a robot
to obtain its snapshot is important. To provide the best
coverage of a room with the camera, we placed the camera in
the room center on a ceiling and pointing downwards (to a
floor). Yet, a snapshot of the robot standing in the room’s
center directly under the camera was one of the worst cases
since in this case at the initialization stage the camera saw it

as a flat object. Then, as the robot was moving away from the
center and obtaining a 3D shape (from the camera
perspective), the detection rate decreased drastically due to
feature points’ detection. To solve this issue, the robot
initialization snapshot (Fig. 2) was taken while it appeared
between the room center and the boundary. In this position,
the detector “saw” feature points of the robot’s side. Thus, the
detector was properly tracking the robot which was moving in
a different direction around the room. For the detection
process, all default configurations of find_object_2d were
kept except disabling the nndRatioUsed parameter, which
significantly improved package algorithms’ performance.

IV. TESTING ENVIRONMENT AND EXPERIMENTS
To test the proposed solution, we constructed a typical

office environment (Fig. 1) with a help of an automatic tool
[10] for the Gazebo simulator. A random square office-like
empty room of 6x6 meters size was selected within this
environment and an RGB-D camera was mounted on a wall
of the room. Turtlebot3 Waffle Pi mobile robot was selected
for experiments with the robot's base coordinate frame
base_link located in the center of the robot's bottom.

Localization inaccuracy, which inevitably appears while
using find_object_2d, is calculated as a distance between the
real pose of the robot's base_link and a coordinate frame of a
detected object (that should be the closest point of the robot
body to the camera) received from this package. For
computations of the localization inaccuracy, only projections
of the robot and a detected object on the XY plane were
utilized.

We constructed ROS plugin tf_listener (Listing 1) for
computing inaccuracies of robot localization. It calculates a
distance between the base_link frame and a coordinate frame
of the detected object. Computation frequency is 10 iterations
per second, which equals to find_object_2d package
configuration of the camera’s frame rate (10 fps). The plugin
computes a distance between two frames (distance is the
inaccuracy of the detector and descriptor algorithms) and
writes computed values into a log file. The distance between
the two coordinate frames is calculated as follows.

 𝑙𝑙
� ��𝑋𝑋� � 𝑋𝑋��� � �𝑌𝑌� � 𝑌𝑌��� , �1�

where 𝑋𝑋� and 𝑌𝑌� are coordinates of base_link frame and 𝑋𝑋�
and 𝑌𝑌� are coordinates of the detected object within a current
camera frame concerning the corresponding axis. To compute
inaccuracies of localization, 3 types of experiments were
considered: static state, linear motion, and curvilinear motion.
For static state we measured the distance for 100 iterations,
for linear motion we measured the distance for 250 iterations,
and for curvilinear motion, we measured the distance for 1000
iterations. Each iteration means a computed value of the
localization inaccuracy.

For static state experiments, the room was divided into 9
squares and the robot was placed in a center of each square to
test the localization accuracy in different parts of the room
(the left image in Fig. 3). For linear motion experiments, we
selected eight straight segment paths throughout the room

Authorized licensed use limited to: Kazan Federal University. Downloaded on April 07,2022 at 12:54:03 UTC from IEEE Xplore. Restrictions apply.

658

3rd IEEE Eurasia Conference on IOT, Communication and Engineering 2021

from one corner to another (Fig. 4). For curvilinear motion,
we constructed five different paths: one root with a large
radius circle (2.0 m) [23], one root with a small radius circle
(1.25 m) [24], and three chaotic locomotion scenarios [25‒27].
Circular paths of different radii allowed to test localization
accuracy while the robot turns (the right image in Fig. 3). Each
path was applied 10 times to obtain average values.

import rospy
import tf
import math

if __name__ == '__main__':
 rospy.init_node('tf_listener')
 listener = tf.TransformListener()
 rate = rospy.Rate(10.0)
 file = open('dataset.txt', 'w')
 while not rospy.is_shutdown():
 try:
 (trans,rot) =
listener.lookupTransform('/base_link', '/object_1',
rospy.Time(0))
 trans = str(trans).replace(' ', '')[1:-1]
 arr = trans.split(",")
 x = float(arr[0])
 y = float(arr[1])
 d = math.sqrt(x*x + y*y)
 file.write(str(d) + '\n')
 except (tf.LookupException,
tf.ConnectivityException,
tf.ExtrapolationException):
 continue
 rate.sleep()
 file.close()

Listing 1. Source code of tf_listener plugin.

Fig. 3. The red dots denote the robot positions in static state experiments
(left image). Routes for circular motion experiments, with a large and a

small radii (central and right image respectfully).

Fig. 4. The red lines depict routes for linear motion experiments.

V. RESULTS OF VIRTUAL EXPERIMENTS
To analyze obtained measurements, each type and case of

locomotion data were clustered to form two distinguishable
clusters: with localization error less than 0.25 meters (dense
results with over 80% of data within the cluster) and over 0.25
meters (sparse results). Thus, we formed two types of labels
for localization error: “Good” cases label with acceptable
localization results, which were featured with a localization
error that is less than 0.25 meters, and “Bad” cases with a

localization error that are greater than or equal to 0.25 meters.
The third label is “Unknown” data, which was selected when
find_object_2d could not find the robot within the camera
frame, and thus no new data could be sent to the
corresponding ROS node. When the tf_listener plugin does
not receive a new position from find_object_2d (i.e., tf
package keeps publishing last remembered data until it
receives a new transformation, which produces two or more
repeated values in a row), the localization error is marked with
“Unknown” label. Thus, “Unknown” datasets contain only
duplicated values and this denotes that find_object_2d did not
find the robot in the camera frame.

Fig. 5. Flow diagram of robot localization algorithm accuracy computing

using an RGB-D camera.

The algorithm for determining the robot localization
accuracy with an RGB-D camera using the find_object_2d
package consists of the following steps (Fig. 5):

(1) A robot (e.g., Turtlebot3) moves along its pre-planned
path

(2) find_object_2d package detects the robot and computes
its position

(3) tf_listener plugin calculates localization inaccuracy
value and collects these values into datasets

(4) Datasets are clustered and labeled.
(5) Average values of localization data are selected only

within data that are labeled as “Good”

Fig. 6. Diagram example for one of the routes of the third type of curvilinear
motion. The horizontal axis is the measurements’ iteration. The vertical axis
is the computed distance between two frames.

For analyzing localization accuracy, only data with “Good”
labels were used. “Bad” and “Unknown” labeled data were
used for counting cases with computational errors or false-
negative errors (Fig. 6). Each locomotion type (9 static states,
8 linear paths, and 5 curvilinear paths) was tested 10 times to
obtain average measurements. The analysis result (presented
in Table 1) showed that the find_object_2d package with ORB
detector and descriptor succeeded in correctly detecting and
localizing the robot in about 82% of cases with an average
inaccuracy distance of about 0.13 meters. The average
minimum value of localization inaccuracy was not close to
zero, so it could not be perfectly accurate while the

Authorized licensed use limited to: Kazan Federal University. Downloaded on April 07,2022 at 12:54:03 UTC from IEEE Xplore. Restrictions apply.

659

3rd IEEE Eurasia Conference on IOT, Communication and Engineering 2021

localization with the find_object_2d package provides
acceptable results. As expected, the localization accuracy is
higher for a static state of a robot and linear paths rather than
for curvilinear paths.

TABLE 1. STATISTICS FOR ALL TYPES OF PATHS

 Static
state

Linear
motion

Curvilinear
motion

Average
value

Average percent of
"Good" values (%) 83,30 83,82 79,04 82,05

Average percent of
"Bad" values (%)

3,48 9,27 9,66 7,47

Average percent of
"Unknown" values
(%)

13,22 6,91 11,30 10,48

Average math
expectation of
inaccuracy (metres)

0,125 0,136 0,125 0,129

Average dispersion of
inaccuracy (metres) 0,013 0,002 0,003 0,006
Average Minimum of
inaccuracy (metres) 0,081 0,028 0,006 0,039

VI. CONCLUSIONS
This paper presented the experimental results of robot

indoor localization using a single external smart RGB-D
camera. The virtual experiments were performed in the ROS
Gazebo simulator with Turtlebot3 Waffle Pi mobile robot
model. Three types of robot motion within a virtual office
environment were considered: static state, linear motion, and
three different cases of curvilinear locomotion. In all cases, an
external RGB-D camera usage with the find_object_2d ROS
package allowed to obtain a reasonably accurate location of
the robot in 82% of cases on average while keeping the
average error of localization within 0.14 meters. Future works
consider comparing the precision of odometry-based
localization [28] and IoT-based approach to localization with
an RGB-D camera using the find_object_2d package.

ACKNOWLEDGMENT
This paper has been supported by the Kazan Federal

University Strategic Academic Leadership Program
("PRIORITY-2030").

REFERENCES
[1] Manual for find_object_2d package. [Online]. Available:

http://wiki.ros.org/find_object_2d/
[2] N. Alishev, K.L. Su, R. Lavrenov, Е. Magid, and K.-H Hsia, “Network

failure detection and autonomous return algorithms for a crawler mobile
robot navigation”, in 11th International Conference on Developments
in eSystems Engineering (DeSE), 2018, pp. 169-174.

[3] M. Labbé. Find-Object: Simple Qt interface to try OpenCV
implementations of SIFT, SURF, FAST, BRIEF and other feature
detectors and descriptors. [Online]. Available:
http://introlab.github.io/find-object

[4] M. Quigley, et al., “ROS: An open-source robot operating system”, in
ICRA Open-Source Softw. Workshop, 2009.

[5] E. Mingachev, R. Lavrenov, E. Magid, and M. Svinin, “Comparative
Analysis of Monocular SLAM Algorithms Using TUM & EuRoC
Benchmarks”, in 15th International Conference on Electromechanics
and Robotics «Zavalishin’s Readings» (ER(ZR)-2020), 2020, pp. 343-
356.

[6] S. Nienaber, R. S. Kroon, and M. J. Booysen, “A Comparison of low-
cost monocular vision techniques for pothole distance estimation”, 2015
in IEEE Symposium Series on Computational Intelligence, 2015, pp.
419-426.

[7] A. Joglekar, D. Joshi, R. Khemani, and S. Nair, Depth estimation using
monocular camera, Int. journal of computer science and information
technologies, vol. 2, no. 4, 2011, pp. 1758-1763.

[8] R. Lavrenov, F. Matsuno, and E. Magid, Modified spline-based
navigation: Guaranteed safety for obstacle avoidance, Lecture Notes in
Computer Science, 10459 LNAI, 2017, pp. 123-133.

[9] E. Magid, et al., “Artificial intelligence based framework for robotic
search and rescue operations conducted jointly by international teams”,
in International Conference on Electromechanics and Robotics
“Zavalishin's Readings”. Springer, 2019, pp. 15-26.

[10] B. Abbyasov, R. Lavrenov, A. Zakiev, K. Yakovlev, M. Svinin, and E.
Magid, “Automatic Tool for Gazebo World Construction: From a
Grayscale Image to a 3D Solid Model”, in International Conference on
Robotics and Automation (ICRA), 2020, pp. 7226-7232.

[11] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator”, in IEEE/RSJ International
Conference on Intelligent Robots and Systems, Sendai, Japan, 2004, pp.
2149–2154.

[12] R. Amsters and P. Slaets, “Turtlebot 3 as a robotics education platform”,
in International Conference on Robotics and Education RiE 2017.
Springer, 2019, pp. 170–181.

[13] I. Culjak, D. Abram, T. Pribanic, H. Dzapo, and M. Cifrek, “A Brief
Introduction to OpenCV”, in 35th International MIPRO Convention,
2013, pp. 2142–2147.

[14] O'Kane and Jason M, “A Gentle introduction to ROS”, 2014.
[15] T. Foote, “tf: the transform library”, in Technologies for Practical Robot

Applications (TePRA), 2013, pp. 1-6. IEEE.
[16] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: an efficient

alternative to SIFT or SURF”, in International Conference on Computer
Vision (ICCV), Barcelona, Spain, 2011, pp. 2564–2571.

[17] P. Janku, K. Koplik, T. Dulík, and I. Szabo, Comparison of tracking
algorithms implemented in OpenCV, MATEC Web of Conferences. vol.
76, no. 04031, 2016.

[18] F. K. Noble, “Comparison of OpenCV’s feature detectors and feature
matchers”, in 23rd Int. Conf. on Mechatronics and Machine Vision in
Practice (M2VIP), 2016, pp. 1–6.

[19] M. Patin, “Comparative analysis of image singular point descriptors
with the implementation of algorithms under the Android operating
system”, 2016.

[20] D. G. Viswanathan, “Features from accelerated segment test (FAST)”,
2009, pp. 1-5.

[21] M. Calonder, V. Lepetit, and P. Fua, “BRIEF: binary robust
independent elementary features”, in European Conference on
Computer Vision, 2010, pp. 778-792.

[22] Е. Magid, R. Lavrenov, Т. Tsoy, M. Svinin, and R. Safin, “Real-time
Video Server Implementation for a Mobile Robot”, in 11th International
Conference on Developments in eSystems Engineering (DeSE), 2018,
pp. 180-185.

[23] 1st curvilinear r [Online]. Available: youtu.be/2qqdwDdo2oA
[24] 2nd curvilinear r. [Online]. Available: youtu.be/UUx2Wse9IU4
[25] 3rd curvilinear r. [Online]. Available: youtu.be/ALMcDjOn_UA
[26] 4th curvilinear r. [Online]. Available: youtu.be/x7KeEufGWe8
[27] 5th curvilinear r. [Online]. Available: youtu.be/DRWQg49Zi_U
[28] A. Gabdullin, G. Shvedov, M. Ivanou, and I. Afanasyev, “Analysis of

onboard sensor-based odometry for a quadrotor UAV in outdoor
environment”, in International Conference on Artificial Life and
Robotics (ICAROB), 2018.

Authorized licensed use limited to: Kazan Federal University. Downloaded on April 07,2022 at 12:54:03 UTC from IEEE Xplore. Restrictions apply.

