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Abstract— In this work, we present a definition of a neuroin-
terface architecture combined from two main parts (1) neu-
roport (a hardware device) that implements a neuro protocol,
generated and managed by a (2) neuroterminal (a software).
The proposed architecture was created by analogy with OSI
network architecture. We also present the neuroterminal as
an oscillator motif real-time neurosimulation and results of
the comparison of a bio-plausible motor pattern generated by
oscillator motifs with square pulses of 20− 40Hz used as the
neuro protocol for the output neuroport and measured their
discomfort rate and efficacy according to an angle of subject
fingers deflection. We determined that the most effective is
the five oscillator motifs generated pattern for a median nerve
stimulation, whereas for a muscle simulation 20 and 40Hz are
more effective. We indicate that the oscillator motif generated
pattern feels more natural than square pulses 20− 40Hz, which
feel like a spasm.

I. INTRODUCTION

There are already exist a lot of promising projects in the
field of brain-computer interface (BCI). Miguel Nicolelis
[1], [2] controlled a robotic hand with a neuronal activity
from a motor cortex of a monkey. Donoghue, Schwartz and
Andersen [3], [4] reproduced control over a robotic arm
via neuronal readouts using the three-dimensional tracking
in virtual reality. Lebedev group [5] demonstrated the self-
organisation of neural circuits of a brain to create the
representation of robotic limbs in addition to biological
limbs. The team of the Braingate project [6] demonstrated
the brain implant to control a robotic arm by the neuronal
activity, to move a subject’s hand as well as a computer
cursor, managing lights and TV. The commercial company
Neuralink successfully presented a 1536-channel recording
system for reading a brain activity [7] to control further
neuroprosthesis. These projects are focused on an inbound
brain-to-computer interface for readouts from a nervous
system into a computing system.

As an example of digital devices to the nervous sys-
tem interface and integration, it is worth mentioning the
William Dobelle restore vision project [8]. The human brain
project (HBP) [9] and Blue brain projects [10] are two huge
European projects dedicated to a simulation of a partial
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or complete mammalian brain simulation. We indicate an
important role of neurosimulation models that could be used
as the part of a robotic system [11], or as a part of real
time closed loop system for example projects simulating the
spinal cord and nociceptive fibers [12], [13], [14].

There are several projects [15], [16], [17], [18] for the
neurorehabilitation targeted to the motor control of subject
limbs implemented as programmed neurostimulators demon-
strated recently success. As examples of closed loop systems
we should mention a number of interesting projects focused
on Brain-Machine-Brain Interface [19], [20], [21], [22]

As the example of the brain network project, Pais-Vieira
et al. [23] have connected several rat brains to a network of
brains called Brainet. Yoo et al. integrated a human’s brain
with a spinal cord of a rat [24] controlling a locomotion of
a rat tail.

Extending the presented above projects and concepts we
introduce a high level approach for the inbound and outbound
neurointerfaces combined from neuroterminal and neuroport
described in details below. These concepts are concentrated
around the neurosimulation as spiking neural network (SNN)
and neuroterminal that were not done previously. The in-
tegration of the neurosimulation with biological muscles is
novel in the context of BCI or AI.

II. NEUROINTERFACE ARCHITECTURE

We propose to use the following definitions to describe
the neurointerface architecture.

Neurointerface (NI) is the generic term to identify a in-
and outbound hardware/software for reading from a nervous
system (filtering, spike sorting, etc) or digital input that could
be used as an input from a nervous system, communication
and writing into a nervous system (generating spike patterns,
managing pulses, and their series, etc). Usually it is the part
of a closed loop system (Fig. 1).

Neuroport (NP) is the part of NI, typically a hardware
device that implements the neural interface protocol and
runs the neuroterminal program. NP uses the analogy of the
physical layer of the OSI model [25].

Neurointerface protocol (NIP) is a sequence of stimulus
pulses (spikes) to activate a part of the nervous system with
maximum efficiency and minimal discomfort for a subject.

Neuroterminal (NT) is the software/hardware system that
implements the NIP with self-adaptation to a subject. It is
usually a part of a closed-loop system that includes an NI.
NT exploits the analogy with data link and network layers
of the OSI model [25].
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Fig. 1. Closed loop system with neurointerface identified. Blue is the
physical, green – data link and network and orange – application layers; red
– biological systems, gray – environment. Env stands for environment, NS –
nervous system, NI – neurointerface, NP – neuroport, NT – neuroterminal,
SNN – spiking neural network.
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Fig. 2. Oscillator motif. Orange – excitatory, blue – inhibitory nuclei.
(A) The oscillator motif circuit consist of three nuclei where 1st and 3rd
receive input signal and 2nd transmits output neuronal activity. The 1st and
2nd nuclei form reciprocal excitation whereas these nuclei with 3rd nucleus
organise the feed-back inhibition connection. (B) The output of one OM
triggered by one stimulus.

PINE A64
 

stimulator

NT (OMs)

DAC/ADC

NP

�ex sensor

NP

Fig. 3. The high-level design of the study to test the out NI. Blue – physical,
green – data link and network layers. The NT is implemented in PINE A64
computer as the neural circuit of OMs. The generated neuronal activity is
transmitted to the stimulator via DAC/ADC. The electrodes are located on
the median nerve. The flex sensor is attached to the most indicative finger
to estimate displacement.

The proposed neurointerface architecture is presented in
Fig. 1 the main idea is a pipeline with the input NP and
the NT being parts of the in NI. The in NP component

could be some reading neuronal activity device like the
patch clamp, voltage clamp, electrode arrays, myogram in-
vasive/noninvasive electrodes, etc, as well as digital input
devices like pressure, joint angle sensors, and controllers that
transmit to an NT software/hardware. The in NT block could
implement inbound signals prepossessing including filtering,
spike sorting, spike time encoding and later transmission to
an SNN. In case of digital input it could be implemented as
spike times encoder hardware or software. The SNN compo-
nent is simulation software/hardware of a part of a nervous
system or the other software that could simulate a function of
a part of nervous system (NS), for example navigation. The
out NT is the software/hardware that processes the output
(generated by the SNN) encoding it into sequence of low-
level spiking patterns for the NS/muscles control. The out NP
is the stimulation hardware implant or noninvasive stimulator
for the NS or muscle stimulation. In the case of digital output
this could be the hardware port for actuators, for example,
locomotion controller. The out NS could be a part of the
nervous system that is stimulated or activated whereas a
muscle is a biological muscle or a digital hardware actuator
as a part of a robotic system or an exoskeleton.

The main building block of the out NT is the oscillator
motif (OM) circuit that includes two functional components
as reciprocal excitation and feed-back inhibition (Fig. 2A)
[26], [27]. It produces a neuronal activity with different
duration, that depends on a weight balance between excita-
tory and inhibitory projections to and from the third nucleus
(Fig. 2A) [28]. The first and second excitatory nuclei have a
high weight (1850 and 1500 respectively) of reciprocal exci-
tation projections to produce high-frequency output neuronal
activity that is limited by the inhibitory projection from the
third nucleus (negative weight -900), which has a relatively
low (450) weight of projections from excitatory nuclei. Also,
an external stimulus through the connection with weight 900
to the third nucleus could terminate output activity (Fig. 2A).

We use a set of weights that provides an output potential
with few peaks (2-4). The average output activity of the 2nd
nucleus is shown in Fig. 2B. We use a simple model of
neurons presented in our previous article [29] to achieve the
real-time simulation. The out NT uses the OMs to generate
the bio-plausible neuronal activity to manage natural limbs
through the out NP. Below we present the experimental
research results of the implementation and testing of the out
NI.

III. METHODS

Five healthy subjects participated in the current study
(3 male and 2 female, mean: 29.7 ± 10.1 years). All par-
ticipants gave an informed written consent to participate
in the experiment, in accordance with the Declaration of
Helsinki. The experimental setup of the out NI is presented
in Fig. 3. A single-board computer (PINE A64) that plays
the role of NT generates the neuronal activity according to
the number of OMs. It has inbound connections from NP (a
flex sensor) and outbound NP (DAC/ADC). This activity is
transmitted via DAC/ADC E-502-P-EU-D to the stimulator
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Fig. 4. The neural circuits based on (Aa) 3 OMs, (Ba) 5 OMs, (Ca) 7 OMs, (Da) 10 OMs that transmit neuronal activity to motoneurons (MN) via
interneuronal pool (IP). The output neuronal activity of neural circuits based on (Ab) 3 OMs, (Bb) 5 OMs, (Cb) 7 OMs, (Db) 10 OMs.

(out NP) that innervates the median nerve to trigger a mus-
cle. Non-invasive median nerve stimulation was performed
with two hypoallergenic, reusable gel electrodes VUPIESSE
32 mm × 32 mm for functional electrical stimulation, placed
on the median nerve region of a right wrist or a finger
flexor muscle (m. flexor digitorum superficialis), with a
cathode being 2 cm proximal to an anode. The intensity of
the electrical stimulation was adjusted to obtain a tingling
sensation of a palm and a visible flexion response of an
index and/or middle finger in each stimulation session and
also kept to a comfortable range for a participant (up to the
pain threshold). We attach the flex sensor FS-L-0112-103-ST
(in NP) to a subject’s hand by a velcro tape and calculated
the displacement angle of the most indicative finger. The
flex sensor was 112 mm long and has a linear resistance to
angle function (the resistance with no bending is 15 kΩ). The
resistance across the sensor increases as the sensor is being
flexed in the range 60−110 kΩ (resistance tolerance: ±30%).
The flex sensor was powered by 5 V from Pine A64 and had
two 9.1 kΩ series-connected resistors (18.2 kΩ total). The
angle to voltage proportion for our setup is 1° = 0.047 V.

At the beginning of the experiment, we connected all parts
as presented in Fig. 3 and set a number of OMs (out NT)
or frequency of square pulses. We slightly increased the
signal amplitude focusing on the participant’s feelings. We

registered the input neuronal activity going to the nerve (NS)
at the output of the stimulator (out NP). We recorded flex
sensor (in NP) output as the voltage between resistors. We
made records with an oscilloscope, with each recording of 2
min long.

IV. RESULTS

In this work we compared the effectiveness and the
discomfort rate of the complex pattern generated by OMs and
square pulses frequently used in muscle and neurostimulation
[30].

In our experiments we varied teh number of OMs,
schematics are presented in Fig. 4 Aa, Ba, Ca, Da, results
are presented in Table I.

The first OM is triggered by the stimulus inbound to the
1st nucleus then it transmits the signal to next OM from
the 2nd nucleus of the current OM to the 2nd nucleus of
the following OM. The output neuronal activity from the
2nd nuclei of all OMs is transmitted to the interneuronal
pool (IP) where it is integrated. The IP is connected with
motoneurons (MN), their output neuronal activity is trans-
mitted to the stimulator. Fig. 4 Ab, Bb, Cb, Db presents the
results of simulation neuronal activity recorded by the digital
oscilloscope Rigol DS1074Z.

The output neuronal activity was filled according to the



nerve stimulation muscle stimulationexp. Threshold Max Angle Threshold Max Angle
3 OM 51 ± 10.93 60.9 ± 6.71 44.4 ± 13.26 61 ± 3.24 65.4 ± 4.89 76.8 ± 31.11
5 OM 46.8 ± 12.64 58.8 ± 5.81 57.4 ± 32.16 57.2 ± 6.54 61.8 ± 8.76 69.1 ± 60.70
7 OM 47.6 ± 13.45 58.2 ± 7.05 44.9 ± 24.85 56.4 ± 6.54 61.3 ± 7.68 60.6 ± 32.84

10 OM 46 ± 10.56 56.4 ± 7.66 46.5 ± 30.28 52.9 ± 8.41 61.1 ± 7.50 53.8 ± 34.16
20Hz 30.6 ± 13.32 41.6 ± 13.94 28.6 ± 20.55 36.7 ± 6.46 48.7 ± 6.04 85.9 ± 20.82
40Hz 29.8 ± 3.21 38.3 ± 8.33 31.7 ± 17.39 35.2 ± 7.33 42.9 ± 7.39 86.5 ± 8.52
1kHz 34.3 ± 3.4 47.8 ± 8.77 58.2 ± 32.13 31.4 ± 2.53 36.6 ± 4.89 72.4 ± 29.85
3kHz 36.3 ± 8.38 49.3 ± 9.64 52.4 ± 31.95 33.7 ± 6.83 41.6 ± 8.44 79.3 ± 24.31
5kHz 39 ± 8.52 54.3 ± 10.44 70.3 ± 11.48 41.9 ± 9.62 43.1 ± 8.86 79.5 ± 33.14
7kHz 37.3 ± 3.4 56.3 ± 12.2 66.2 ±10.95 36.1 ± 8.63 50.2 ± 8.19 73.9 ± 27.66

TABLE I
EXPERIMENTAL RESULTS FOR DIFFERENT OM NUMBERS. THRESHOLD AND MAXIMUM IN V WHERE THE GREEN COLOUR HIGHLIGHTS MAX VOLTAGE

AND THE RED COLOUR HIGHLIGHTS MIN VOLTAGE. FOR EFFECTIVENESS OF FINGER DISPLACEMENT IN DEGREES(°) THE GREEN COLOUR

HIGHLIGHTS MAX ANGLE AND THE RED COLOUR HIGHLIGHTS MIN ANGLE. THE DATA PRESENTED IN FORMAT MEAN±SD
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Fig. 5. (A) The distribution (n=5, number of subjects tested) of maximum discomfort voltage (red) and the threshold which was determined by flex sensor
as the beginning of a movement (yellow) with nerve stimulation. (B) The distribution (n=5) of discomfort rate from 1 to 10 for different modes with nerve
stimulation. (C) The distribution (n=5) of maximum discomfort voltage (red) and threshold (yellow) with muscle stimulation. (D) The distribution (n=6)
of discomfort rate from 1 to 10 for different modes with muscle stimulation.
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OMs number. There are the gaps between grouped neuronal
activity with 3 and 5 OMs (Fig. 4 Ab, Bb), whereas 7 and 10
OMs output activity is almost continuous (Fig. 4 Cb, Db).
The output neuronal activity from 3 and 5 OMs was shorter
than a 50 ms window between 20 Hz pulses. The duration of
neuronal activity triggered by one stimulus was 26 ms for 3
OMs, 43 ms for 5 OMs, 60 ms for 7 OMs, and 87 ms for
10 OMs. Therefore, in the case of 7 and 10 OMs, activity is
overlapped and uninterrupted.

These differences influenced the sensation that were pro-
duced by the stimulation: the maximum discomfort voltage,
the threshold, and the discomfort rate (Fig. 5). The dis-
comfort rate was subjectively estimated by the participant’s
feelings in a scale from 1 (most comfort) to 10 (most
discomfort).

We conducted experiments triggering the median nerve
or finger flexor muscle. The most comfortable mode for
the nerve stimulation was the 5 OMs (3.0/10, Fig. 5B). In
addition, the maximum angle of finger displacement (57.4°)
is shown (Fig. 6A) in this mode. The mode with 3 OMs has
a slightly higher discomfort rate (3.4/10, Fig. 5B) but the
angle of the finger deflection was lower (44.4°). The sensor
threshold value is higher (51.6 V, Fig. 5A) than in mode with
5 OMs (46.8 V). The mode with 3 OMs is one of the most
comfortable for the muscle stimulation (3.4/10, Fig. 5D) and
also shows high angles of the finger displacement (76.8°).

In addition, we conducted experiments with 7 and 10
OMs that produced continuous neuronal activity without
gaps (Fig. 4Cb, Db). The 7 OMs neuronal activity showed
the 44.9° angle (Fig. 6A) and the low rate of discomfort
(3.6/10) for the nerve stimulation whereas for the muscle
stimulation we registered the higher angle (60.6°, Fig. 6B)
and the discomfort scale 5.9/10. The maximum discomfort
voltage and the threshold are close in case of the 5 OMs
(Fig. 5A). The mode with 10 OMs has the lowest threshold
and the maximum discomfort value (AVG 46 V and 56.4 V)
and the highest discomfort rate (7.4 for the nerve and 6.7
for the muscle stimulation) between all modes with OMs,
but with these parameters, the deflection angle was lower
(46.5° for nerve and 53.8° for muscle stimulation, Fig. 6).
Thus, the optimal modes for sensation and deflection angle
are with 5 and 7 OMs for nerve stimulation and mode with
3 OMs for muscle stimulation.

The complex neuronal activity generated by the circuit
of OMs shows satisfactory results both in sensations and in
the finger movement amplitude. We compared the complex
neuronal activity with square pulses to estimate effectiveness
and discomfort rate. We used square pulses of 20 Hz and
40 Hz that are balanced around 0 V. With this kind of pulses,
the maximum values and threshold were lower for both nerve
and muscle stimulation (Fig. 5A, C), but the discomfort rates
were different (Fig. 5B,D).

The angle was lower (28.6° for 20 Hz and 31.7° for
40 Hz, Fig. 6A) for nerve stimulation, but higher for muscle
stimulation (85.9° for 20 Hz and 86.5° for 40 Hz, Fig. 6B).
Besides, the movement was not rhythmic, but a single spasm
contraction. Thus, we consider pulses generated by OMs

more optimal than square pulses in terms of comfort and
the finger displacement angle.

We also conducted experiments with high frequencies
(kHz) to compare the sensations. The modes with 1 kHz
and 3 kHz showed the low sensor threshold (Fig. 5A, C)
and fairly high angles (Fig. 6A,B) for both the nerve and the
muscle stimulation, however, the discomfort rates were high
8.25 for 1 kHz and 7 for 3 kHz for the nerve stimulation and
slightly lower for the muscle stimulation (6.7 and 5.7). The
highest angle of the finger displacement of kHz pulses was
shown in mode with 5 kHz: 70.3° for the nerve and 79.5°
for the muscle stimulation (Fig. 6A,B). The most comfortable
mode of kHz pulses was 7 kHz (3.8 and 2.9, Fig. 5B,D), the
angle was also high 66.2° for the nerve stimulation and 73.9°
for the muscle stimulation. Thus, kHz pulses have shown
good results we consider a possible modulation of neuronal
OMs activity with a frequency of 7 kHz–10 kHz.

V. CONCLUSION

We proposed the high-level architecture of a bidirectional
neurointerface consisting of the neuroport (NP) and the
neuroterminal (NT). One of the options to create an out
NT is to use the combination of oscillator motifs to gen-
erate a neuronal pattern used as the neurointerface protocol
(NIP). We conducted experiments to determine the level
of discomfort rate and the effectiveness measured as finger
displacement angle of the stimulation impact. We compared
the stimulation with the pattern generated by OMs form 3 to
10 in with square pulses 20 Hz and 40 Hz the most popular
neurostimulation of a human spinal cord frequencies. For
the median nerve stimulation square pulses used as neu-
rointerface protocol indicated less effectiveness than patterns
generated by OMs (Fig. 6A, 28.6° for 20 Hz and 31.7° for
40 Hz). In case of the muscle stimulation we indicate the
higher effectiveness of 20 Hz and 40 Hz than OM generated
patterns (Fig. 6B, 85.9° for 20 Hz and 86.5° for 40 Hz).

The discomfort rate of the 20 Hz and 40 Hz indicated
highest values of the median nerve stimulation and median
for the muscle stimulation (Fig. 5B,D). The 40 Hz muscle
stimulation shows highest variability depending on the sub-
jective feelings of participants based on their psychological
and physiological states. We are planning to include more
participants to obtain statistically significant data. We con-
ducted series of experiments to identify the most comfortable
modulation frequency of 7 kHz (Fig. 5B,D, AVG: 2.9/10 for
the muscle and 3.75/10 for the nerve stimulation).

The nature of a muscle contraction is different in the
case of square pulses, it feels like a spasm and in the case
of a pattern, it feels like a directional muscle contraction
with the frequency of the pattern. As a part of our ongoing
research, we compare modulated patterns according to the
effectiveness and the discomfort rate.

ACKNOWLEDGMENT

The authors would like to thank the B-Rain Labs LLC
company for supporting their work with neurosimulations.
The eighth author acknowledges the support of the Russian



Foundation for Basic Research (RFBR), project ID 19-58-
70002. This work is the part of Kazan Federal University
Strategic Academic Leadership Program.

REFERENCES

[1] J. Wessberg, C. R. Stambaugh, J. D. Kralik, P. D. Beck, M. Laubach,
J. K. Chapin, J. Kim, S. J. Biggs, M. A. Srinivasan, and M. A. L.
Nicolelis, “Real-time prediction of hand trajectory by ensembles
of cortical neurons in primates,” Nature, vol. 408, no. 6810, pp.
361–365, Nov. 2000, number: 6810 Publisher: Nature Publishing
Group. [Online]. Available: https://www.nature.com/articles/35042582

[2] J. E. O’Doherty, M. A. Lebedev, P. J. Ifft, K. Z. Zhuang, S. Shokur,
H. Bleuler, and M. A. L. Nicolelis, “Active tactile exploration using a
brain–machine–brain interface,” Nature, vol. 479, no. 7372, pp. 228–
231, Nov. 2011, number: 7372 Publisher: Nature Publishing Group.
[Online]. Available: https://www.nature.com/articles/nature10489

[3] M. Velliste, S. Perel, M. C. Spalding, A. S. Whitford, and A. B.
Schwartz, “Cortical control of a prosthetic arm for self-feeding,”
Nature, vol. 453, no. 7198, pp. 1098–1101, Jun. 2008, number:
7198 Publisher: Nature Publishing Group. [Online]. Available:
https://www.nature.com/articles/nature06996

[4] D. M. Taylor, S. I. H. Tillery, and A. B. Schwartz, “Direct Cortical
Control of 3D Neuroprosthetic Devices,” Science, vol. 296, no.
5574, pp. 1829–1832, Jun. 2002, publisher: American Association
for the Advancement of Science Section: Research Article. [Online].
Available: https://science.sciencemag.org/content/296/5574/1829

[5] M. A. Lebedev and M. A. Nicolelis, “Brain-machine interfaces: From
basic science to neuroprostheses and neurorehabilitation,” Physiolog-
ical reviews, vol. 97, no. 2, pp. 767–837, 2017.

[6] L. R. Hochberg, D. Bacher, B. Jarosiewicz, N. Y. Masse, J. D.
Simeral, J. Vogel, S. Haddadin, J. Liu, S. S. Cash, P. van der
Smagt, and J. P. Donoghue, “Reach and grasp by people with
tetraplegia using a neurally controlled robotic arm,” Nature, vol.
485, no. 7398, pp. 372–375, May 2012. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3640850/

[7] E. Musk and Neuralink, “An integrated brain-machine interface plat-
form with thousands of channels,” Neuroscience, preprint, Jul. 2019.

[8] S. Kotler, “Vision Quest,” accessed: 2021-02-02. [Online]. Available:
www.wired.com/2002/09/vision/

[9] H. Markram, K. Meier, T. Lippert, S. Grillner, R. Frackowiak, S. De-
haene, A. Knoll, H. Sompolinsky, K. Verstreken, J. DeFelipe et al.,
“Introducing the human brain project,” Procedia Computer Science,
vol. 7, pp. 39–42, 2011.

[10] H. Markram, “The blue brain project,” Nature Reviews Neuroscience,
vol. 7, no. 2, pp. 153–160, 2006.

[11] E. Chebotareva, R. Safin, A. Shafikov, D. Masaev, A. Shaposh-
nikov, I. Shayakhmetov, E. Magid, N. Zilberman, Y. Gerasimov,
and M. Talanov, “Emotional Social Robot ”Emotico”,” in 2019 12th
International Conference on Developments in eSystems Engineering
(DeSE). Kazan, Russia: IEEE, Oct. 2019, pp. 247–252.

[12] M. Capogrosso, N. Wenger, S. Raspopovic, P. Musienko,
J. Beauparlant, L. Bassi Luciani, G. Courtine, and S. Micera,
“A Computational Model for Epidural Electrical Stimulation of
Spinal Sensorimotor Circuits,” Journal of Neuroscience, vol. 33,
no. 49, pp. 19 326–19 340, Dec. 2013. [Online]. Available:
http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.1688-13.2013

[13] I. A. Rybak, K. J. Dougherty, and N. A. Shevtsova, “Organization of
the mammalian locomotor cpg: review of computational model and cir-
cuit architectures based on genetically identified spinal interneurons,”
eNeuro, vol. 2, no. 5, 2015.

[14] A. Suleimanova, M. Talanov, O. Gafurov, F. Gafarov, K. Koroleva,
A. Virenque, F. M. Noe, N. Mikhailov, A. Nistri, and R. Giniatullin,
“Modeling a Nociceptive Neuro-Immune Synapse Activated by ATP
and 5-HT in Meninges: Novel Clues on Transduction of Chemical
Signals Into Persistent or Rhythmic Neuronal Firing,” Frontiers
in Cellular Neuroscience, vol. 14, 2020, publisher: Frontiers.
[Online]. Available: https://www.frontiersin.org/articles/10.3389/fncel.
2020.00135/full

[15] F. B. Wagner, J.-B. Mignardot, C. G. L. Goff-Mignardot, R. Demes-
maeker, S. Komi, M. Capogrosso, A. Rowald, I. Seáñez, M. Caban,
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