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a b s t r a c t

The Young’s modulus E is the key mechanical property that determines the resistance
of solids to tension/compression. In the present work, the correlation of the quantity E
with such characteristics as the total molar mass M of alloy components, the number of
components n forming an alloy, the yield stress σy and the glass transition temperature
Tg has been studied in detail based on a large set of empirical data for the Young’s
modulus of different amorphous metal alloys. It has been established that the values
of the Young’s modulus of metal alloys under normal conditions correlate with such
a mechanical characteristic as the yield stress as well as with the glass transition
temperature. As found, the specificity of the ‘‘chemical formula’’ of alloy, which is
determined by molar mass M and number of components n, does not affect on elasticity
of the material. The machine learning algorithm identified both the quantities M and n as
insignificant factors in determining E. A simple non-linear regression model is obtained
that relates the Young’s modulus with Tg and σy, and this model correctly reproduces
the experimental data for metal alloys of different types. This obtained regression model
generalizes the previously presented empirical relation E ≃ 49.8σy for amorphous metal
alloys.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Knowledge of the Young’s modulus E plays a crucial role in the development of functional materials based on
morphous metal alloys and in ensuring the mechanical stability of structures in various industries [1–3]. The modulus
characterizes the elasticity of a solid material and its resistance to external mechanical influences. From a microscopic
oint of view, elasticity is defined by interatomic (intermolecular) interaction forces as well as structure of a solid [4–6].
n this regard, the elastic properties of the material must be determined by the type of chemical elements that form this
aterial as well as by the ratio of the concentrations of these elements, i.e., in what proportions on relation to each other

he different elements are presented in the material [7,8]. However, there are no simple relationships connecting these
uantities to each other. The solution of this problem within the framework of the microscopic theory of elasticity is
ontrivial.
In the case of amorphous solids, many of their physical (mainly, mechanical) properties are determined by the so-called

lass forming ability (GFA) [9–13]. In other words, any amorphous solid is characterized by some GFA, which determines
he ability of the corresponding melt to form an amorphous phase. Although there is no generally accepted GFA criterion,
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ractically all known GFA criteria are determined through the glass transition temperature Tg [14–16]. In this regard,
t seems quite reasonable to expect that the glass transition temperature Tg can be related to the elastic properties of
morphous solids. Thus, in the case of amorphous solids, in particular, amorphous metal alloys, we formulate the following
uestion: is there a correspondence between the elastic modulus and some physical and chemical characteristics of solids,
uch as the yield stress σy, the molar mass M , the number of components n forming the material, and the glass transition
emperature Tg?

Young’s modulus can be determined from the well-known ‘‘stress–strain’’ relation, which indicates correspondence
etween strain and stress for a material [17,18]. Here, the magnitude of E is determined from the slope of the initial
inear part of the ‘‘stress–strain’’ relation corresponding to the elastic region [19,20]. Sometimes, it becomes necessary to
stimate E from known physical characteristics without mechanical tests and computer simulations. This task is especially
elevant in the case of fragile materials with a complex sample preparation procedure, in the case of synthesizing new
aterials with required mechanical properties, and in the case of predicting strength characteristics of existing materials
nder various thermodynamic conditions. It is noteworthy that modern artificial intelligence methods, in particular,
achine learning, can be used to solve this task [21–25].
Machine learning methods have been repeatedly applied to predict the value of the Young’s modulus of various

aterials including metal alloys [26], silicate glasses [27], polymeric materials [28] and rocks [29]. These studies have
hown the efficiency of machine learning based on the artificial neural networks (ANN’s) in estimating the Young’s
odulus from known physical characteristics of materials. For example, in Ref. [26], it was shown that the average
oncentration of valence electrons, the difference in atomic radii and the melting temperature are the key characteristics
hat determine the Young’s modulus of refractory alloys. Despite the successes achieved, similar studies have not yet been
arried out with respect to such an extensive class of materials as amorphous metal alloys.
In the present study, the calculation of the Young’s modulus of amorphous metal alloys with different compositions

nd mechanical properties is performed by machine learning based on the ANN’s. This calculation is carried out by set of
xperimental data for metal alloys based on Al, Au, Ca, Co, Cu, Fe, La, Hf, Mg, Ni, Pd, Pt, Re, Sr, Ti, W, Zr and rare earth
lements [30]. As an input parameters in the ANN, we chose such physical characteristics as the total molar mass M of the
lloy components, the number of components n, the yield stress σy, and the glass transition temperature Tg . Information
bout these characteristics is available in the case of the considered amorphous metal alloys. It has been established that
hese characteristics are sufficient to determine the Young’s modulus with high accuracy.

. Neural network construction and learning

In the present work, the ANN of direct propagation was built to perform the required calculations. This ANN consists of
our layers (see Fig. 1). The first layer contains 5 input neurons. The next two layers are hidden and each of them contains
en neurons. The values of the Young’s modulus E are determined by the one output neuron. The input neurons are
upplied by values of the molar mass M , the number of components n, the yield stress σy, the glass transition temperature
g and the noise factor for different metal alloys (see Tables 1–5 in Supporting Materials). All the necessary data for these
lloys are taken from Ref. [30]. The values of the input physical quantities are preliminarily calibrated so that they change
n the range from 0 to 1. For learning and testing of the ANN, we have used metal alloys, whose the Young’s modulus E
s known. For the remaining alloys, the values of E are predicted by the ANN after it has been learned.

The main working regime of the ANN is the direct propagation of information, in which the output value of each
euron is calculated as follows [31]

n(k)
i = f (w(k−1)

11 n(k−1)
1 + w

(k−1)
12 n(k−1)

2 + · · · + w
(k−1)
ij n(k−1)

j + b(k)i ) (1)

r

n(k)
i = f

(
W (k)

i + b(k)i

)
, (2)

here the input value of the kth layer neuron is calculated through the expression

W (k)
i =

Nk−1∑
j=1

w
(k−1)
ij n(k−1)

j . (3)

ere, n(k)
i is value of the ith neuron in the kth layer (k = 1, 2, 3, 4); w

(k−1)
ij is value of the weight of the (k − 1)th layer

oing from the neuron with index j to the neuron with index i from the kth layer; b(k)i is the bias weight acting on ith
euron from the kth layer; Nk−1 is the number of neurons in the (k − 1)th layer; f (...) is the sigmoid activation function

f (x) =
1

1 − e−x , (4)

which takes values from 0 to 1. The weights w
(k−1)
ij and b(k)i are assigned the fixed value 0.5 before the first iteration of

the ANN.
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Fig. 1. Scheme of the artificial neural network designed to calculate the Young’s modulus E of metal alloys from the known values of the molar
mass M , the number of components n, the yield stress σy and the glass transition temperature Tg , and also taking into account the noise factor
(Noise).

For learning and minimizing the loss function of the ANN, the backpropagation and the gradient descent methods are
applied [32]. These methods allow us to adjust the values of all weights taking into account the error between the output
neuron and a required result (details are discussed in Supporting Materials in section ‘‘1. Artificial neural network learning
method’’). The criterion to finish learning is the passage of a certain number of epochs. The optimal number of epochs is
determined by calculation of the mean square error (MSE), which in turn is a loss function for the considered ANN:

MSE =
1
N

N∑
l=1

(
n(4)
1 (l) − Ll

)2
. (5)

Here, N = 20 is the number of alloys in the test data set formed from different types of alloys. Fig. 2 shows that the result
of Eq. (5) is the decaying curve, which start to take the minimal value MSE≃ 0.0015 at after 2200 epochs. This number
of epochs can be considered as optimal, since with a further increase in the number of epochs the MSE increases due to
retraining of the ANN.

3. Results

After learning the ANN, test calculations were carried out and the most significant physical parameters were identified,
the values of which with the values of the Young’s modulus. For this purpose, the MSE was calculated for various
combinations of physical parameters at the ANN input. As can be seen from Fig. 3, the smallest MSE is achieved when
all four input physical parameters M , n, σy and Tg are taken into account and is equal to ∼ 0.00178. Addition of the
noise factor leads to a slight increase in the error. Exclusion from consideration of the molar mass M and the number
of components n also has no significant effect on the result and it increases the MSE up to ≃ 0.00198. Thus, it can be
seen from Fig. 3 that the yield stress σy and the glass transition temperature Tg are the most significant parameters. This
is also confirmed by the fact that taking only σy as an input factor leads to MSE≃ 0.00202, while only with Tg the MSE
is ≃ 0.0137. Further, M and n are identified as insignificant factors, the MSE of which is comparable with the error of
the noise factor, ∼ 0.058. This result shows that the molar mass M and the number of components n do not reveal a
correlation with the resistance of a material to mechanical deformation.
3
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Fig. 2. Neural network loss function that is calculated using Eq. (5) according to test data set for 20 different metal alloys.

Fig. 3. MSE values at various combinations of the ANN input parameters.

For the considered alloys, there is a clear relationship between the yield stress σy and the Young’s modulus E, that is
confirmed by the results presented in Fig. 4(a). As seen, there is a linear relationship between E and σy, which can be
reproduced by the function E = 49.8σy. This result confirms the known relation E/σy ≃ 49.8 obtained earlier in Ref. [30]
on the basis of empirical data. We have found that the ANN result fits this linear relation even for alloys whose Young’s
modulus was not previously known [red dots in Fig. 4(a)]. This confirms the applicability of the ANN to predict the Young’s
modulus of various types of metal alloys based on the known values of the yield stress σy.

Fig. 4(b) shows that there is no simple relationship between E and Tg . The correspondence between these physical
parameters is not reproduced by any simple law due to the fact that for a type of alloy there is a certain range of E and
Tg values. Despite this, the prediction of the ANN fits into the resulting ranges of E and Tg [see Fig. 4(b)], which confirms
the presence of a hidden relationship between the Young’s modulus and the glass transition temperature.

To quantitative characterization of the hidden relationship between E and Tg as well as to obtain a general equation
relating the quantities E, σy, Tg , we have studied the reproducibility of data in the framework of a non-linear regression
model of the following form [22,33]:

Y (X , X ) = a + a X + a X + a X X + a X2
+ a X2

+ a (X X )2. (6)
1 2 0 1 1 2 2 3 1 2 4 1 5 2 6 1 2

4
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Fig. 4. (a) Correlation between the Young’s modulus E and the yield stress σy , which obeys the linear law E/σy ≃ 49.8. (b) Correspondence between
he Young’s modulus E and the glass transition temperature Tg .

ere, Y ≡ E is the output factor, while X1 ≡ σy and X2 ≡ Tg are the input factors. The values of the coefficients
0, a1, . . . , a6 were selected by enumeration from the range [−2000; 2000] with the increments ds = 500. For each
ombination of the values of these coefficients, the error value was calculated as follows

ξ =

√ 1
NExp

NExp∑
i=1

(Yi − Ei)2, (7)

where Yi is the Young’s modulus calculated from relation (6), where the input factors σy and Tg take the experimental
values. The quantity Ei characterizes the experimental values of the Young’s modulus. NExp = 173 is the number of alloys
for which the experimental values of σy, Tg , and E are known (see Tables 1–5 in Supporting Materials). The values of
the coefficients a(best)0 , a(best)1 , . . . , a(best)6 giving the best fit between the experimental Young’s modulus and the result of
Eq. (6) are determined at a minimal value of the error ξ . Further, the ranges of coefficient values are narrowed and set as
[a(best)0 −ds; a(best)0 +ds], [a(best)1 −ds; a(best)1 +ds], . . . , [a(best)6 −ds; a(best)6 +ds]. The increment ds is also halved. The search for
the optimal values of the coefficients is repeated anew until the step size becomes ds < 0.001. The values of the fitting
coefficients were determined as a0 = 25GPa, a1 = 41.4, a2 = −0.0046GPa /K, a3 = 0.0015 K−1, a4 = a5 = a6 = 0. Thus,
on the basis of Eq. (6), we obtain equation, which relates the quantities σy, Tg and E:

E(σy, Tg ) = 25 + 41.4σy − 0.0046Tg + 0.0015σyTg . (8)

In geometry, equation of this kind is known as the equation of a planar surface with a certain tilt.
Fig. 5 shows that the experimental and predicted values of the Young’s modulus are indeed located on the planar

surface either in its immediate vicinity; this surface is reproduced by Eq. (8). At the same time, the data predicted on the
basis of machine learning are located closer to the planar surface shown in Fig. 5 compared to the experimental data. The
experimental data are also located along this surface and follow its slope, whereas these data have a much larger scatter
compared to machine learning predictions. For example, a significant divergence between the experimental data and the
result of Eq. (8) is observed in the case of alloys based on tungsten and cobalt containing up to 32% of boron. Here, it
should be noted that the glass transition temperature Tg included in Eq. (8) is not fixed for a specific alloy and, as a rule,
depends on the cooling rate of the liquid melt. The yield stress σy also depends on the mechanical test conditions such
as the strain rate as well as the direction and type of the applied force. Therefore, the absence of unified preparation and
deformation protocols for various types of amorphous alloys may be one of the reasons for the divergence between the
experimental data and the result of regression analysis.

4. Conclusions

Thus, based on a large set of empirical data for amorphous metal alloys of various compositions, a relationship has
been established between the Young’s modulus E and such key physical characteristics of alloys as the molar mass M , the
number of components n, the yield stress σy, the glass transition temperature Tg . Using the machine learning based on the
ANN’s, it was found that the values of the Young’s modulus of metal alloys under normal conditions correlate with σ and
y

5
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Fig. 5. (a) Correspondence between the Young’s modulus E, the yield stress σy and the glass transition temperature Tg . The experimental values
of E (Exp) are compared with the Young’s modulus predicted based on machine learning (ML). The result of a non-linear regression model (NRM)
obtained by Eq (8) is presented as a planar surface. (b) This correspondence from a different angle showing that all of the data are located in the
vicinity of the planar surface.

Tg . As found, a non-linear regression model correctly reproduces the experimental data E, Tg and σy for different metal
alloys, and this model generalizes the previously known empirical relation E/σy ≃ 49.8 for amorphous metal alloys [30].
At the same time, the results reveal that the molar mass M and the number of components n are not significant factors
and do not affect on values of the Young’s modulus.

The obtained results are of great practical importance, since they confirm the possibility of estimating the mechanical
properties of metal alloys based on information about other physical properties, which can be used in the synthesis of
alloys with a required properties. Moreover, the combination of the ANN and regression analysis can be applied to solve
other similar tasks, where it is required to predict the physical parameters of various materials based on a limited set of
training data [34]. For example, such tasks include determining the GFA of various types of materials [35,36], as well as
the task of predicting the low-temperature characteristics of glass-formers (glass transition temperature, fragility index,
etc.) from high-temperature data (viscosity, melting temperature, Arrhenius transition temperature, etc.) [25,37–39].
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