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Abstract—This work discloses the dynamic control model of
a hexapod robot with tripod-based walking gait. The proposed
walking model is based on the Klann linkage and three main
actuators to provide quasi-omnidirectional mobility. The reduced
number of actuators preserve holonomy as similar as popular
18-servo hyper-redundant hexapods (three servos per leg). This
work proposes two-drive differential control, one drive per
lateral triplet of legs. Each triplet is synchronized in speed with
different angle phase of rotation. The six limbs are synchronized
with bidirectional yaw motion with the third actuator. Quasi-
omnidirectional mobility was achieved and controlled by a
dynamic control law that governs the robots mechanisms motion.
Kinematic and dynamic results are validated through numerical
simulations using a tripod gait.

Index Terms—hexapod, multi-legged, Klann limb, dynamic
control, underactuated mechanism, walker robot, tripod gait

I. INTRODUCTION

Multi-legged walker robots inherently pose great locomo-

tion capabilities due to their hype-stability over numerous

complex reliefs. Some unstructured terrains include flatter,

alluvial plains, farming soils, steeper, rockier uplands, wa-

tershed boundaries, drainage characterized systems and hilly

terrains [1]. For human safety, multi-legged walker robots

[2] are suitable to operate at dangerous landscapes where

landslides, downhill creep, flows, slumps, and rock falls rep-

resent hazardous environments for humans [3]. There exist

different classes of robotic hexapods developed to perform

different varieties of missions and tasks that are of great

utility in field applications, [12]. Multi-legged robots poses

high steerage, which is essential to carry out missions in fields

such as mining, forestry, construction, planetary exploration,

vulcanography, search and rescue, demining, agriculture and

so forth. There are few successful applications based on

undearctuated limbs for walking machines such as trajectory

tracking quadrupeds [15], bio-inspired hexapods [20] [14],

reconfigurable stair climbing walkers [6], walking chairs [8],

or similar works related to the present research [7]. Redundant

walker robots such as hexapods [16] [19] require one rotary

actuator per degree of freedom (DOF), which is a general

complication. The joints require wider physical space, the

joints mechanism require instrumentation, electrical energy

consumption demand rises as the number of actuators in-

creases [22], which drastically reduces the robot’s operating

time. Traditionally, multi-legged robots may require at least

two actuators (2 DOF) to control one leg, one for azimuth

rotation and another for elevation. In addition, incrementing

the number of actuators to control a limb, the control models

become redundantly kinematic. The number of independent

control variables is greater in number than the DOF in the

working space. Usually walker robots control is devoted for

cyclod gaiting control [13], resembling biomimetic gaits [18],

gaits synthesis [5], synthesis for limbs reconfiguration [4], gait

planning [10] and learning [11].

a)

b)

Fig. 1. Proposed quasi-omnidirectional robotic platform. a) Kinematic param-
eters (top view). b) Underactuated three-motor quasi-omnidirectional robot
concept.

In this work’s concept, an asymmetric hexapod deploying
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Klann limbs is proposed (Figure 1a). The Klann linkage is

a planar mechanism with 7 passive joints, using one rotary

actuator, but in this work the mechanism is also be controlled

in yaw. One of our work’s main contributions is the mechanical

design that reduced a traditional hyoer-redundantn eighteen-

servo model into an asymmetric three-motor underactuated

version of hexapod, still preserving omnidirectional mobility

(Figure 11b). One servomotor for limbs bidirectional syn-

chronized steering, a second motor for driving the right-sided

triplet of legs, and a third motor to drive the left-sided triplet.

As a difference from other approaches [17], the proposed

hexapod design is considered quasi-omnidirectional because

it can reach any Cartesian point requiring a small latency

time for the limbs to reach the targeted yaw. A dynamic

control law is presented for the gait speed by establishing a

reference torque to track a given trajectory. Each lateral triplet

has the limbs position with different phase to stabilize the

gait. The limbs dynamic motion model includes the kinetic

and potential energy interaction model, which approaches

a Euler-Lagrange solution. The presented approach provides

simulations that concern the underactuated mobility space of a

hexapod. In section II, the proposed underactuated mechanical

design and the Klann limb kinematics are presented. In section

III presentes the deduction of the dynamic control walking

model and section IV provides the conclusion.

II. KLANN-BASED UNDERACTUATED KINEMATICS

The present work proposes a locomotion mechanism con-

sisting of a differential driving system (Figure 2a), an all-limb

synchronous bidirectional steering yaw mechanism (Figure 2b)

and the Klann-based limbs (Figure 3). The right and left sided

are differential speeds providing instantaneous velocity vt and
yileding instantaneous yaw speed, ωt. One drive per lateral

triplet of limbs, interconnected front/back sides by tracks from

the central drives. The steering mechanical system of Figure 2b

shows bilateral direction angle for all-limb synchronously and

can turn in yaw −π/4, ..., π/4. The Klann mechanism (Figure
3) is an underactuated planar multi-link system, which from

rotary input motion, it produces as output a cycloid trajectory

(Figure 4). The links proportions are defined to optimize

linear motion of the contact point at every rotary half cycle

of the crank. The contact point lifts during the other rotary

half cycle, before returning to the staring position. Klann

[9] presented his famous invention, the ”walking device”,
which is usually deployed to emulate biological limbs motion,

mostly antropods. For instance, [21] developed artificial active

whiskers for underwater guidance of walking robots based on

the Klann mechanism. The Klann mechanism has several func-

tional advantages as numerous advanced displacement systems

have, such as stepping over obstacles, climb stairs, walking

over all terrains, while not requiring a computing system to

be controlled. The Klann mechanism is comprised of seven

rigid links (L1, ..., L7, Figure 3a), a stretcher frame, a link

used as crank handle L1, two as seesaw that are joined to the

stretcher frame (L2 and L5), and all of them are interconnected

through pivot joints (A,B, ..., F ). The links proportions define

a)

b)

Fig. 2. Differential drive and steering mechanisms. a) driving structure. b)
Lims yawing structure.

the optimize the link-foot linearity of motion with half rotation

of the crank handle (Figure 3b). The rest of the crank’s

rotation allows that the link-foot move up to a defined height

before motion return toward the staring position, repeating

again the motion loop. In this work, a Klann mechanism of

a) b)

Fig. 3. Klann-based limb. a) free-body diagram. b) Klann limb with motor.

specific proportions was designed for the purpose of limbs in

a tripod-like walking. The kinematic model was deduced to

numerically simulate and analyze the gait tracks. The link L1

in connection with L3 actuate as a rotating cam with L2 as

a balancing bar. The oscillatory motion is transmitted to the

coupled links L4, L5 and L6 to convert the rotary motion of

L1 into linear motion in the base of the link effector L7. Let

us define the crank handle Cartesian position model of link
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L1:

Ax = L1 cos(φ0) (1a)

and

Ay = L1 sin(φ0), (1b)

where φ0 is the motor’s rotation angle conducted to the link

L1. The instantaneous distance R1 between the passive joints

A and B is calculated by

R1 =
√
(Ax −Bx)2 + (Ay −By)2, (2)

forming a non stationary angle α1 of the straight line AB with

respect to (w.r.t.) the horizontal axis, such that

α1 = tan−1

(
Ay −By

Ax −Bx

)
, (3)

with complementary angle β1 that comprises the triangle ABC
and is obtained through the law of Cosines:

β1 = cos−1

(
R2

1 + L2
2 − L2

3

2R1L2

)
. (4)

Therefore, the angle φ1 governs the motion of L2 and is

inferred by

φ1 = (α1 − β1)− π. (5)

Thus, through the angle φ1, the Cartesian position of the node

C is deduced by the expressions

Cx = Bx + L2 cos(φ1) (6a)

and

Cy = By + L2 sin(φ1), (6b)

where Bx and By describe the L2 coordinates. By knowing

the positions of nodes A and C, the angle φ2 can be obtained

using

φ2 = tan−1

(
Cy −Ay

Cx −Ax

)
. (7)

Therefore, as for the angle φ3 its model is:

φ3 = φ2 +Δφ1, (8)

where Δφ1 = 160.53 ·π/180+π being the slope angle of L3.

Thus, in order to model the position of joint F , the following
expression is established where the links L1, L3 and L4 are

involved in describing the φ2 behaviour. Thus,

Fx = L1 cosφ0 + L3 cosφ2 + L4 cosφ3 (9a)

and

Fy = L1 sinφ0 + L3 sinφ2 + L4 sinφ3. (9b)

Furthermore, to find the magnitude of R2, the positions of

joints D and F are used in the following expression:

R2 =
√
(Fx −Dx)2 + (Fy −Dy)2. (10)

Moreover, the angle α2 is obtained w.r.t. the absolute horizon-

tal plane by

α2 = tan−1

(
Fy −Dy

Fx −Dx

)
. (11)

It follows that, by using the segments L5, L6 and R2 within

the law of Cosines, the inner angle β2 is obtined by

β2 = cos−1

(
R2

2 + L2
6 − L2

5

2R2L6

)
. (12)

The angle φ4 determines ths L6 slope w.r.t. node F ,

φ4 = (α2 − β2)− π. (13)

By using the links L1, L3, L4 y L6 the instantaneous position

of node E is obtained,

Ex = L1 cosφ0 + L3 cosφ2 + L4 cosφ3 + L6 cosφ4 (14a)

and

Ey = L1 sinφ0 + L3 sinφ2 + L4 sinφ3 + L6 sinφ4, (14b)

with the coordinates of joints D and E known, the angle φ5

is calculated with the expression:

φ5 = tan−1

(
Ey −Dy

Ex −Dx

)
. (15)

In addition, to determine the gait angular profile, the angle

slope angle Δφ2 is included,

φ6 = φ4 + Δφ2, (16)

where Δφ2 = 90.6 · π/180 + π/2. Finally, the node G
represents the Klann limb’s end effector

Gx = L1 cosφ0 + L3 cosφ2 + L4 cosφ3 + L7 cosφ6 (17a)

and

Gy = L1 sinφ0 + L3 sinφ2 + L4 sinφ3 + L7 sinφ6. (17b)

Therefore, by computing the previous kinematic formulation,

the joints A, . . . , F and limb’s contact pointG are numerically

simulated as shown by Figure 4.

Fig. 4. Numerical simulation of the Klanns joints Cartesian motion.
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III. WALKING CONTROL LAW

The equations presented here are used to infer the robot’s

state vector and its higher order derivatives about its locomo-

tion overtime. The independent control joint variables are the

orientation angles ϕ̇s, which governs the Klann rotary shaft

positions. The limbs’ end-effectors kinematic state vector is

p = (px, py, pz)
�, with sin(ϕ1) � s1, . . . , cos(ϕ1+ϕ2) � c12

and so forth, in order to simplify expressions. Thus, stating p
by

p =

⎡
⎣ss 0 0
0 1 0
0 0 cs

⎤
⎦�

⎡
⎣l1

⎡
⎣c0s0
c0

⎤
⎦+ l3

⎡
⎣c2s2
c2

⎤
⎦+ l4

⎡
⎣c3s3
c3

⎤
⎦+ l7

⎡
⎣c6s6
c6

⎤
⎦
⎤
⎦

(18)

Let us establish each limbs inertial frame into the robots fixed

coordinate system located ideally at its geometric center

qi = Rz ·
(−π

2

)
pi +

(
Δx

Δz

)
(19)

There is one pair of Cartesian increments Δx and Δz
for each limb defined by translation coordinates [(Δx,Δz),
(Δx,−Δz), (0,−Δz), (0,Δz), (−Δx,Δz), (−Δx,−Δz)],
w.r.t. the center of the hexapod. The Euler rotation matrix

Rz transforms each limb i, and their end-effectors position
vectors pi. In addition, the robots longitudinal and angular

speed models described by the control vector is u̇ = (v, ω)�.
The absolute robots velocity is modeled by the averaged lateral

limb Cartesian speeds

vt =
vr + vl

2
=
‖q̇ir + q̇il‖

2
=

2
√
(ẋr + ẋl)2 + (ẏr + ẏl)2

2
(20)

where vt is the robot’s instantaneous velocity, vr and vl
are the limbs’ instantaneous lateral speeds at right and

left sides respectively. The Klann limb direct solution

model is defined by ṗ = J · Φ̇, where J is Jacobian

matrix and the joint angles Φ = [φA, φC , φE , φF , φG]
� are

the independent control variables. Thus, it is expressed:

ṗ =

⎡
⎣ l1c0cs + l3c2cs + l4c3cs + l7c6cs −l1s6ss −l3s2ss −l4s3ss −l7s6ss

0 l1c0 l3c2 l4c3 l7c6
−l1c0ss − l3c2ss − l4c3ss − l7c6ss −l1s0cs −l3s2cs −l4s3cs −l7s6cs

⎤
⎦ · Φ̇. (21)

Likewise, the inverse algebraic solution is expressed by

Φ̇ =

⎡
⎣ l1c0cs + l3c2cs + l4c3cs + l7c6cs −l1s6ss −l3s2ss −l4s3ss −l7s6ss

0 l1c0 l3c2 l4c3 l7c6
−l1c0ss − l3c2ss − l4c3ss − l7c6ss −l1s0cs −l3s2cs −l4s3cs −l7s6cs

⎤
⎦−1

· ṗ, (22)

where the pseudoinverse matrix J+ = (J · J�)−1 · J is an
invertible, non singular and non stationary matrix. Moreover,

the robots lateral speeds are defined by

vr =
v5 + v1

2
=

‖q̇5 + q̇1‖
2

, o bien vl = ‖q̇4‖ (23)
and

vl =
v2 + v6

2
=

‖q̇2 + q̇6‖
2

, or vl = ‖q̇3‖ (24)

From Figure 1a, the robot’s angular velocity is described by

ω =
2b(vr − vl)

a2t + b2t
(25)

Considering that at and bt are non constant as legs yaw
φs changes, where at = ||q5 − q1|| and bt = |zr − zl|.
Moreover, zr = E cos(φs) and zl = E cos(φs), where E is the
instantaneous length from the Klanns rotary point to the end-

effectors contact point. When the angle φs = 0, then bt keeps
constant and such an angle is aligned to robots longitudinal

axis, and producing as a result the following specific case:

ω =
2|zr − zl|( (‖q̇5‖+‖q̇1‖)−(‖q̇2+‖q̇6‖)

2 )

(‖q5‖ − ‖q1‖)2 + |zr − zl|2
(26)

Therefore, the control vector u̇ is algebraically deduced with
time-variant control matrix K,[
v
ω

]
=

( vr

2 + vl

2
2b

a2
t+b2t

(vr − vl)

)
=

( 1
2

1
2

2b
a2
t+b2t

− 2b
a2
t+b2t

)
︸ ︷︷ ︸

K

·
(

vr
vl

)

(27)

In addition, the functional forms of vr and vl are established
by the general expression λq(φ0, φs)

�, which is in terms of
the robots yaw orientation, such that

(
vr
vl

)
= λt ·

⎛
⎜⎝ ‖q̇1(φ̇0, φ̇s)‖

...

‖q̇6(φ̇0, φ̇s)‖

⎞
⎟⎠ (28)

Where λ is the commutation gait that switches either the right
or the left sided tripod, and exchanging the value of the tripod’s

potential energy Pr or Pl supporting the robots weight w/3
at each of the three contact points, defined by

λ =

{
λ1, Pr = hg

∑
i mi + w/3

λ2, Pl = hg
∑

i mi + w/3
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The tripod gait commutation is triggered between matrices λ1

and λ2 at every time a leg of either tripod completes a cycle,

inferred by the coordinate (Gx, Gy) of expression (17). The

approach in this work is constrained by two matrices provided

as a general model solution that even may be used for up to six

actuators (one drive per leg). Each row represents the right-

side (row 1) and the left-side (row 2) of the robot’s limbs.

Each λ1,2 records the desired user gait, for any matrix element

λ1,2(I, j) �= 0 establishes a contact point currently stepping
ground. If a contact point does physically not match the λ1,2

in turn, then the drive speed up/down to match it. Hence, the

following matrices describe both commuting walking tripods:

λ1 =

[
1/2 0 0 0 1/2 0
0 0 0 1/2 0 0

]
,

λ2 =

[
0 0 1/2 0 1/2 0
0 1/2 0 0 0 0

]
.

(29)

Without loss of generality, by commuting both tripods se-

quentially, Figure 7ab illustrates the limbs Cartesian behaviors

along the y component (Figure 5). The hexapod walking tra-

Fig. 5. The six legs tripod walking behavior. Vertical limbs position.

jectory control and the walking reachable spaces with different

robot lateral speeds at three different all-limb orientations

along forward and backward motions are shown in Figure

6. From the local Cartesian origin, any trajectory depicted

below refers to backward navigation. Likewise, any trajectory

depicted above the Cartesian origin refers to the robots forward

motion. Figure 6 also illustrates when the hexapods lateral

speeds are equal, and no angular speed is yielded, each straight

trajectory is produced at different all-limb angles at forward

and backward motion.
Now, assuming a trajectory reference model to be tracked

by the robot, let us define such a reference trajectory vector

with two components, both in terms of the first derivative as

functions of time,

u̇ref =

(
υref

ωref

)
=

(
a0 + a1t+ a2t

2 + ...
b0 + b1t+ b2t

2 + ...

)
, (30)

Fig. 6. Robot’s mobility nearly full holonomy space, when vR > vL (dots),
when vR < vL (cross), when vR = vL (circle) at different θt.

where, in the previous reference trajectory model defines the

transverse trajectory included in the inverse kinematics control

that has been deduced from (30),

μt+1 = μt +K−1
(
u̇ref − ˆ̇ut

)
(31)

From the reference model, the vector of lateral speeds μ̇ =
(vr, vl)

� is obtained. Thus, the right-sided tripod is con-

strained by two legs same speeds ||ṗ1|| = ||ṗ5|| = vr
and ||ṗ4|| = vl, as well as the left-sided tripod speeds,
||ṗ2|| = ||ṗ6|| = vl and ||ṗ3|| = vr. Thus, the contact point
Cartesian velocities are

ṗ1,5 =
v2r
2
, ṗ4 = v2l and ṗ2,6 =

v2l
2
, ṗ3 = v2r .

By using the inverse solution of the Klann kinematics of

previous expression (38), the speed contact points are known

values, and the linkage vector of angular speeds Φ =
(φA, φC , φE , φF , φG)

T is inferred, and of very particular

interest is the Klann s shaft/crank angular speed

Φ̇t+1 = Φ̇t + J−1
(
ṗt − J · Φ̇t

)
(32)

At this point, only φ̇A is of interest because represents the

angular velocity of the Klann limb’s shaft (conducted by a

kinematic chain). The three kinematic chain rotary speeds

are φ̇Ar, φ̇Al, φ̇As, right driving, left driving and steering,

respectively. For simplicity, the three rotary variables are

represented by the control vector Ω̇ = (φ̇r, ϕ̇l, φ̇s)
�. From

dynamic equation (51), the following direct dynamic solution

for torques τ = (τr, τl, τs)
� is deduced,

τ =

⎛
⎝rr

∑
i m

r
i 0 0

0 rl
∑

i m
l
i 0

0 0 rs
∑

i m
s
i

⎞
⎠ · Ω̇t (33)
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Thus, the general main recursive dynamic control equations:

τt =
M

t2 − t1

[
vref − v̂

]
+C [st+1 − st] (34)

And the inverse dynamics that considers the model v = rΩ̇,

vt+1 = vt +Mτt [t2 − t1] +M−1C [st+1 − st] (35)

Where vt+1 is next desired value at the next control loop. The

Fig. 7. Cranks torque of right/left legs as tripods switch robot’s weight.

robot’s total weight is supported by three contact points (w/3)
during π/2 of the crank’s rotary cycle (Figure 7).

IV. CONCLUSION

In this work we concluded that as a difference of redun-

dant omnidirectional walking robots capable to move to any

direction at any instant of time, with the proposed approach

the working space is quasi-omnidirectional as it takes a small

latency time to steer the limbs yaw. It is concluded that, despite

the Klann mechanism yields planar motion, by including

a second DOF for yaw steering, one limbs working space

represents a finite subset of the working space of a classical

redundant limb, still enough to be used in numerous terrains.

In this work, the tripod gait was considered for analysis of

hyper-static walking, there are always three contact points on

the ground and three on the air synchronously distributed.

Nevertheless, in the proposed control law, different types of

gaits can easily be implemented just by changing the walking

limbs phases and the values of matrices λ1 and λ2. In addition,

in the proposed kinematic approach, the limbs cycloid shape

can be changed varying the lengths of one or more links of

the Klann mechanism.
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