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ВВЕДЕНИЕ 

Актуальность 

В современном мире, переполненном данными, ключевое 

преимущество получают те, кто умеет не просто собирать информацию, но и 

извлекать из нее скрытые закономерности и строить точные прогнозы. 

Машинное обучение и продвинутый статистический анализ стали 

неотъемлемыми инструментами в арсенале экономиста, аналитика, 

маркетолога и исследователя. Однако, путь от сырых данных к 

обоснованному решению требует владения целым комплексом технологий — 

от базовой обработки до сложных вероятностных моделей. 

О пособии 

Данное учебно-методическое пособие представляет собой 

последовательное и практико-ориентированное введение в технологии 

анализа данных и машинного обучения, ориентированное на применение в 

системах поддержки принятия решений (СППР). 

Логика изложения и связь между блоками 

Пособие выстроено по принципу «от простого к сложному», где каждая 

последующая глава логически вытекает из предыдущей: 

Глава 1 закладывает фундамент, обучая студентов работе с данными — 

их первичной обработке, анализу временных рядов и визуализации. Это 

базовый навык для любого аналитика. 

Глава 2 углубляется в анализ, знакомя с ключевыми статистическими 

концепциями (стационарность) и моделями (регрессия). Это мост между 

описательной статистикой и прогнозным моделированием. 

Глава 3 посвящена продвинутым методам анализа зависимостей. Здесь 

показывается, как выйти за рамки линейной корреляции с помощью копул, 

что критически важно для оценки рисков в финансах и экономике.  
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Глава 4 знакомит с одним из самых мощных алгоритмов машинного 

обучения — градиентным бустингом. Студенты не только поймут его теорию, 

но и реализуют алгоритм "вручную", что обеспечивает глубокое понимание 

его работы, а затем применят готовую библиотеку для решения прикладных 

задач. 

Целевая аудитория 

Пособие предназначено для студентов бакалавриата и магистратуры 

направлений «Прикладная информатика», «Прикладная математика и 

информатика», а также для всех, кто хочет получить структурированные и 

прикладные знания в области машинного обучения и анализа данных. 

Результат освоения 

Освоив материалы учебно-методического пособия, студент будет 

способен самостоятельно проводить анализ данных: от предобработки и 

разведочного анализа до построения и верификации статистических моделей 

и моделей машинного обучения. 
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ГЛАВА 1. ОСНОВЫ РАБОТЫ С ДАННЫМИ В PYTHON 

Обработка данных является критически важным первым этапом 

аналитической работы. В этой главе рассматриваются инструменты и 

методы на языке Python, необходимые для загрузки, очистки, 

преобразования и первичного анализа данных, с особым акцентом на работу 

с временными рядами. Освоение библиотеки «pandas» [1] — основа для 

применения более сложных методов машинного обучения и статистики. 

1.1. Библиотека Pandas: загрузка, обработка и первичный анализ 

данных 

С чем мы будем работать: 

• Набор данных: чтение и загрузка данных в Excel формате 

• Структура и сортировка данных по дате 

• Поиск данных по времени 

• Применение функции DataFrame.resample() 

• Вывод данных временных рядов c помощью модуля matplotlib 

• Проверка и тестирование программы 

В качестве примера рассмотрим набор данных «Сотрудники 

предприятия». Пример структуры файла Excel представлен на Рис. 1:  

 

Рис. 1. Пример набора данных в файле 
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Практические шаги: 

1. Загрузка данных read. Импортируем модуль pandas и загружаем 

данные из файла «vremya.xlsx». Параметр «index_col» устанавливает столбец 

«date» в качестве индекса DataFrame. 

```python 

import pandas as pd 

df = pd.read_excel('vremya.xlsx', index_col='date') 

В результате получаем DataFrame (Рис. 2), проиндексированный по 

дате, что является стандартом для работы с временными рядами. 

 

Рис. 2. Фрагмент полученного набора данных 

2. Индексация и выборка данных. Выполним поиск данных по 

указанному периоду (например, с февраля 2017 по декабрь 2017 г.) 

(Рис. 3) с помощью локатора «.loc[]». 

```python 

df_period = df.loc['2017-02':'2017-12'] 

 print(df_period) 

Рис. 3. Результат выборки данных за период 2017 г. 
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Задание для самостоятельной работы: Выведите информацию 

только за февраль 2017 г. 

1.2. Анализ временных рядов: индексирование, ресемплинг и 

визуализация 

Временные ряды [2] требуют специальных методов анализа. Pandas 

предоставляет мощные инструменты для работы с временными индексами 

(DatetimeIndex), включая изменение частоты наблюдений (ресемплинг) и 

агрегацию данных. 

Ресемплинг (Resampling)  

Метод «resample()» объекта DataFrame разбивает DatetimeIndex на 

временные интервалы (периоды) и группирует данные по этим интервалам. 

Метод resample () возвращает объект Resampler, аналогичный объекту 

GroupBy, после чего можно применить агрегирующую функцию: mean(), 

min(), max() и т. д. 

Частоты в pandas задаются специальными строковыми кодами: 

• почасовой («H») 

• ежедневный («D») 

• еженедельный («W») 

• ежемесячный («M») 

• квартальный («Q») 

• годовой («А») и многие другие. 

Пример. Вывод среднего выбранного значение по месяцам (“M”) 

```python 

# Выбираем столбцы для анализа 

vremya = ['oklad', 'formula', 'activ'] 

# Применяем ресемплинг с агрегацией по среднему значению 

sredn_znach = df[vremya].resample('M').mean() 

print(sredn_znach) 
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Рис. 4. Средние значения показателей, агрегированные по месяцам 

Задание для самостоятельной работы: Выполните вывод среднего 

значения по неделям.  

Практикум 

Получим информацию о количестве активных сотрудников по 

месяцам, используя агрегирующую функцию count() (Рис. 5). 

 

Рис. 5. Количество активных сотрудников по месяцам 

Визуализация временного ряда. Для визуализации данных удобно 

использовать библиотеку matplotlib (Рис. 6). 

```python 

import matplotlib.pyplot as plt 

# Выбираем данные об активности за 2017 год 

new_sample_df = df.loc['2017-02':'2017-12', ['activ']] 

# Строим линейный график 

new_sample_df.plot() 
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plt.title('Активность сотрудников (2017 год)') 

plt.ylabel('Уровень активности') 

plt.xlabel('Дата') 

plt.grid(True) 

1plt.show()

 

Рис. 6. График активности сотрудников за 2017 год 

Задание к главе 1 

• Создайте набор данных (согласно примеру Рис. 1) vremya.xlsx. Выполните 

считывание файла и преобразование набора данных в DataFrame, 

установив столбец date в качестве индекса. Убедитесь, что индекс имеет 

тип DatetimeIndex. 

• Определите средний оклад на предприятии за период с февраля по декабрь 

2017 года. 

• Определите минимальный оклад на предприятии за февраль 2017 года. 

• Используя метод resample, получите информацию о количестве 

сотрудников, проявивших активность, в разрезе: по месяцам; по неделям; 

по кварталам; за каждый год. 

• Постройте график активности сотрудников за 2017 год с помощью 

matplotlib. 
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ГЛАВА 2. СТАТИСТИЧЕСКИЙ АНАЛИЗ И ПРОВЕРКА 

ГИПОТЕЗ 

Прежде чем строить прогнозные модели, необходимо понять свойства 

данных. Для временных рядов ключевым понятием является стационарность. 

Эта глава знакомит с проверкой временных рядов на стационарность с 

помощью теста Дики-Фуллера [3-4] и основами регрессионного анализа для 

изучения взаимосвязей между переменными. 

2.1. Введение в стационарность временных рядов 

Стационарность [5] - свойство временного ряда, означающее, что его 

статистические характеристики (среднее значение, дисперсия, 

автоковариация) не меняются с течением времени. Большинство моделей 

прогнозирования (например, ARIMA) требуют стационарности ряда. 

Нестационарный ряд часто имеет тренд или сезонность. 

2.2. Тест Дики-Фуллера: проверка на стационарность 

Тест Дики-Фуллера (Augmented Dickey-Fuller test, ADF) — это 

статистический тест для проверки нулевой гипотезы о наличии единичного 

корня (нестационарности) во временном ряду. 

• Нулевая гипотеза (H0): Ряд нестационарен (имеет единичный корень). 

• Альтернативная гипотеза (H1): Ряд стационарен. 

• Критерием принятия решения является p-value: 

• Если p-value < 0.05 (или другого уровня значимости), то отвергаем 

H0 и считаем ряд стационарным. 

• Если p-value >= 0.05, то ряд нестационарен. 

2.3. Построение и интерпретация регрессионных моделей 

Регрессионный анализ [6-7] позволяет моделировать и анализировать 

отношения между зависимой переменной и одной или несколькими 

независимыми переменными. Модель линейной регрессии предполагает, что 

зависимая переменная 𝑦 линейно связана с параметрами модели 
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(коэффициентами 𝛽). В рамках данной главы мы рассмотрим простую 

линейную регрессию для выявления связи между двумя временными рядами. 

Практикум 

Выполним анализ стационарности и регрессии для временных рядов 

ВВП и цен. Перед выполнением практикума установите библиотеку 

statsmodels: pip install statsmodels. Пример реализации:   

```python 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import statsmodels.api as sm 

# Создание временного ряда 

dates = pd.date_range(start='2019-01-01', periods=36, 
freq='M') 

gdp = [1500, 1450, 1550, 1600, 1580, 1620, 1650, 1700, 
1750, 1800, 1850, 1900, 

       1950, 2000, 2050, 2100, 2150, 2200, 2250, 2300, 
2350, 2400, 2450, 2500, 

       2550, 2600, 2650, 2700, 2750, 2800, 2850, 2900, 
2950, 3000, 3050, 3100] 

prices = [100, 102, 104, 106, 108, 110, 112, 115, 118, 
120, 125, 128, 

          130, 132, 135, 138, 140, 145, 150, 155, 160, 
165, 170, 175, 

          180, 185, 190, 195, 200, 205, 210, 215, 220, 
225, 230, 235] 

# Создание DataFrame 

data = pd.DataFrame({'Date': dates, 'GDP': gdp, 'Prices': 
prices}) 

data.set_index('Date', inplace=True) 

# Проверка на стационарность (тест Дики-Фуллера) 

from statsmodels.tsa.stattools import adfuller 

def test_stationarity(timeseries): 
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    result = adfuller(timeseries) 

    print('ADF Statistic:', result[0]) 

    print('p-value:', result[1]) 

print("Тест на стационарность для ВВП:") 

test_stationarity(data['GDP']) 

print("\nТест на стационарность для цен:") 

test_stationarity(data['Prices']) 

# Построение регрессионной модели 

X = sm.add_constant(data['GDP'])  # Добавление константы 

model = sm.OLS(data['Prices'], X).fit() 

# Результаты модели 

print("\nРезультаты регрессии:\n", model.summary()) 

# Визуализация 

plt.figure(figsize=(12, 6)) 

# График ВВП и цен 

plt.subplot(2, 1, 1) 

plt.plot(data.index, data['GDP'], label='ВВП (трлн 
рублей)', color='blue') 

plt.title('Временной ряд ВВП') 

plt.xlabel('Дата') 

plt.ylabel('ВВП') 

plt.legend() 

plt.subplot(2, 1, 2) 

plt.plot(data.index, data['Prices'], label='Цены', 
color='orange') 

plt.title('Временной ряд цен') 

plt.xlabel('Дата') 

plt.ylabel('Цены') 

plt.legend() 

plt.tight_layout() 

plt.show() 
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Интерпретация результатов: 

1. Тест Дики-Фуллера: Проанализируйте p-value для рядов ВВП и цен. 

Если p-value > 0.05, ряд нестационарен. Часто экономические ряды, 

такие как ВВП, демонстрируют тренд и являются нестационарными. 

2. Анализ регрессионной модели: При анализе регрессионной модели 

обратите внимание на R-squared (коэффициент детерминации), который 

показывает долю дисперсии зависимой переменной (цен), объясняемую 

моделью. Также важны coef для ВВП (наклон линии регрессии) и P>|t| 

для него же (p-value для коэффициента). Если P>|t| для ВВП меньше 

0.05, связь между ВВП и ценами статистически значима. 
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ГЛАВА 3. МОДЕЛИРОВАНИЕ МНОГОМЕРНЫХ 

ЗАВИСИМОСТЕЙ 

Традиционные меры зависимости, такие как корреляция Пирсона, часто 

оказываются недостаточными для описания сложных взаимосвязей в 

реальных данных. Эта глава посвящена теории копул [8-10] - инструменту 

для моделирования многомерных распределений, который позволяет 

раздельно описывать маргинальные распределения переменных и 

зависимость между ними. 

3.1. Понятие о копулах 

В современной аналитике - будь то финансы, метеорология, медицина 

или инженерия — исследователи регулярно сталкиваются с необходимостью 

анализа многомерных данных. Традиционные методы, такие как линейная 

корреляция Пирсона, адекватно описывают лишь простые линейные 

зависимости. Однако реальные данные часто демонстрируют сложные 

нелинейные паттерны, асимметрию и, что особенно важно, хвостовую 

зависимость — явление, когда экстремальные значения в одной переменной 

систематически связаны с экстремальными значениями в другой. Именно в 

условиях кризисов или аномальных событий такая зависимость проявляется 

наиболее сильно, что делает её учет критически важным для управления 

рисками. 

Теория копул предлагает мощный и гибкий аппарат для решения этой 

задачи. Копула — это многомерная функция распределения, заданная на 

единичном гиперкубе, позволяющая «разделить» маргинальные 

распределения отдельных случайных величин и их совместную зависимость.    

3.2. Гауссовы и t-копулы: анализ хвостовой зависимости 

На практике широко используются два основных семейства 

эллиптических копул: 
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 Гауссова копула (нормальная копула): Строится на основе 

многомерного нормального распределения. Не имеет хвостовой зависимости, 

то есть экстремальные события предполагаются независимыми. 

 t-копула (Копула Стьюдента): Основана на многомерном t-

распределении. Ключевая особенность — наличие хвостовой зависимости, 

что означает повышенную вероятность совместного наступления 

экстремальных событий (как положительных, так и отрицательных).  

Практикум 

```python 

# Python: фрагмент кода использования библиотеки copulae  

# ... (Ваш код загрузки и подготовки данных).. 

from copulae import GaussianCopula 

import numpy as np 

import seaborn as sns 

import matplotlib.pyplot as plt 

# 1. Выбор данных (столбцы с 4 по 10) 

data = transposed_df.iloc[:, 3:10].values  # Индексация с 
0, поэтому 3:10 - это столбцы 4-10 

# 2. Создание и обучение гауссовой копулы 

copula = GaussianCopula(dim=data.shape[1]) 

copula.fit(data) 

# 3. Получение и визуализация матрицы корреляции 

correlation_matrix = copula.sigma 

plt.figure(figsize=(8, 6)) 

sns.heatmap(correlation_matrix,annot=True, 
cmap='coolwarm', fmt='.2f', 

xticklabels=transposed_df.columns[3:10], 
yticklabels=transposed_df.columns[3:10]) 

plt.title('Матрица корреляции (зависимости) для столбцов 
4-10') 

plt.show() 
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Рис. 7. Пример матрицы корреляции (зависимости) 

Далее идет код для t-копулы и расчета хвостовой зависимости. 

```python 

from copulae import StudentCopula 

import numpy as np 

from scipy.stats import t 

# 1. Выбор данных (столбцы с 4 по 10) 

data = transposed_df.iloc[:, 3:10].values  # Индексация с 
0, поэтому 3:10 — это столбцы 4-10 

# 2. Создание копулы (например, t-копула для анализа 
хвостовой зависимости) 

copula = StudentCopula(dim=data.shape[1])  # t-копула 
лучше подходит для хвостовой зависимости 

# 3. Обучение копулы на данных 

copula.fit(data) 
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# 4. Проверка структуры copula.params 

print(copula.params)  # Посмотрим, как выглядят параметры 

# 5. Извлечение параметров 

df = copula.params.df  # степени свободы 

rho = copula.params.rho  # одномерный массив корреляций 

# 6. Выбор корреляции между двумя переменными (например, 
первая и вторая переменная) 

# Для многомерной копулы нужно выбрать две переменные и их 
корреляцию 

# Например, корреляция между первой и второй переменной: 

rho_12 = rho[0]  # Предположим, что rho[0] — это 
корреляция между первой и второй переменной 

# 7. Ручное вычисление хвостовой зависимости 

def tail_dependence_t_copula(df, rho): 

    nu = df  # степени свободы 

    upper_tail = 2 * t.cdf(-np.sqrt((nu + 1) * (1 - rho) / 
(1 + rho)), nu + 1) 

    lower_tail = upper_tail  # для t-копулы верхняя и 
нижняя хвостовая зависимость одинаковы 

    return lower_tail, upper_tail 

lower_tail, upper_tail = tail_dependence_t_copula(df, 
rho_12) 

# 8. Вывод результатов 

print("Нижняя хвостовая зависимость:") 

print(lower_tail) 

print("\nВерхняя хвостовая зависимость:") 

print(upper_tail) 

for i, rho_ij in enumerate(rho): 

lower_tail, upper_tail = tail_dependence_t_copula(df, 
rho_ij) 

print(f"Пара переменных {i+1}: Нижняя хвостовая зависимость 
= {lower_tail}, Верхняя хвостовая зависимость = 
{upper_tail}") 
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Рис. 8. Фрагмент результата анализа в хвостах 

Практикум 

Сравнительный анализ зависимостей 

Используя приведенный выше код, выполните следующие действия: 

1. Постройте матрицы корреляции как для Гауссовой, так и для t-копулы. 

Сравните их визуально. 

2. Проанализируйте рассчитанные значения хвостовой зависимости для 

различных пар переменных. Какие пары демонстрируют наибольшую и 

наименьшую хвостовую зависимость? 

3. Сделайте вывод о том, какая из копул (Гауссова или t-копула) лучше 

подходит для описания зависимостей в ваших данных, исходя из наличия 

хвостовой зависимости. 
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ГЛАВА 4. АНСАМБЛИ МОДЕЛЕЙ МАШИННОГО ОБУЧЕНИЯ 

Ансамбли методов машинного обучения позволяют объединять 

несколько моделей для создания одной, более точной и устойчивой. 

Градиентный бустинг [11] - один из наиболее мощных алгоритмов в этом 

семействе методов (ансамблевых методов). Данная глава раскрывает теорию 

градиентного бустинга, знакомит с популярной библиотекой и предлагает 

реализацию алгоритма "вручную" для глубокого понимания его работы.  

4.1. Теория градиентного бустинга 

Принцип последовательного исправления ошибок 

XGBoost (Extreme Gradient Boosting) — это высокопроизводительная и 

масштабируемая реализация градиентного бустинга, отличающаяся 

скоростью, параллельной обработкой, встроенной регуляризацией и 

способностью эффективно работать с большими наборами данных.  

Основная идея бустинга заключается в последовательном построении 

ансамбля "слабых" моделей (например, неглубоких деревьев), где каждая 

следующая модель обучается предсказывавать ошибки (остатки) ансамбля, 

построенного на предыдущем шаге. Градиентный бустинг обобщает этот 

подход, используя градиентный спуск в пространстве функций для 

минимизации ошибки. 

4.2. Алгоритм XGBoost: основные гиперпараметры и их настройка 

Гиперпараметры 

• Количество деревьев (n_estimators). Сколько раз мы будем корректировать 

ошибки 

• Скорость обучения (learning_rate). Насколько сильно корректируем при 

каждом шаге 

• Глубина деревьев (max_depth) 

Помимо n_estimators, learning_rate и max_depth, ключевыми 

гиперпараметрами являются: 
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• reg_alpha и reg_lambda: L1 и L2 регуляризация для предотвращения 

переобучения. 

• subsample: Доля наблюдений, используемых для обучения каждого дерева. 

• colsample_bytree: Доля признаков, используемых для построения каждого 

дерева. 

4.3. Пример реализация градиентного бустинга на Python с 

помощью библиотеки Scikit-learn 

Пример с квартирами (визуализация): 

 

Рис. 9. Фрагмент набора данных 

```python 

import pandas as pd 

import numpy as np 

from sklearn.tree import DecisionTreeRegressor 

from sklearn.metrics import mean_squared_error 

import matplotlib.pyplot as plt 

# Создаем пример данных 

data = { 

    'район': ['центр', 'центр', 'пригород', 'пригород'], 

    'площадь': [50, 70, 30, 60], 

    'стоимость': [3000000, 3500000, 1500000, 2000000] 

} 

df = pd.DataFrame(data) 

print("=== ИСХОДНЫЕ ДАННЫЕ ===") 
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print(df) 

# Преобразуем категориальные переменные 

df['район_код'] = df['район'].map({'центр': 1, 'пригород': 
0}) 

# Признаки и целевая переменная 

X = df[['район_код', 'площадь']] 

y = df['стоимость'] 

Процесс обучения шаг за шагом 

Шаг 0: Начальное предположение 

Все квартиры стоят 2,500,000 ₽ (среднее значение) 

Ошибка: Большая! 

Шаг 1: Первое дерево 

if район == 'центр': 

   добавить 200,000 ₽ 

else: 

   вычесть 200,000 ₽ 

Шаг 2: Второе дерево (учится на ошибках) 

if площадь < 40: 

    вычесть 500,000 ₽ 

Шаг 3: Третье дерево (уточнение) 

if район == 'центр' and площадь >= 70: 

    добавить 500,000 ₽ 

Практикум 

Подготовка среды для разработки программного модуля: 

# Установка необходимых библиотек 

!pip install pandas numpy matplotlib scikit-learn 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn.tree import DecisionTreeRegressor 

from sklearn.metrics import mean_squared_error 

Шаг 1: Создаем данные 



23 
 

# Данные о квартирах 

data = { 

    'район': ['центр', 'центр', 'Пригород', 'Пригород'],   

    'площадь': [50, 70, 30, 60], 

    'стоимость': [3000000, 3500000, 1500000, 2000000] 

}df = pd.DataFrame(data) 

print("Наши данные:") 

print(df) 

Шаг 2: Преобразуем данные 

# Машинное обучение понимает только числа 

df['район_код'] = df['район'].map({'центр': 1, 'Пригород': 
0}) 

# Разделяем на признаки и целевую переменную 

X = df[['район_код', 'площадь']] 

y = df['стоимость'] 

print("\nПризнаки (X):") 

print(X) 

print("\nЦелевая переменная (y):") 

print(y) 

Шаг 3: Базовая модель (1 дерево) 

# Обучаем простое дерево 

simple_tree = DecisionTreeRegressor(max_depth=2, 
random_state=42) 

simple_tree.fit(X, y) 

# Предсказания 

simple_predictions = simple_tree.predict(X) 

print("\nПредсказания простого дерева:") 

for i, (real, pred) in enumerate(zip(y, 
simple_predictions)): 

    print(f"Квартира {i+1}: Реально {real:,} → Предсказано 
{pred:,.0f}") 

Шаг 4: Градиентный бустинг (вручную) 

# Параметры 
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n_estimators = 10 

learning_rate = 0.1 

max_depth = 2 

# Инициализация 

predictions = np.full(len(y), y.mean()) 

print(f"\nНачальное предсказание: {y.mean():,.0f} руб.") 

models = [] 

residuals_history = [] 

for i in range(n_estimators): 

    # 1. Вычисляем ошибки (остатки) 

    residuals = y - predictions 

    # 2. Обучаем дерево на ошибках 

    tree = DecisionTreeRegressor(max_depth=max_depth, 
random_state=42) 

    tree.fit(X, residuals) 

    # 3. Предсказания текущего дерева 

    tree_pred = tree.predict(X) 

    # 4. Обновляем общие предсказания 

    predictions += learning_rate * tree_pred 

    # Сохраняем для анализа 

    models.append(tree) 

    residuals_history.append(residuals.copy()) 

    print(f"\n--- Шаг {i+1} ---") 

    print(f"Средняя ошибка: 
{np.mean(np.abs(residuals)):,.0f} руб.") 

Шаг 5: Визуализация процесса 

# График обучения 

plt.figure(figsize=(15, 5)) 

# 1. Снижение ошибки 

plt.subplot(1, 3, 1) 

errors = [np.mean(np.abs(res)) for res in 
residuals_history] 

plt.plot(errors, marker='o') 
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plt.title('Снижение ошибки') 

plt.xlabel('Шаг обучения') 

plt.ylabel('Средняя ошибка (руб)') 

plt.grid(True) 

# 2. Сравнение реальных и предсказанных значений 

plt.subplot(1, 3, 2) 

plt.scatter(y, predictions, alpha=0.7) 

plt.plot([y.min(), y.max()], [y.min(), y.max()], 'r--') 

plt.title('Реальные vs Предсказанные') 

plt.xlabel('Реальные значения') 

plt.ylabel('Предсказанные значения') 

plt.grid(True) 

# 3. Финальные ошибки 

plt.subplot(1, 3, 3) 

final_errors = y - predictions 

plt.bar(range(len(final_errors)), final_errors) 

plt.title('Финальные ошибки') 

plt.xlabel('Номер квартиры') 

plt.ylabel('Ошибка (руб)') 

plt.grid(True) 

plt.tight_layout() 

plt.show() 

Шаг 6: Предсказание для новых данных 

# Новые квартиры для предсказания 

new_apartments = pd.DataFrame({ 

    'район': ['центр', 'Пригород', 'центр'], 

    'площадь': [65, 35, 80] 

}) 

new_apartments['район_код'] = 
new_apartments['район'].map({'центр': 1, 'Пригород': 0}) 

X_new = new_apartments[['район_код', 'площадь']] 
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# Делаем предсказания 

final_predictions = np.full(len(X_new), y.mean()) 

for tree in models: 

    final_predictions += learning_rate * 
tree.predict(X_new) 

new_apartments['предсказанная_стоимость'] = 
final_predictions.astype(int) 

print("\nПредсказания для новых квартир:") 

print(new_apartments) 

 

Рис. 10. Результат прогнозированиям (визуализация) 

Результат вывода для новых квартир: 

=== ПРЕДСКАЗАНИЯ ДЛЯ НОВЫХ КВАРТИР === 

      район  площадь  район_код  предсказанная_стоимость 

0     центр       65          1                  3151321 

1  пригород       35          0                  1848678 

2     центр       80          1                  3151321 

3  пригород       45          0                  1848678 
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=== АНАЛИЗ МОДЕЛИ === 

Важность признаков (последнее дерево): 

район_код: 0.900 

площадь: 0.100 

Задание 

Задание 1: Прогноз цен для нового ЖК 
# Задача: Постройте прогноз для нового жилого комплекса 

new_buildings = pd.DataFrame({ 

    'район': ['центр', 'центр', 'Пригород', 'Пригород'], 

    'площадь': [45, 85, 55, 75], 

    'тип_отделки': ['черновая', 'чистовая', 'черновая', 'чистовая'] 

}) 

# Как учесть тип отделки в модели? 

 

Задание 2: Оптимизация портфеля недвижимости 

# Риелторская компания хочет оптимизировать портфель. 

# Задача: Определите, квартиры в каких районах и с какой площадью имеют 

наибольшую потенциальную доходность (разница между рыночной и 

прогнозируемой стоимостью) 

 

Задание 3: Прогноз стоимости акций 

# Адаптируйте модель для временных рядов акций: 

stock_data = { 

    'цена_открытия': [100, 102, 101, 105, 108], 

    'объем_торгов': [1000000, 1200000, 800000, 1500000, 900000], 

    'волатильность': [0.02, 0.015, 0.025, 0.018, 0.022], 

    'цена_закрытия': [102, 101, 105, 108, 110]  # целевая переменная 

} 

 

Задание 4: Оценка риска страхования 

# Страховая компания: прогноз стоимости страховых выплат 

insurance_data = { 

    'возраст_водителя': [25, 45, 35, 28, 50], 

    'мощность_авто': [150, 200, 120, 180, 250], 

    'стаж_водителя': [3, 20, 8, 5, 25], 

    'стоимость_выплат': [50000, 20000, 30000, 45000, 15000] 

} 

 

Задание 5: Прогноз продаж магазина 

# Сеть магазинов хочет прогнозировать ежедневные продажи 

retail_data = { 

    'день_недели': [1, 2, 3, 4, 5, 6, 7],  # 1-понедельник, 7-воскресенье 
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    'праздник': [0, 0, 1, 0, 0, 0, 1],  # 1 = праздничный день 

    'погода': [1, 2, 1, 3, 2, 1, 2],  # 1-солнечно, 2-облачно, 3-дождь 

    'продажи': [100000, 80000, 150000, 90000, 95000, 120000, 180000] 

} 

 

Задание 6: Прогноз длительности госпитализации 

# Больница хочет оптимизировать койко-места 

medical_data = { 

    'возраст': [45, 65, 35, 28, 72], 

    'тяжесть_заболевания': [2, 3, 1, 2, 4],  # шкала 1-5 

    'количество_процедур': [3, 5, 2, 4, 6], 

    'длительность_госпитализации': [7, 14, 5, 9, 21]  # дни 

} 

 

Задание 7: Диагностика заболеваний 

# Модель для поддержки врачебных решений 

diagnosis_data = { 

    'уровень_сахара': [120, 180, 90, 150, 200], 

    'давление': [130, 150, 120, 140, 160], 

    'холестерин': [200, 250, 180, 220, 280], 

    'диабет': [0, 1, 0, 1, 1]  # 1 = диагностирован диабет 

} 

 

Задание 8: Прогноз успеваемости студентов 

# Университет хочет прогнозировать успеваемость 

education_data = { 

    'часы_обучения': [20, 35, 15, 25, 30], 

    'посещаемость': [0.8, 0.9, 0.7, 0.85, 0.95], 

    'баллы_вступительных': [75, 85, 65, 80, 90], 

    'итоговый_балл': [3.5, 4.2, 3.0, 3.8, 4.5] 

} 
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