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Abstract

In this work, we study morphological characteristics of the critically sized crystalline nuclei at initial stage of the shear-induced crystalliza-

tion of a model single-component amorphous (glassy) system. These characteristics are estimated quantitatively through statistical treatment

of the nonequilibrium molecular dynamics simulation results for the system under steady shear at various (fixed) values of the shear rate _c
and at different temperatures. It is found that the sheared glassy system is crystallized through nucleation mechanism. From the analysis of

time-dependent trajectories of the largest crystalline nuclei, the critical size nc and the nucleation time sc were defined. It is shown that the

critically sized nuclei in the system are oriented within the shear-gradient xy-plane at moderate and high shear rates; and a tilt angle of the

oriented nuclei depends on the shear rate. At extremely high shear rates and at shear deformation of the system more than 60%, the tilt angle

of the nuclei tends to take the value ’ 45� respective to the shear direction. We found that this feature depends weakly on the temperature.

Asphericity of the nucleus shape increases with increasing shear rate that is verified by increasing value of the asphericity parameter and by

the contour of the pair distribution function calculated for the particles of the critically sized nuclei. The critical size increases with increas-

ing shear rate according to the power-law, nc / ð _cscÞ1=3
, whereas the shape of the critically sized nucleus changes from spherical to the elon-

gated ellipsoidal. We found that the nc-dependencies of the nuclei deformation parameter evaluated for the system at different temperatures

and shear rates are collapsed into unified master-curve. VC 2017 The Society of Rheology. https://doi.org/10.1122/1.5003238

I. INTRODUCTION

Due to a disordered structure, the amorphous materials

(metallic glasses, polymeric, and colloidal amorphous solids)

have unique mechanical and physical properties, which

allow one to find their practical applications in photonics,

medicine, and electronics [1–7]. Furthermore, the micro-

scopic structure of disordered systems under different

mechanical deformations (compression, shear, etc.) is of a

special interest [8]. In particular, understanding of physical

mechanisms of the steady shear influence on the microscopic

structure of the systems could provide a possibility to

develop practical tools to control the structural ordering pro-

cess [2,7,9–14].

A large number of experimental and simulation studies

provide indications that the steady shear applied to metasta-

ble disordered systems (supercooled liquids and amorphous

solids) generates a microscopic structure anisotropy in these

systems [7,13–22]. It is clear that the anisotropy arisen in the

disordered systems under shear leads to change of morpho-

logical characteristics of emerging crystalline structures.

Therefore, the mechanical and rheological properties of the

systems can be significantly dependent on the anisotropy.

This is confirmed by results of a large number of studies

[1,7,14,23–32]. So, for example, Kumaraswamy and co-

workers [22] have revealed experimentally that nonspherical

ordered structures oriented along the shear direction occur

for the case of polydisperse isotactic polypropylene melt

under intensive shear. Moreover, they found that these struc-

tures appear as precursors of crystallization at a temperature

below the melting point; and morphological properties of

these precursors have a significant impact on the overall

crystallization kinetics. On the basis of experimental and

simulation studies done by Petekidis and co-workers

[21,32,33], it was found that the microscopic structure of

polymeric colloidal glasses under shear changes with

increasing shear rate. This is directly manifested in the shape

of the evaluated density distribution g(x, y). Namely, the

function g(x, y) characterizing the particles distribution

within the shear-gradient plane starts to change its shape

under applied shear flow. Then, it is reasonably to expect

that the observed structural changes of the systems may do

impact on their rheological properties. It was found in [33]

that the ordered structures forming under shear are not stable

thermodynamically, and they may be characterized by the

rheological aging. These results are supplemented by simula-

tion studies. For example, simulation results of Blaak et al.
have revealed that the elongated crystalline nuclei oriented

along the shear direction occur at shear-induced crystalliza-

tion of colloidal suspensions [16]. Here, a tilt angle of the

nucleus increases with increasing shear rate. On the other

hand, Graham and Olmsted found that nonspherical elon-

gated nuclei occur in sheared polymer melts, and such shape

has been mentioned as shish-kebab [26]. According to the

results of [26], the crystal nucleation may be accelerated by

shear. Note, the similar results were also obtained for the

case of crystallization of model glassy systems at homoge-

neous shear [7,15,34]. It was found in [7,15,34] that steady
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shear can both accelerate and suppress the crystal nucleation

process in the glassy systems.

In spite of a large number of studies mentioned above,

there are still a lot of unclear points related with the influence

of a steady homogeneous shear on the morphology of crys-

talline structures emerging in amorphous solids

[15,18,35,36]. For example, the physical mechanisms deter-

mining the crystalline nuclei asphericity at the initial stage

of crystallization, when the size of these nuclei is compara-

ble with a critical size, are debated [7,15,16,26]. According

to the classical nucleation theory [37–39], only the critically

sized nuclei may demonstrate a stable growth. Moreover,

from the experimental point of view, it is not so easy to eval-

uate such morphological characteristics as the critical size

and the shape of the crystalline nuclei in the atomistic and

molecular systems under shear with different rates

[13,33,40]. This is especially appropriate for the case of deep

supercooling levels, when the temperatures are below the

glass transition temperature Tg.

In the present work, we study the microscopic mecha-

nisms of shear-induced crystallization of a single-component

glassy system at different temperatures. The main attention

is paid to study morphological characteristics of the critically

sized crystalline nuclei in the system under a homogeneous

shear with various (fixed) shear rates. These characteristics

are considered as the terms dependent on the critical defor-

mation cc � _csc. Here, the dimensionless quantity cc is the

deformation of the system under shear with the rate _c at the

time moment sc � sðncÞ, i.e., when the critically sized nc

nucleus appears. In other words, the quantity cc corresponds

directly to the time scale of the nucleation time sc. We find

that the homogeneous shear initiates the structural ordering

in the glassy system through the crystal nucleation mecha-

nism, where the nuclei with pronounced asphericity of their

shape and oriented along the shear direction are formed.

Simulation details and cluster analysis are presented in Sec.

II. The results are given and discussed in Sec. III. Finally,

the main results will be summarized in the conclusion.

II. SIMULATION DETAILS AND CLUSTER
ANALYSIS

Molecular dynamics simulations are performed for the

single-component system, where the interaction between the

particles is defined through the short-ranged oscillatory

Dzugutov potential (Dz-system) [41,42]. The specific shape

of the potential allows one to reproduce effectively the effect

of electron screening for the ion-ion interaction in metals. In

addition, the system with such potential is capable to gener-

ate a stable amorphous state [7,34,43].

To realize the homogeneous shear, the SLLOD-algorithm

is applied [12], where the shear velocity

~ui ¼ _cyi~ex (1)

is added to the x-component of intrinsic (thermal) velocity~ti

of each particle of the system. As a result, equations of

motion are [12]

d~ri

dt
¼~ti þ _cyi~ex þ f~ri; (2a)

d~ti

dt
¼
~Fi

m
� _ctyi~ex � .þ fð Þ~ti: (2b)

Here, ~riðxi; yi; ziÞ and ~tiðtxi; tyi; tziÞ are the position and

velocity of the ith particle, respectively (i ¼ 1; 2; … N,

where N is the number of particles); . and f are the parame-

ters of thermostat and barostat, respectively. In the present

work, the homogeneous shear is applied with different fixed

shear rates: _c ¼ 0:0001, 0.0005, 0.001, 0.002, 0.005, 0.008,

and 0:01 s�1. Realization of the homogeneous shear is sche-

matically presented in Fig. 1.

The considered three-dimensional system consists of

N¼ 6912 identical particles located within the cubic simula-

tion cell. The Lees–Edwards periodic boundary conditions

are applied in both the gradient y- and vorticity z-directions

[44]. The ordinary periodic boundary conditions are also

applied in the shear x-direction. The instantaneous velocities

and trajectories of the particles are determined by integration

of the equations of motion (2) using the Verlet algorithm with

the time step Dt ¼ 0:005 s. All simulations are performed in

the isobaric-isothermal ensemble, where the temperature T
and the pressure p are controlled by the Nose-Hoover thermo-

stat and barostat, respectively. In the present work, the stan-

dard Lennard-Jones units are used: r is the effective particle

diameter; � is the energy unit; s ¼ r
ffiffiffiffiffiffiffiffi
m=�

p
is the time unit,

where m is the mass of the particle; the temperature T in units

of �=kB, where kB is the Boltzmann constant; the pressure p in

units of �=r3; the shear rate _c in units of s�1.

Molecular dynamics simulations are realized as follows:

At first, a liquid sample is equilibrated at the temperature

T ¼ 2:3 �=kB and at the pressure p ¼ 14 �=r3, that is above

the melting temperature of the system Tm ’ 1:51 �=kB at

FIG. 1. Schematic representation of the homogeneous shear realization with

a linear velocity profile: Green spheres show the particles of a system; the

blue arrows characterize the shear directions with rate ~ui (i ¼ 1; 2;…; N).

The axis OX is associated with the shear-direction; the axis OY corresponds

to the gradient-direction; the axis OZ indicates the vorticity-direction.
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considered pressure (the phase diagram of the Dz-system can

be found in [42]). Second, the glassy samples are prepared

through rapid cooling of the equilibrated liquid with the

cooling rate of 0:001 �=ðkBsÞ to the temperatures T¼ 0.05,

0.15, and 0:5 �=kB, that is much lower than the glass transi-

tion temperature Tg ’ 0:65 �=kB of the system. Thus, one

hundred independent glassy samples are prepared for each

considered (p, T) thermodynamic state, that are required to

perform a statistical treatment of the simulation results. And,

finally, each glassy sample is exposed to a homogeneous

shear on the time scale �100 000 simulation steps.

To detect the crystalline structures, the cluster analysis

based on the estimation of the bond orientational order

parameters was applied [45,46]. Namely, following to

Steinhardt et al. [45], the local orientational order parameters

are defined as

ql ið Þ ¼ 4p
2lþ 1

Xl

m¼�l

����� 1

n ið Þ
b

Xn ið Þ
b

j¼1

Ylm hij;uij

� ������
2

0
@

1
A

1=2

; (3)

where

l ¼ 4; 6; 8:

Also we estimate the value of the global orientational order

parameter as an average of q6ðiÞ (i.e., at l¼ 6) over all the

particles of the system [45]

Q6 ¼
4p
13

X6

m¼�6

�����
PN

i¼1

Pn ið Þ
b

j¼1 Y6m hij;uij

� �
PN

i¼1 n ið Þ
b

�����
2

0
@

1
A

1=2

: (4)

Here, n
ðiÞ
b is the number of neighbors of the ith particle;

Ylmðhij;uijÞ are the spherical harmonics; hij and uij are the

polar and azimuthal angles, respectively. As a rule, even

spherical harmonics with the indexes l¼ 4, 6, and 8 are suffi-

cient to recognize the presence of the ordered domains in the

system. For example, the local orientational order parameters

q4, q6, q8 take nonzero values for the particles forming sc
(simple cubic), icos (icosahedral), bcc (base-centered cubic),

fcc (face-centered cubic), and hcp (hexagonal close-packed)

crystalline structures [47]. For a disordered glassy system,

the local orientational order parameters obey a normal distri-

bution, whereas the value of the parameter Q6 tends to zero

for this case [45,48]. The order parameters qi and Qj, where

i; j ¼ 4; 6; 8;…; take unique values for specific crystalline

structures that allows one to identify these structures in the

considered system [45]. In particular, according to the origi-

nal normalization of the parameter Q6, the parameter Q6 is

0.575 for the perfect fcc lattice; one has Q6 ¼ 0:485 for the

perfect hcp lattice and Q6 ¼ 0:663 for the icosahedral lat-

tice. The smaller values can be due to the presence of

defects.

One of the key conditions, by which the particle is identi-

fied as entering into an ordered phase, is so-called coherence

condition [48]

�����
X6

m¼�6

~q�6mðiÞ �~q6mðjÞ
����� � 0:5; (5a)

~q6m ið Þ ¼ q6m ið ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP6
m¼�6 jq6m ið Þj2

q : (5b)

Namely, according to the scheme suggested in [48], the pair

of particles i and j are considered as “solidlike” if the dot-

product ~q�6ðiÞ �~q6ðjÞ exceeds the threshold value 0.5. In this

case, the nearest neighborhood of the ith particle must con-

tain seven and more solidlike particles, for which condition

(5) is satisfied.

For quantitative characterization of the crystalline nuclei

shape, we evaluate the asphericity parameter [46]

S0 ¼
*

Ixx � Iyyð Þ2 þ Ixx � Izzð Þ2 þ Iyy � Izzð Þ2

2 Ixx þ Iyy þ Izzð Þ2

+
; (6)

where

Iab ¼ m
Xnc

i¼1

ð~r2
i dab �~ria~ribÞ (7)

are the moments of inertia (ab 2 fx; y; zg). Here, j~rij is the

distance between the nucleus center-of-mass and the position

of ith solidlike particle; dab is the Kronecker delta. Thus, for

the case of a perfect spherical shape, we have S0 ¼ 0; the

parameter is S0 ! 1 for extremely elongated shape.

By means of the cluster analysis, we obtain for each ath

simulation run the growth trajectories of the largest crystalline

nucleus, naðtÞ. Here, the quantity naðtÞ indicates that the

nucleus of the size n appears at the time t during the ath simu-

lation run, where a ¼ 1; 2;…; 100. These trajectories

extracted from the different simulation runs are treated within

the mean-first-passage-time method [36,49]. According to this

method, the curve sðnÞ is defined, which is known as the

mean-first-passage-time curve and which characterizes the

average time of the first appearance of the largest nucleus

with given size n (for details, see [36,49]). The critical size nc

and the average nucleation (or waiting) time for the nucleus

sc, are defined from the analysis of the curve sðnÞ and of the

first derivative @sðnÞ=@n, according to the scheme suggested

in [36]. In the case of activation type processes, the curve sðnÞ
characterizes by three regimes: (i) the first regime is associ-

ated with prenucleation, where the small values of n corre-

spond to sðnÞ with zero value; (ii) the second regime, in

which the curve sðnÞ has the pronounced nonzero slope, con-

tains information about a nucleation event. Namely, detected

from the first derivative @sðnÞ=@n location of an inflection

point in the curve sðnÞ for this regime defines the critical size

nc, whereas sðncÞ � sc is directly associated with the nucle-

ation time of the critically sized nucleus; (iii) the third regime,

where the slope of sðnÞ decreases corresponds to growth of

the nucleus. Note that in the present work we focus on the

characteristics for the largest crystalline nucleus.

III. RESULTS

A. Crystalline structures

Information about structural transformations in the glassy

system at homogeneous shear is obtained through evaluation

267MORPHOLOGY OF CRITICALLY SIZED NUCLEI



of the orientational order parameters q4, q6, q8, and Q6. The

most probable values of the order parameters have been

computed by averaging the data obtained from one hundred

independent numerical experiments at different shear rates _c.

As an example, Fig. 2(a) shows the time-dependent order

parameter Q6 computed for the system at the temperature

T ¼ 0:15 �=kB and at the shear rate of _c ¼ 0:001 s�1.

Initially, the order parameter Q6 takes the small value

�0:023, which corresponds to a disordered system. Further,

the glassy system is crystallized after initiation of the shear

deformation. Namely, the parameter Q6 begins to increase

after lag time �70 s and at t > 250 s the parameter goes to

saturation with value Q6 ’ 0:47, which corresponds to a

completely ordered system. The sigmoidal shape of the

Q6ðtÞ-curve is typical for the activation processes when, for

example, the crystallization occurs through the nucleation

mechanism [15,50]. A similar scenario of structural ordering

is also observed at other shear rates and temperatures with a

difference only in the crystallization time scales.

Characteristic directions of the crystalline lattice were ini-

tially estimated for the critically sized nucleus. As we found,

there is no alignment of the crystal structure of the nuclei

along the shear- and/or gradient-directions. Moreover, the cor-

respondence between orientation of the crystal planes and the

specific shear directions was also not detected even for the

completely ordered systems, where the order parameter Q6

takes its largest value. This is seen from snapshots of the sys-

tem at T ¼ 0:15 �=kB and shear rate 0:001 s�1 [see Fig. 2(b)].

Figure 3 shows the distributions Pðq4Þ; Pðq6Þ, and Pðq8Þ
for the system at the temperature T ¼ 0:15 �=kB and at the

shear rate _c ¼ 0:001 s�1, when the system is completely crys-

tallized (i.e., when the system corresponds to the state with

Q6 ’ 0:47). The normal distributions Pðq4Þ; Pðq6Þ, and

Pðq8Þ corresponded to the glassy system before initiation of

the homogeneous shear are also presented in Fig. 3 (here, the

order parameter is Q6 ’ 0:023). After initiation of the shear,

the structural ordering degree increases. This is also mani-

fested by a change of shapes of Pðq4Þ; Pðq6Þ; Pðq8Þ and by

appearance of peaks located at high values of the parameters

q4, q6, and q8. The locations of these peaks in the distributions

Pðq4Þ; Pðq6Þ, and Pðq8Þ correspond to structures with the fcc
and hcp-symmetries. The fraction of “fcc-particles” is

�60%–70%, whereas the fraction of “hcp-particles”

is �30%–40%. Moreover, locations of the peaks in the distri-

butions Pðq4Þ; Pðq6Þ, and Pðq8Þ corresponding to

q4 ’ 0:21; q6 ’ 0:57, and q8 ’ 0:41 indicate the fcc-symme-

try. The peaks in the distributions at q4 ’ 0:11; q6 ’ 0:48,

and q8 ’ 0:31 correspond to the particles forming the hcp lat-

tice [47]. In accordance with the equilibrium phase diagram of

the Dzugutov system, the temperature region along the isobar

FIG. 2. (a) Time-dependent orientational order parameter Q6ðtÞ evaluated

for the system at the temperature T ¼ 0:15 �=kB and at shear rate
_c ¼ 0:001 s�1. Insets: Instantaneous configurations of a system correspond-

ing to values Q6 ’ 0:023 (left inset) and Q6 ’ 0:47 (right inset). (b)

Snapshots of the simulation cell corresponding to the system at the tempera-

ture T ¼ 0:15 �=kB and the shear rate _c ¼ 0:001 s�1, when an ordered state

is achieved. Here, the order parameter Q6 is �0:47. In fact, the system repre-

sents a nanocrystalline solid consisted of an assembly of crystallites with

disordered orientations, and the degree of order achieved by the system is

low in comparison to that of a perfect crystal.

FIG. 3. Distributions Pðq4Þ; Pðq6Þ, and Pðq8Þ evaluated for the Dz-system

at the temperature T ¼ 0:15 �=kB with Q6 ’ 0:47 crystallized at the shear

rate _c ¼ 0:001 s�1.
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p ¼ 14 �=r3 includes the crystalline phases with the fcc and

hcp lattices [41,42]. In particular, at deformation of an amor-

phous system by shock waves, it was observed in [42,51] a

phase transition into the high-pressure states with fcc or hcp
crystalline phase. Both lattice types appear simultaneously

and have a slight difference due to defects in the crystalline

structure caused by the shock waves.

B. Critically sized crystalline nuclei under shear

Results of the cluster analysis reveal that the structural

ordering in the glassy Dz-system occurs through the forma-

tion of small-sized crystalline nuclei consisting mainly of

30–50 particles. By the mean-first-passage-time method, the

critical size nc and the nucleation time sc have been evalu-

ated for the system at different temperatures and shear rates

[15,49]. Figure 4(a) shows the nucleation time sc as a func-

tion of the critical deformation cc evaluated at different tem-

peratures. We found different regimes in cc-dependencies of

sc. Namely, the nucleation time decreases at small and mod-

erate shear rates and it increases at high shear rates. The

nucleation time decreases from sc ’ 125615 s to sc ’
4066 s with an increasing shear rate from _c ¼ 0:0001 s�1

(cc ’ 0:0125) to _c ¼ 0:002 s�1 (cc ’ 0:08). The nucleation

time increases from sc ’ 4165 s to sc ’ 53610 s at increas-

ing shear rate from _c ¼ 0:005 s�1 (cc ’ 0:205) to _c
¼ 0:01 s�1 (cc ’ 0:53) in the considered temperature range

T 2 ½0:05; 0:5	 �=kB. Such a nonmonotonic cc-dependence of

the nucleation time sc is due to the antagonistic impact of

shear flow on the nucleation process. This effect was also

discussed in [7,15]. As discussed in [15], such a nonmono-

tonic behavior of sc is due to the impact of shear deformation

on the kinetic and thermodynamic aspects of the crystal

nucleation in this system. Namely, a slow shear-flow acceler-

ates the nucleation through the attachment rate, whereas the

high shear rates destabilize the critical nuclei and reduce the

probability of the particle attachment. On the other hand, a

shear flow gives rise to “pressure anisotropy” [52] mani-

fested in the fact that the diagonal components of the pres-

sure tensor begin to differ. This effect leads to anisotropy of

the interfacial free energy. Moreover, the shear deformation

introduces an elastic energy into the system and, thereby, it

has an impact on the thermodynamic characteristics of crys-

tal nucleation (the nucleation barrier, the interfacial free

energy, etc.) [19,53].

Although there are known experimental data characteriz-

ing the crystal nucleation in amorphous systems under shear,

a comparison of different experimental data and results of

the numerical simulation is a nontrivial task. In fact, these

systems are characterized by various physical, chemical, and

rheological properties, and the systems are studied at differ-

ent thermodynamic and deformation conditions.

Nevertheless, there are common regularities in structural

ordering in these systems. Namely, the slow shear deforma-

tions accelerate the ordering, whereas the large shear rates

suppress the crystallization. As a result, the strain-

dependencies of the crystallization (nucleation) time must be

characterized by a minimum. Therefore, it is reasonable to

propose that such dependencies can be represented in the

unified scaled form

sc

sm
¼ f

cc

cm

� �n
" #

: (8)

Here, f ½…	 is a universal function and sm is the location of

the minimum in the dependence scðccÞ, whereas cm is the

value of the critical deformation cc at the time sm. Further,

the dimensionless positive parameter n can be considered as

the characteristic of glass-forming ability of the system

[36,54,55].

In Fig. 4(b), the scaled time sc=sm is presented as a func-

tion of the scaled critical deformation ðcc=cmÞn for different

systems under shear: our simulation results for the Dzugutov

system (Dz); experimental data for colloidal system (CS)

[56], and two polymer systems (PS) [57] and (sP) [58]. For

the case of CS and PS systems, the data for the induction

time sind vs the critical deformation cc were taken. As shown

in Fig. 4(b), all the data collapse onto unified curve. This is

evidence that the scaling relation (8) is valid. Here, the

parameter n takes the next values: n ¼ 0:935 for the

Dzugutov system, 1.282 for the CS-system, 2.33 for the PS-

FIG. 4. (a) Nucleation time sc as a function of critical deformation cc evaluated for Dz-system at different temperatures. (b) Scaled nucleation time sc=sm and

induction time sind=sm as a function of scaled critical deformation ðcc=cmÞn. Here, sm and cm are the parameters defined the minimum of the dependence scðccÞ
[and sindðccÞ]. Symbols (�), (w), and (�) indicate simulation results for the Dzugutov system at different temperatures, whereas symbols (�), (3), and (�)

correspond to experimental data for colloidal system (CS) [56] and for two polymer systems: (PS) [57] and (sP) [58]. (c) Critical size nc vs cc. Dashed curves

are results of fit in Eq. (15).
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system, and 1.89 for the sP-system. Thus, the parameter

takes the lowest value for the atomistic single-component

Dzugutov system, and it takes the larger values for the poly-

mer and colloidal systems with better glass-forming ability

properties.

It should be noted that the crystal nucleation in amor-

phous solid (glass) differs from crystal nucleation in super-

cooled liquid. At low and moderate levels of supercooling

corresponding to a liquid (supercooled) phase, the nucleation

rate is determined mainly by the thermodynamic factor

[15,36,37]. For a glassy phase with deep levels of supercool-

ing, the nucleation is driven by the kinetic features of the

system. Competition between the thermodynamic and kinetic

aspects is clearly manifested in appearance of the character-

istic maximum in the temperature dependence of the nucle-

ation rate [37–39]. Influence of the shear on crystallization

of the supercooled liquid and glass is also different. In partic-

ular, for the case of a liquid, the shear deformation increases

the viscosity and, thereby, nucleation is suppressed [19,59].

For a glassy system, the shear increases effectively the mobil-

ity of particles and, thereby, the shear decreases the

viscosity.

The system evolves at temperatures much below the glass

transition temperature Tg. And, therefore, detection of the

nucleation event for the system at zeroth shear may seem

surprising. Actually, features of the microscopic kinetics of a

glass change with moving over phase diagram for the range

of high pressures. Namely, at high pressures the structural

relaxation as well as the transition of the glassy system into a

state with the lower free energy proceeds over shorter time

scales [60]. As we found, the nucleation event is detectable

within the simulation time scales for the Dz-system at the

thermodynamic states with pressures p � 12 �=r3 [36].

In Fig. 4(c), the quantity nc as a function of the critical

deformation cc evaluated at different temperatures is pre-

sented. In the absence of shear, for the considered tempera-

ture range T 2 ½0:05; 0:5	 �=kB, the critical size increases

with temperature by several tens of particles. This is in

agreement with classical nucleation theory [37,38], accord-

ing to which nc ¼ ð32pc3
1Þ=ð3qcjDlj3Þ. Here, c1 is the

interfacial free energy, jDlj is the difference of the chemical

potential per phase unite in the melt (glass) and the crystal.

Then, taking into account that the chemical potential differ-

ence jDlj is proportional the supercooling, DT ¼ Tm � T

jDlj � DT

Tm
;

one has that the critical size nc increases with increasing tem-

perature. Further, with increase of shear rate within the range

_c 2 ½0:0001; 0:01	 s�1, the critical size increases from nc

’ 88 to nc ’ 130 particles. As shown in Fig. 4(c), at the low

shear rates _c < 0:001 s�1, the nuclei appear at critical defor-

mation cc ¼ 0:02, whereas at high shear rates the formation

of the nuclei occurs at the larger deformations. Namely, at

the shear rate _c ¼ 0:01 s�1, the nuclei appear at the critical

deformation cc > 0:3. The large values of cc are due to the

high shear rates inhibit the crystal nucleation, which was pre-

viously discussed in [15,19].

For the crystalline nuclei with sizes 
 100 particles, it is

quite reasonable within the statistical treatment to character-

ize their shape as the quantity averaged over data of indepen-

dent experiments. This averaging procedure is denoted by

h…i in Eq. (6). As shown from Fig. 5(a), for a shear-free sys-

tem as well as for the system at small shear rates

_c < 0:001 s�1, the asphericity parameter takes the values

S0 < 0:02. It indicates that the critically sized nucleus

approximate a symmetric shape close to be a spherical.

Further, the quantity S0 increases from ’ 0:005 to S0

’ 0:045 with the increasing critical deformation cc that is

due to the increase of the nucleus shape asphericity.

Homogeneous steady-state shear promotes local rearrange-

ments of the particles and leads effectively to an increase of

particle mobility. Therefore, the system temperature takes a

FIG. 5. (a) Asphericity parameter S0 as a function of the critical deformation

cc. Insets show the critically sized nuclei with various sizes and shapes. (b)

Correlation between the asphericity parameter S0 and the critical size nc at

different temperature of the system. Here, circles correspond to the system

at T ¼ 0:05 �=kB, squares correspond to T ¼ 0:15 �=kB, and triangles corre-

spond to T ¼ 0:5 �=kB.
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sense of the effective parameter [61], which increases with

increase of the shear rate (Fig. 4 in [15]). Moreover, there is

anisotropy of interfacial free energy due to shear. Then, the

system with a specific characteristic interparticle interaction

must be characterized by a limit value of curvature of the

solid (crystal)-liquid interface; while the geometries with

larger values of curvature will be unstable. As a result, a pla-

teau in the cc-dependence of the asphericity parameter

appears and saturation of the cc-dependence of the critical

size is observed at high shear rates. Therefore, it is remark-

able that the cc-dependence of S0 is correlated with such a

dependence of nc. One can see from Fig. 5(b) that both quan-

tities S0 and nc are correlated, and a larger value of the

asphericity parameter S0 correspond to a larger value of the

critical size nc. This scenario differs from crystal nucleation

without external mechanical drive, where S0 / 1=nc [46].

Projections of the pair-distribution function g(r) onto the

shear-gradient xy and the shear-vorticity xz planes were

defined for particles of the critically sized nucleus as the

next

gc x; yð Þ ¼
�

1

nc

Xnc

i¼1

Xnc

j>i

d ~r �~rij x; yð Þ
� �	

(9)

and

gc x; zð Þ ¼
�

1

nc

Xnc

i¼1

Xnc

j>i

d ~r �~rij x; zð Þ
� �	

: (10)

Here, h…i means an averaging over data of independent sim-

ulation runs. At evaluation of the distributions gcðx; yÞ and

gcðx; zÞ, the positions of particles were determined with

respect to the geometric center of a nucleus.

The distributions gcðx; yÞ for the system at the tempera-

ture T ¼ 0:15 �=kB and at the shear rates _c ¼ 0, 0.0005,

0.005, and 0:01 s�1 are shown in Fig. 6. Further, Fig. 7

presents the distributions gcðx; zÞ for the shear-free system at

the temperature T ¼ 0:15 �=kB and for the system at the

shear rate 0:01 s�1. As shown, the closed lines correspond-

ing to the first, second, and third coordinations are well rec-

ognizable in these distributions. At the absence of a shear,

the contours of the distributions gcðx; yÞ and gcðx; zÞ are cir-

cular, that is evidence of a spherical shape of the nucleus.

As can be seen from contours of gcðx; yÞ and gcðx; zÞ, the

nucleus asphericity becomes more pronounced with shear

increase [Figs. 6(b)–6(d), and Fig. 7(b)]. This is also

observed at other considered temperatures, not presented in

Figs. 6 and 7.

The contours of the distributions gcðx; yÞ and gcðx; zÞ
change from circular to elliptical at increasing shear rate _c.

The long axis of the elliptic contour of gcðx; yÞ is oriented

with respect to the gradient direction [see Figs. 6(b)–6(d)].

At the same time, the orientation of this ellipse within

the xz-plane is not observed, that is seen, in particular, in

Fig. 7. Namely, the long axis of the ellipse in the distribu-

tion gcðx; zÞ increases with increasing shear rate only in the

shear direction [see Fig. 7(b)], whereas the small axis of

the ellipse is practically unchanged both in the xy and xz-

planes. This is a direct evidence that at high shear rates the

nuclei are characterized by an elongated ellipsoidal shape.

Note that this is in agreement with the results of

[16,26,40,62].

The tilt angle u between the gradient direction and the

longest axis of the (ellipsoidlike) nucleus was determined

directly from contours of the distribution gcðx; yÞ. In Fig. 8,

FIG. 6. Top: Projections of the pair distribution function gcðx; yÞ for the particles of a critically sized nucleus received for the system at the temperature

T ¼ 0:15 �=kB and at the shear rates: (a) Zeroth shear rate, _c ¼ 0; (b) _c ¼ 0:0005 s�1 (critical deformation cc � 3%); (c) _c ¼ 0:005 s�1 (cc � 20%); (d)
_c ¼ 0:01 s�1 (cc � 50%). External boundaries of the distribution gcðx; yÞ are shown by the dashed circle and ellipses. Bottom: Projections of the pair dis-

tribution function onto shear-gradient xy-plane obtained for hard-sphere glassy systems at different shear strains: (e) 1%, (f) 10%, (g) 20%, and (h) 60%

(taken from [21,32]).
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the cc-dependencies of u obtained at different shear rates

and temperatures are shown. The tilt angle u increases with

the increasing critical deformation cc according to the

power-law dependence

uðccÞ ¼ u0f1� exp ð�DccÞg: (11)

Here, D and u0 are the positive fitting parameters. As it

appears, both the parameters are independent on the temper-

ature T for the considered temperature range and take the

values D ¼ 6:060:05 and u0 ¼ 45�63�, respectively. The

function uðccÞ goes to saturation faster at the higher value of

the parameter D. The parameter u0 is the limit value of u.

Namely, at the large deformations (in our case at cc > 0:6)

the long axis of the elliptic contour in the distribution

gcðx; yÞ is oriented at the angle u0 � 45� with respect to the

gradient direction (see also [11,20,32]). As it follows from

[21,32], a pronounced anisotropy in the microscopic struc-

ture of hard-sphere suspensions and glasses is observed with

increasing shear strain. It was found in [21,32] that with

increasing shear deformation the particles density starts to be

dependent on direction, and the so-called stretching and

compression directions appear. It is remarkable that the con-

tours of this distribution [see Fig. 6(e)–6(h)] are similar to

the contours of the distribution gcðx; yÞ [see Fig. 6(a)–6(d)],

where the angle between the stretching direction and the gra-

dient direction goes to the limit value �45�. On the other

hand, it was experimentally found by Nosenko et al. [20] for

the strongly coupled liquid that the microscopic structure of

the system at influence of shear becomes anisotropic; and

compressive and stretching axes tend to be oriented at the

angle of 645� respective to the direction of flow. Evidently,

such ellipticity of the distribution gcðx; yÞ arising at steady

shear has an impact on the crystal nucleation processes and

is also responsible for the critically sized nuclei asphericity.

C. Size and shape of critically sized nuclei

Let ac and bc be the small and large semiaxes of the ellip-

tic contours in the distribution gcðx; yÞ, respectively. The

quantities ac and bc are evaluated from the distribution

gcðx; yÞ at different critical deformation cc. As shown from

Fig. 9, the small semiaxis ac is practically unchanged with

the increasing critical deformation cc, while the quantity bc

increases with cc. Remarkably, the cc-dependencies of the

quantities are well reproduced by

acðccÞ ¼ a0f1þAcj
cg (12)

and

bcðccÞ ¼ a0f1þ Bcj
cg: (13)

Here, a0 is the radius of a spherical nucleus at _c ¼ 0, and it

is a0 ’ 2:71, 2.81, and 2:87 r for temperatures T¼ 0.05,

0.15, and 0:5 �=kB, respectively. The dimensionless parame-

ters A and B take the fixed positive values A ’
0:00460:001 and B ’ 0:4260:04 for the considered temper-

ature range T 2 ½0:05; 0:5	 �=kB. The dimensionless parame-

ter j is defined by the thermodynamic properties of a system

and takes positive value j ¼ 1=3 for considered tempera-

tures. We found that the ratio B=A is �105 and,

FIG. 7. Projections of the pair distribution function gcðx; zÞ onto the xz-

planes for the particles of a critically sized nucleus received for the system

at the temperature T ¼ 0:15 �=kB and at the shear rates: (a) _c ¼ 0; (b)
_c ¼ 0:01 s�1. External boundaries of the distribution gcðx; zÞ are shown by

the dashed circle and ellipse.

FIG. 8. Tilt angle u of a critically sized nucleus as a function of the critical

deformation cc at different temperatures. The solid curve is fit in Eq. (11).

Insets: Schematic illustrations showing the change of orientation and shape

of the nuclei at various cc.

FIG. 9. (a) Quantities ac and bc as a function of the critical deformation cc.

The solid curves are fit in Eqs. (12) and (13). (b) Schematic image of the

ellipsoidal shape, where ac and bc are small and large semiaxes determined

from the distribution gcðx; yÞ.
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consequently, the asphericity of a nucleus shape increases

mainly due to the increase of the large semiaxis bc.

From Eqs. (12) and (13), one obtains the cc-dependence

of the critical size nc

nc ccð Þ ¼
4

3
pqc ac ccð Þ½ 	2 bc ccð Þ


 �
¼ 4

3
pqca2

0b0 1þ Bcj
c þ 2Acj

cþ2ABc2j
c

�
þA2c2j

c þA
2Bc2j

c g: (14)

Since the parameter A takes small values in the case of the

Dz-system (A ’ 0:004) and taking into account bc ’ ac at

_c ¼ 0, Eq. (14) can be rewritten in the following simplified

form:

ncðccÞ ¼ ncð_c ¼ 0Þf1þ Bcj
cg; (15)

where

nc _c ¼ 0ð Þ ¼ 4

3
pqca3

0: (16)

Here, qc ’ 1:0460:02 r�3 is the numerical density of the

crystalline phase. Figure 4(c) shows the fit of the simulation

results in Eq. (15) at given values of B, j, and a0. It can be

seen from Fig. 4(c), Eq. (15) reproduces correctly the cc-

dependence of the critical size nc at the considered

temperatures.

For the quantitative characterization of the nuclei shape,

we define the deformation parameter

v ¼ bc � ac

bc þ ac
: (17)

For the case bc � ac, the parameter v takes the values from

the range ½0; 1	. Namely, if a nucleus is characterized by a

perfect spherical shape, we have v¼ 0, whereas for an elon-

gated nucleus one has v! 1.

The cc-dependencies of the parameter v at different tem-

peratures are shown in Fig. 10(a). An increase of v with the

critical deformation cc is mainly due to the increase of the

value bc. It should be noted that the cc-dependencies of S0

and v are correlated [see Figs. 4(c) and 10(a)]. Further, the

results reveal that the cc-dependencies of the parameter v are

reproduced by

v ccð Þ ¼
Bcj

c

2þ Bcj
c

; (18)

which follows from Eqs. (12), (13), and (17). Here, B ’
0:4260:04 and j ’ 1=3 for the considered temperatures. We

found that the cc-dependencies of the parameter v go to satu-

ration at high critical deformations, and extremely high shear

rates do not lead to the high asphericity of a nucleus.

Moreover, Fig. 10(b) shows the parameter v as a function

of the scaled critical size nc=n0. Here, the quantity n0 is the

critical size, which is evaluated for the system at absence of

a shear, n0 � ncð _c ¼ 0Þ. This figure presents our results as

well as the results of flow-induced nucleation in polymer

melts taken from [26,27]. Remarkably, all data collapse into

a master-curve reproducible by

v ncð Þ ¼
nc � n0

nc þ n0

: (19)

Equation (19) follows directly from Eqs. (15) and (18).

As shown from Fig. 10(b), values of nc=n0 and v accessi-

ble to the considered Dz-system correspond to a narrower

range in comparison with values for the polymer system.

The Dzugutov interaction potential is not capable of forming

elongated structures with large values of deformation

FIG. 10. (a) Quantity v as a function of the critical deformation cc. The solid curve is fit in Eq. (18). (b) Quantity v as a function of the scaled critical size

nc=n0, where n0 � ncð _c ¼ 0Þ is the critical size at zeroth shear rate. The dashed curve is fit in Eq. (19). The data for elongated critically sized crystalline nuclei

marked as GO are taken from [26,27].
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parameter. Therefore, it is expected that the results for the

Dzugutov pseudo-metallic system are located in the lower

left part of the figure, whereas the data for the soft systems

(say, polymers) have to be located at higher values of param-

eters. Results presented in Fig. 10(b) indicate on a possible

universality in correlation between the characteristics of size

and shape critically sized nucleus that does not depend on

specific types of the considered systems. Therefore, addi-

tional studies of this point would be useful.

IV. CONCLUSION

The main results of this study are the following:

(i) The shear-induced structural ordering of the single-

component glassy system is initiated through the crys-

tal nucleation mechanism.

(ii) The critical size nc and the nucleation time sc were

evaluated at different fixed shear rates and tempera-

tures. It is shown that both the size and the shape of the

critically sized nuclei depend on the shear rate. The

asphericity of the nuclei increases with the increasing

shear rate _c (or with the increasing critical deformation

cc � _csc); the larger asphericity of the nucleus corre-

sponds to the larger critical size. It is verified by the

increasing asphericity parameter S0 and by the changes

of the contours of gcðx; yÞ and gcðx; zÞ calculated for

the particles of the critically sized nuclei.

(iii) The shapes of the critically sized nuclei change with

increasing shear rate from spherical to ellipsoidal.

The asphericity parameter and the critical size

increase according to the power-law / ð _cscÞ1=3
.

(iv) It is shown that the ellipsoidal nuclei are oriented

within the shear-gradient plane at moderate and high

shear rates. The tilt angle of the nuclei increases with

the increasing shear rate according to the power-law

dependence.

(v) It is found that the scaled nc-dependencies of the

nuclei deformation parameter v are collapsed into a

unified master-curve.
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