
Lecture 3. Work and Energy

Work and Kinetic Energy

If you integrate a constant acceleration of an object twice, you obtain:
𝑣𝑣 𝑡𝑡 = 𝑎𝑎𝑡𝑡 + 𝑣𝑣0

𝑥𝑥 𝑡𝑡 =
1
2
𝑎𝑎𝑡𝑡2 + 𝑣𝑣0𝑡𝑡 + 𝑥𝑥0

where v0 is the initial speed and x0 is the initial x position at time t = 0.

Now, suppose you want to find the speed v1 the object will have when it reaches position x1.
One can algebraically, once and for all note that this must occur at some time t1 such that:

𝑣𝑣 𝑡𝑡1 = 𝑎𝑎𝑡𝑡1 + 𝑣𝑣0 = 𝑣𝑣1
𝑥𝑥 𝑡𝑡1 =

1
2
𝑎𝑎𝑡𝑡12 + 𝑣𝑣0𝑡𝑡1 + 𝑥𝑥0 = 𝑥𝑥1

We can algebraically solve the first equation once and for all for t1:
𝑡𝑡1 =

𝑣𝑣1 − 𝑣𝑣0
𝑎𝑎

and substitute the result into the second equation, eliminating time altogether from the
solutions:
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1
2
𝑎𝑎
𝑣𝑣1 − 𝑣𝑣0

𝑎𝑎

2
+ 𝑣𝑣0

𝑣𝑣1 − 𝑣𝑣0
𝑎𝑎

+ 𝑥𝑥0 = 𝑥𝑥1

1
2
𝑎𝑎(𝑣𝑣1

2−2𝑣𝑣0𝑣𝑣1 + 𝑣𝑣02) +
𝑣𝑣0𝑣𝑣1 − 𝑣𝑣02

𝑎𝑎
= 𝑥𝑥1 − 𝑥𝑥0

𝑣𝑣12 − 2𝑣𝑣0𝑣𝑣1 + 𝑣𝑣02 + 2𝑣𝑣0𝑣𝑣1 − 𝑣𝑣02 = 2𝑎𝑎(𝑥𝑥1 − 𝑥𝑥0)
or 𝑣𝑣12 − 𝑣𝑣02 = 2𝑎𝑎(𝑥𝑥1 − 𝑥𝑥0)

Lets consider a constant acceleration in one dimension only:
𝑣𝑣12 − 𝑣𝑣02 = 2𝑎𝑎∆𝑥𝑥

If we multiply by m (the mass of the object) and move the annoying 2 over to the other side, we can
make the constant acceleration a into a constant force Fx = ma:

𝑚𝑚𝑎𝑎 ∆𝑥𝑥 =
1
2
𝑚𝑚𝑣𝑣12 −

1
2
𝑚𝑚𝑣𝑣02

𝐹𝐹𝑥𝑥∆𝑥𝑥 =
1
2
𝑚𝑚𝑣𝑣12 −

1
2
𝑚𝑚𝑣𝑣02

We now define the work done by the constant force Fx on the mass m as it moves through the distance
Δx to be: ∆𝑊𝑊 = 𝐹𝐹𝑥𝑥∆𝑥𝑥
Work is a form of energy.

1 Joule = 1 Newton � meter = 1
kilogram � meter2

second2
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Kinetic Energy

Let’s define the quantity changed by the work to be the kinetic energy and will use
the symbol K to represent it in this work:

𝐾𝐾 =
1
2
𝑚𝑚𝑣𝑣2

Work-Kinetic Energy Theorem:
The work done on a mass by the total force acting on it is equal to the change in its
kinetic energy.

and as an equation that is correct for constant one dimensional forces only:

∆𝑊𝑊 = 𝐹𝐹𝑥𝑥∆𝑥𝑥 =
1
2
𝑚𝑚𝑣𝑣𝑓𝑓2 −

1
2
𝑚𝑚𝑣𝑣𝑖𝑖2 = ∆𝐾𝐾
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Conservative Forces: Potential Energy

We define a conservative force to be one such that the work done by the force as you move a
point mass from point �⃗�𝑥1 to point �⃗�𝑥2 is independent of the path used to move between the 
points:

𝑊𝑊𝑙𝑙𝑠𝑠𝑠𝑠𝑙𝑙 = �
�⃗�𝑥1(path 1)

�⃗�𝑥2
�⃗�𝐹 � 𝑑𝑑𝑙𝑙 = �

�⃗�𝑥1(path 2)

�⃗�𝑥2
�⃗�𝐹 � 𝑑𝑑𝑙𝑙

In this case (only), the work done going around an arbitrary closed path (starting and ending
on the same point) will be identically zero!

𝑊𝑊𝑙𝑙𝑠𝑠𝑠𝑠𝑙𝑙 = �
𝐶𝐶
�⃗�𝐹 � 𝑑𝑑𝑙𝑙 = 0

The work done going around an arbitrary loop by a
conservative force is zero. This ensures that the work
done going between two points is independent of the
path taken, its defining characteristic.
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Conservative Forces: Potential Energy

Since the work done moving a mass m from an arbitrary starting point to any point in space
is the same independent of the path, we can assign each point in space a numerical value: the
work done by us on mass m, against the conservative force, to reach it.
This is the negative of the work done by the force. We do it with this sign for reasons that
will become clear in a moment. We call this function the potential energy of the mass m
associated with the conservative force �⃗�𝐹:

𝑈𝑈 �⃗�𝑥 = −�
𝑥𝑥0

𝑥𝑥
�⃗�𝐹 � 𝑑𝑑�⃗�𝑥 = −𝑊𝑊

Note Well: that only one limit of integration depends on x; the other depends on where you
choose to make the potential energy zero. This is a free choice. No physical result that can be
measured or observed can uniquely depend on where you choose the potential energy to be
zero.
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Conservation of Mechanical Energy

The principle of the Conservation of Mechanical Energy:
The total mechanical energy (defined as the sum of its potential and kinetic energies) of
a particle being acted on by only conservative forces is constant.
Or, if only conservative forces act on an object and U is the potential energy function for the
total conservative force, then

𝐸𝐸𝑚𝑚𝑚𝑚𝑠𝑠ℎ = 𝐾𝐾 + 𝑈𝑈 = 𝐴𝐴 scalar constant

The fact that the force is the negative derivative of the potential energy of an object means
that the force points in the direction the potential energy decreases in.
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Example: Falling Ball Reprise

To see how powerful this is, let us look back at a falling
object of mass m (neglecting drag and friction). First, we
have to determine the gravitational potential energy of the
object a height y above the ground (where we will choose
to set U(0) = 0):

𝑈𝑈 𝑦𝑦 = −�
0

𝑦𝑦
−𝑚𝑚𝑚𝑚 𝑑𝑑𝑦𝑦 = 𝑚𝑚𝑚𝑚𝑦𝑦

Now, suppose we have our ball of mass m at the height H
and drop it from rest. How fast is it going when it hits the
ground? This time we simply write the total energy of the
ball at the top (where the potential is mgH and the kinetic
is zero) and the bottom (where the potential is zero and
kinetic is 1

2
𝑚𝑚𝑣𝑣2 and set the two equal! Solve for v, done:

𝐸𝐸𝑖𝑖 = 𝑚𝑚𝑚𝑚𝐻𝐻 + 0 = 0 +
1
2
𝑚𝑚𝑣𝑣2 = 𝐸𝐸𝑓𝑓

or 𝑣𝑣 = 2𝑚𝑚𝐻𝐻
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Example: Block Sliding Down Frictionless Incline Reprise

The block starts out a height H above the ground, with potential energy mgH and kinetic
energy of 0. It slides to the ground (no non-conservative friction!) and arrives with no potential
energy and kinetic energy 1

2
𝑚𝑚𝑣𝑣2

𝐸𝐸𝑖𝑖 = 𝑚𝑚𝑚𝑚𝐻𝐻 + 0 = 0 +
1
2
𝑚𝑚𝑣𝑣2 = 𝐸𝐸𝑓𝑓

or 𝑣𝑣 = 2𝑚𝑚𝐻𝐻
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Example: Looping the Loop

What is the minimum height H such that a block of mass m loops-the-loop (stays on the
frictionless track all the way around the circle)?
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Example: Looping the Loop

Here we need two physical principles: Newton’s Second Law and the kinematics of circular
motion since the mass is undoubtedly moving in a circle if it stays on the track. Here’s the
way we reason:
“If the block moves in a circle of radius R at speed v, then its acceleration towards the center
must be ac = v2/R. Newton’s Second Law then tells us that the total force component in the
direction of the center must be mv2/R. That force can only be made out of (a component of)
gravity and the normal force, which points towards the center. So we can relate the normal
force to the speed of the block on the circle at any point.”
At the top (where we expect v to be at its minimum value, assuming it stays on the circle)
gravity points straight towards the center of the circle of motion, so we get:

𝑚𝑚𝑚𝑚 + 𝑁𝑁 =
𝑚𝑚𝑣𝑣2

𝜋𝜋
and in the limit that N → 0 (“barely” looping the loop) we get the condition:

𝑚𝑚𝑚𝑚 =
𝑚𝑚𝑣𝑣𝑡𝑡2

𝜋𝜋
where vt is the (minimum) speed at the top of the track needed to loop the loop.
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Example: Looping the Loop

Now we need to relate the speed at the top of the circle to the original height H it began at.
This is where we need our third principle – Conservation of Mechanical Energy!
With energy we don’t care about the shape of the track, only that the track do no work on
the mass which (since it is frictionless and normal forces do no work) is in the bag. Thus:

𝐸𝐸𝑖𝑖 = 𝑚𝑚𝑚𝑚𝐻𝐻 = 𝑚𝑚𝑚𝑚2𝜋𝜋 +
1
2
𝑚𝑚𝑣𝑣𝑡𝑡2 = 𝐸𝐸𝑓𝑓

If you put these two equations together (e.g. solve the first for 𝑚𝑚𝑣𝑣𝑡𝑡2 and substitute it into the
second, then solve for H in terms of R) you should get

Hmin = 5R/2.
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Example: Generalized Work-Mechanical Energy Theorem

Let’s consider what happens if both conservative and nonconservative forces are acting on a 
particle. In that case the argument above becomes:

𝑊𝑊𝑚𝑚𝑠𝑠𝑡𝑡 = 𝑊𝑊𝐶𝐶 + 𝑊𝑊𝑁𝑁𝐶𝐶 = ∆𝐾𝐾

or 𝑊𝑊𝑁𝑁𝐶𝐶 = ∆𝐾𝐾 −𝑊𝑊𝐶𝐶 = ∆𝐾𝐾 + ∆𝑈𝑈 = ∆𝐸𝐸𝑚𝑚𝑚𝑚𝑠𝑠ℎ

which we state as the Generalized Non-Conservative Work-Mechanical Energy
Theorem:

The work done by all the non-conservative forces acting on a particle equals the change
in its total mechanical energy.
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Example: Heat and Conservation of Energy

The important empirical law is the Law of Conservation of Energy. Whenever we examine a
physical system and try very hard to keep track of all of the mechanical energy exchanges
within that system and between the system and its surroundings, we find that we can always
account for them all without any gain or loss.

In other words, we find that the total mechanical energy of an isolated system never changes,
and if we add or remove mechanical energy to/from the system, it has to come from or go to
somewhere outside of the system. This result, applied to well defined systems of particles,
can be formulated as the First Law of Thermodynamics:

∆𝑄𝑄𝑖𝑖𝑠𝑠 = ∆𝐸𝐸𝑠𝑠𝑓𝑓 + 𝑊𝑊𝑏𝑏𝑦𝑦

In words, the heat energy flowing in to a system equals the change in the internal total
mechanical energy of the system plus the external work (if any) done by the system on its
surroundings.
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Example: Heat and Conservation of Energy

When a block slides down a rough table from some initial velocity to rest, kinetic friction
turns the bulk organized kinetic energy of the collectively moving mass into disorganized
microscopic energy – heat.

As the rough microscopic surfaces bounce off of one another and form and break chemical
bonds, it sets the actual molecules of the block bounding, increasing the internal microscopic
mechanical energy of the block and warming it up.
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Power

The energy in a given system is not, of course, usually constant in time. Energy is added to a
given mass, or taken away, at some rate.

There are many times when we are given the rate at which energy is added or removed in
time, and need to find the total energy added or removed. This rate is called the power.

Power: The rate at which work is done, or energy released into a system.

𝑑𝑑𝑊𝑊 = �⃗�𝐹𝑑𝑑�⃗�𝑥 = �⃗�𝐹 �
𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡
𝑑𝑑𝑡𝑡

𝑃𝑃 =
𝑑𝑑𝑊𝑊
𝑑𝑑𝑡𝑡

= �⃗�𝐹 � �⃗�𝑣

so that ∆𝑊𝑊 = ∆𝐸𝐸𝑡𝑡𝑠𝑠𝑡𝑡 = ∫𝑃𝑃𝑑𝑑𝑡𝑡

The units of power are clearly Joules/sec = Watts. Another common unit of power is
“Horsepower”, 1 HP = 746 W.
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Equilibrium

The force is given by the negative gradient of the potential energy:

�⃗�𝐹 = −𝛻𝛻𝑈𝑈

or (in each direction): 𝐹𝐹𝑥𝑥 = −𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

,𝐹𝐹𝑦𝑦 = −𝑑𝑑𝑑𝑑
𝑑𝑑𝑦𝑦

, 𝐹𝐹𝑧𝑧 = −𝑑𝑑𝑑𝑑
𝑑𝑑𝑧𝑧

,

or the force is the negative slope of the potential energy function in this direction.

The meaning of this is that if a particle moves in the direction of the (conservative) force, it
speeds up. If it speeds up, its kinetic energy increases. If its kinetic energy increases, its
potential energy must decrease. The force (component) acting on a particle is thus the rate at
which the potential energy decreases (the negative slope) in any given direction
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Equilibrium

A one-dimensional potential energy curve U(x).
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Equilibrium

A one-dimensional potential energy
curve U(x).

At the point labelled a, the x-slope of U(x) is
positive. The x (component of the) force,
therefore, is in the negative x direction. At the
point b, the x-slope is negative and the force is
correspondingly positive. Note well that the force
gets larger as the slope of U(x) gets larger (in
magnitude).

The point in the middle, at x = 0, is special. Note
that this is a minimum of U(x) and hence the x-
slope is zero. Therefore the x-directed force F at
that point is zero as well. A point at which the
force on an object is zero is, as we previously
noted, a point of static force equilibrium – a
particle placed there at rest will remain there at
rest.
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Equilibrium

A one-dimensional potential energy
curve U(x).

In this particular figure, if one moves the particle
a small distance to the right or the left of the
equilibrium point, the force pushes the particle
back towards equilibrium. Points where the force
is zero and small displacements cause a restoring
force in this way are called stable equilibrium
points. As you can see, the isolated minima of a
potential energy curve (or surface, in higher
dimensions) are all stable equilibria.
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Equilibrium

A fairly generic potential energy shape for microscopic (atomic or molecular) interactions,
drawn to help exhibits features one might see in such a curve more than as a realistically
scaled potential energy in some set of units. In particular, the curve exhibits stable, unstable,
and neutral equilibria for a radial potential energy as a function of r, the distance between two
e.g. atoms.
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Equilibrium

At very long ranges, the forces between neutral atoms are extremely small, effectively zero.
This is illustrated as an extended region where the potential energy is flat for large r. Such a
range is called neutral equilibrium because there are no forces that either restore or repel
the two atoms. Neutral equilibrium is not stable in the specific sense that a particle placed
there with any nonzero velocity will move freely (according to Newton’s First Law). Since
it is nearly impossible to prepare an atom at absolute rest relative to another particle, one
basically “never” sees two unbound microscopic atoms with a large, perfectly constant
spatial orientation.
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Equilibrium

As the two atoms near one another, their interaction becomes first weakly attractive due to
e.g. quantum dipole-induced dipole interactions and then weakly repulsive as the two atoms
start to “touch” each other. There is a potential energy minimum in between where two
atoms separated by a certain distance can be in stable equilibrium without being chemically
bound.
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Equilibrium

Atoms that approach one another still more closely encounter a second potential energy
well that is at first strongly attractive followed by a hard core repulsion as the electron
clouds are prevented from interpenetrating by e.g. the Pauli exclusion principle. This
second potential energy well is often modelled by a Lennard-Jones potential energy It also
has a point of stable equilibrium.



Lecture 3. Work and Energy

Equilibrium

In between, there is a point where the growing attraction of the inner potential energy well
and the growing repulsion of the outer potential energy well balance, so that the potential
energy function has a maximum. At this maximum the slope is zero (so it is a position of
force equilibrium) but because the force on either side of this point pushes the particle away
from it, this is a point of unstable equilibrium. Unstable equilibria occur at isolated
maxima in the potential energy function, just as stable equilibria occur at isolated minima.
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