

Ф. М. Исмагилова, Л. Б. Литвак-Горская, Г. Я. Луговая, И. Е. Трофимов, Особенности отрицательного магнитосопротивления при проводимости по верхней зоне Хаббарда в *p*-Si(B), *Физика и техника полупроводников*, 1991, том 25, выпуск 2, 255–261

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки: IP: 178.206.252.142 23 декабря 2023 г., 13:50:02

vol. 25, N 2

PHYSICS AND TECHNICS OF SEMICONDUCTORS

ОСОБЕННОСТИ ОТРИЦАТЕЛЬНОГО МАГНИТОСОПРОТИВЛЕНИЯ ПРИ ПРОВОДИМОСТИ ПО ВЕРХНЕЙ ЗОНЕ ХАББАРДА В *p*-Si

Исмагилова Ф. М., Литвак-Горская Л. Б., Луговая Г. Я., Трофимов И. Е.

Исследовано магнитосопротивление слабо компенсированного p-Si $\langle B \rangle$ с $N_n \simeq 6 \cdot 10^{16} \div 2 \cdot 10^{18}$ см⁻³ при $H = 0 \div 36$ кЭ и $T = 4.2 \div 40$ К в стационарных условиях ($T = 20 \div 40$ К) и при лазерном и фоновом фотовозбуждении дырок (T = 4.2 К) в верхнюю зону Хаббарда (ВЗХ). Показано, что появление отрицательного магнитосопротивления (OMC) связаво только с проводимостью по ВЗХ, причем ОМС объясняется в рамках теории квантовых понравок к проводимости за счет слабой локализации дырок. Найденное время сбоя фазы волновой функции τ_{φ} близко к τ_{ph} — времени релаксации импульса дырки при рассеянии на акустических фононах.

Введение. Известно, что в легированных полупроводниках при наличии проводимости по зоне делокализованных примесных состояний [верхней зоне Хаббарда (B3X) или s2-зоне] наблюдается отрицательное магнитосопротивление (OMC) [1, 2], объясняемое в рамках теории квантовых поправок к проводимости [3-5]. При этом предполагается, что ОМС определяется только проводимостью по ВЗХ, подтверждением чему служит, по мнению авторов [1, 2], существование ОМС в том диапазоне температур, где преобладает этот вид проводимости. Отметим, что в легированных немагнитными водородоподобными примесями полупроводниках при $n^{1/3}a < 0.25$ ОМС связано только со слабой локализацией электронов, поэтому возможны количественная обработка экспериментальных результатов и определение времени сбоя фазы волновой функции электрона 🗤 (здесь n — концентрация свободных электронов, a — радиус локализации его на примесном центре). Действительно, в [²] было найдено 🖡 и показано, что оно определяется временем релаксации импульса электрона на акустических фононах трh в соответствии с теорией [5]. Однако условия, при которых $\tau_c = \tau_{\rm ph}$, выполняются и для свободных электронов, в связи с чем возникает неясность, за счет каких электронов — свободных или ВЗХ — существует ОМС, и если за счет обоих, то каков вклад в ОМС одних и других. Ответить на поставленный вопрос, нам представляется, можно, изучая магнитосопротивление в неравновесных условиях, например фотопроводимость при таком фотовозбуждении, когда неравновесные электроны создаются только в ВЗХ или в зоне проводимости и ВЗХ.

Предлагаемая работа, задуманная как продолжение [1, 2], посвящена выяснению роли проводимости по ВЗХ в ОМС. С этой целью исследовано магнитосопротивление как при равновесной проводимости, так и при примесном фотовозбуждении. Объектом изучения выбран слабо компенсированный *p*-Si(B), поскольку в нем вследствие больших характерных энергий ОМС в равновесных условиях наблюдается в диапазоне температур T=20-40 K, что позволяет при T=4.2 K исследовать магнитосопротивление возбужденных светом дырок практически при полном отсутствии равновесных носителей заряда и в ВЗХ, и в валентной зоне. К тому же в этом материале, как ни в одном другом, фотопроводимость изучена в очень широком диапазоне концентраций примесей — от возникновения делокализации в ВЗХ практически до перехода металл—изолятор [^{6, 7}].

Методика измерений и экспериментальные результаты

1. Нами проведено исследование магнитосопротивления MC, постоянной Холла R_H (T) и проводимости σ (T) в четырех образдах различно легированного и слабо компенсированного p-Si $\langle B \rangle$, параметры которых даны в таблице.

№ образ- ца	$N_{a} \cdot 10^{17}, CM^{-3}$	$K = \frac{N_d}{N_a}$	ε ₁ , мэВ	€2, M9B	€ ₂ , MDB
1 2 3 4	$\begin{array}{c} 0.59 \\ 3.3 \\ 13.0 \\ 20.0 \end{array}$	$\begin{array}{c} 3.7 \cdot 10^{-4} \\ < 10^{-2} \\ - \\ - \\ - \end{array}$	45 40 30 22	$30 \\ 20 \\ 12.5$	 7.1 5.4 3.8

Представленные значения энергий активации зонной проводимости (ε_1) и проводимости по примесям (ε_2 п ε_3) получены из σ (T) в диапазоне $T=4.2\div300$ К. Концентрация основной примеси N_a и компенсация K в образцах 1, 2 определены из R_H (T). В образцах 3 и 4 N_a найдена по подвижности свободных дырок μ при $T=50\div100$ К и по удельному сопротивлению при T=300 К. Отсутствие температурной зависимости μ в указанном диапазоне температур свидетельствует о преобладании рассеяния дырок на нейтральных акцепторах [⁸], что по крайней мере гарантирует $K < 10^{-2}$.

Рис. 1. Зависимость $\Delta_{5,2}$ (II) образца 4 в равновесном (I) и неравновесном (2) случаях.

Исследование МС в стационарных условиях при $T=20\div40$ К проводилось по методике, описанной в [^{1, 9}], при электрических смещениях на образце, соответствующих закону Ома, и напряженности магнитного поля $H=0\div36$ кЭ. В условиях фотовозбуждения носителей заряда в ВЗХ магнитосопротивление измерялось при T=4.2 К. Для фотовозбуждения носителей заряда в образцах 2-4 использовался лазерный подсвет на длинах волн $\lambda_1=118.8$ и $\lambda_2=96.5$ мкм ($\hbar\omega_1=10.4$ н $\hbar\omega_2=13$ мэВ соответственно) [¹⁰]. Использование холодных фильтров позволяло отсечь коротковолновое излучение с $\lambda < 90$ мкм и тем самым исключало возможность появления свободных дырок. Измерения проводились в импульсном режиме при длительности импульса 100 мс и частоте повторений 10 Гц. Увеличение проводимости в лазерном подсвете не превышало 10^{-2} исходной величины о. В образце I, где в равновесных условиях отсутствует проводимость по зоне ε_2 , фотовозбуждение носителей заряда в ВЗХ производилось фоновым подсветом с $\lambda = 8 - 12$ мкм ($\hbar \omega > 1R_y$) через валентную зону при малых уровнях фото-

Рис. 2. Зависимость $\Delta \rho / \rho$ (*H*) при *T*=4.2 К и лазерном подсвете на $\lambda_1 = 118$ и $\lambda_2 = 96.5$ мкм Образцы: *I* – 2 (λ_1 , λ_2) и 3 (λ_2); 2 – 3 (λ_1); 3 – 4 (λ_1); 4 – 4 (λ_2).

возбуждения $W_{\phi} \simeq 0.25$ и 1 с⁻¹ [⁹]. При этом измерялись σ (*T*) и R_H (*T*) при фоновом фотовозбуждении; проводимость по ВЗХ σ_d и по валентной зоне σ_o рассчитывалась с использованием двузонной модели проводимости по методике, описанной в [⁸].

2. В равновесных условиях ОМС в соответствии с [1, 2] наблюдается только в том диапазоне температур, где существует проводимость по є2-зоне, т. е. при T=20:40 К. Сама же проводимость по зоне са даже в слабо компенсированном Si в отличие от Ge не выражена на зависимости σ (T⁻¹) участком экспоненциальной зависимости с є₂ энергией активации, и ее приходится выделять из полной проводимости по методике, предложенной Фрицше [11]. Представленные в таблице значения голучены таким способом. На рис. 1 дан график Др/р образца

Рис. 3. Зависимость проводимости по ВЗХ (a), свободных дырок (б) и $\Delta \rho / \rho$ (s) [включая положительный (1') и отрицательный (1") компоненты магнитосопротивления] образца 1 от напряженности магнитного поля при $T{=}4.2$ К и $W_{\Phi}{=}1$ с.

4 при T=34 К, показаны положительная и отрицательная компоненты магнитосопротивления, а также приведен график $\Delta \rho / \rho$ при T=4.2 К и лазерном возбуждении на $\lambda_1=118.8$ мкм. Видно, что при лазерном возбуждении $\Delta \rho / \rho$ отрицательно во всем диапазоне *H*. Необходимо отметить, что в пределах точности эксперимента и при использованных уровнях фотовозбуждения $\Delta \rho / \rho$ не зависит от интенсивности лазерного подсвета.

На рис. 2 представлены графики $\Delta \rho / \rho$ (H) образцов 2—4 при лазерном фотовозбуждении. Видно, что в образце 2 магнитосопротивление не наблюдается ни при одной энергии кванта. В образце 3 ОМС есть только при $\hbar \omega_2 = 13$ мэВ, в образце 4 — при обоих квантах излучения. Характер ОМС в образцах 3 и 4 одинаков. Приведенная на рис. 2 точность определения величины $\Delta \rho / \rho$ при фотовозбуждении не позволяет судить о зависимости $\Delta \rho / \rho$ от $\hbar \omega$, а также проводить количественное сопоставление ОМС в условиях стационарного фотовозбуждения.

Из графиков σ_c (*H*) и σ_d (*H*) образца *I* (рис. 3) видно, что σ_c (*H*) падает во всем диапазоне *H* (положительное MC), а σ_d (*H*) несколько возрастает при H=1=12 кЭ, а затем падает, т. е. имеет положительный и отрицательный компоненты, $\Delta \rho / \rho$ для которых также представлены на рисунке.

Рис. 4. Схема плотности состояний образцов 3 (а) и 4 (б).

Обсуждение экспериментальных результатов

1. Рассмотрим в первую очередь характер магнитосопротивления в равновесных и неравновесных условиях. Из рис. 1—3 видно, что только при лазерном фотовозбуждении ОМС наблюдается во всем диапазоне *H*. В остальных случаях магнитосопротивление имеет отрицательную (ОМС) и положительную (ПМС) компоненты. Обсудим в первую очередь природу ПМС в случае проводимости по ВЗХ. В [¹²] было высказано предположение, что ПМС связано с относительно небольшим возрастанием в магнитном поле энергии ε_2 ($\varepsilon_{2H} = \varepsilon_2 + \gamma H^2$), вследствие чего уменьшается концентрация носителей заряда в ВЗХ. Это было подтверждено результатами измерений ПМС в Ge [¹²] и *n*-InSb [¹³]. В образце *3*, например, $\gamma \simeq 2 \cdot 10^{-13}$ эВ/Э² и возрастание ε_2 энергии в нем должно составить ~ 0.2 мэВ при H = 30 кЭ. Уменьшение концентрации дырок в ВЗХ в этом случае не превысит 10 %. Подобного изменения энергии следует ожидать и в образцах 1 и 4.

Столь малое изменение ε_2 энергии в магнитном поле не приводит, по-видимому, к изменению фотовозбуждения дырок в образцах 3 и 4 при лазерном подсвете. Это, а также отсутствие термически активированных дырок в ВЗХ при T=4.2 К не создают ПМС в этих образцах в неравновесных условиях.

В образце 1 также отсутствуют в ВЗХ равновесные термически активированные дырки, но заселение ВЗХ при фоновом подсвете идет через валентную зону [6]. В рассмотренных в [6] неравновесных процессах существенную роль играет «обратный выброс» дырок из ВЗХ в валентную зону, интенсивность которого определяется в основном энергетической щелью между ВЗХ и валентной зоной. В конечном итоге при стационарном фотовозбуждении концентрация дырок в ВЗХ определяется балансом обоих процессов [6]. Уменьшение в магнитном поле энергетического зазора между ВЗХ и валентной зоной усиливает обратный выброс, вследствие чего убывает концентрация дырок в ВЗХ и возникает. ПМС.

2. Сопоставим характерные энергии, полученные из гальваномагнитных измерений, с энергиями квантов излучения в лазерном подсвете (см. таблицу). Видно, что практически во всех случаях $\hbar \omega_2 \leqslant \varepsilon_2$. В то же время в образцах 3 и 4 при лазерном подсвете наблюдается ОМС. На рис. 4 представлены схемы плотности состояний в образцах 3 и 4, сделанные на основании гальваномагнитных измерений в предположении, что все энергетические зазоры определяются «расстоянием» между максимумами плотности состояний в примесных зонах, а энергия *е*з определяет положение уровня Ферми по отношению к максимуму плотности основных состояний (схема дана для более привычного случая материала *п*-типа проводимости). Вблизи максимума плотности состояний є,-зоны находится «полоса» делокализованных состояний [14]. Нам представляется, что некоторые соображения о «ширине» этой полосы можно высказать, проанализировав экспериментальные результаты для образца 3 (рис. 4, а). Если исходить из того, что все состояния под уровнем Ферми заполнены электронами и ОМС наблюдается при $\hbar \omega_2 = 13$ мэВ, а при $\hbar \omega_1 = 10.4$ мэВ ОМС нет, можно предположить, что область делокализации состояний в ВЗХ простирается ниже максимума плотности состояний на є $\geqslant 1.5$ мэВ. Таким образом, мы считаем, что максимум плотности состояний и край подвижности в ВЗХ не совпадают. Сделать подобные оценки для образцов 2 и 4 не представляется возможным, так как в образце $2 \varepsilon_2 - \varepsilon_F > \hbar \omega_2$, а в образце $4 \varepsilon_2 \leqslant \hbar \omega_2$ и $\varepsilon_2 - \varepsilon_F < \hbar \omega_1$ (здесь

3. Рассчитаем время сбоя фазы волновой функции дырки τ_φ в предположении, что ОМС связано со слабой локализацией дырок в ВЗХ. Для этого воспользуемся соотношением (5) работы [²], где выражение для квантовой поправки к проводимости Δσ_{кв} получено для невырожденного электронного газа в приближении слабых магнитных полей, когда функция Кавабаты для трехмерного случая представляется в виде [⁸]

$$f_{\mathbf{3}}(\alpha) = \left[\frac{4D(\varepsilon) \tau_{\varphi}(\varepsilon)}{l_{H}^{2}}\right]^{s/2}, \qquad (1)$$

где $D(\varepsilon) = \mu_2 kT/e$ — коэффициент диффузии, μ_2 — подвижность по B3X. За неимением возможности независимого измерения $\mu_2(T)$ будем считать $\mu_2 = \text{const.}$ При этом [²]

$$\Delta \sigma_{\rm RB} = C G_0 l_H^{-1} f_3(\alpha) \exp\left(\varepsilon_F / kT\right),\tag{2}$$

где $G_0 = e^2/(2\pi^2\hbar) = 1.23 \cdot 10^{-5} \text{ Ом}^{-1} \cdot \text{см}^{-1}, C = 2\Gamma (1/4) = 7.2$ и отлично от приведенных в [2] значений, поскольку мы полагаем $\mu_2 = \text{const}, a \tau_{\varphi} \sim \varepsilon^{-3/2}$ [2].

Окончательное выражение для расчета τ_{φ} , полученное из (2) в предположении, что $\exp(\epsilon_F/kT) \simeq p_2/N_a$ (p_2 — концентрация дырок в B3X), имеет вид

$$\tau_{\varphi} \simeq \frac{5.7 \cdot 10^3}{C^{2/3}} \left[e N_a \frac{\Delta \sigma_{\kappa_{\rm B}}}{\sigma^2} l_{H}^{4} \right]^{2/3} \frac{e}{k T \mu_{2}^{1/3}}.$$
 (3)

Мы полагаем, что соотношением (3) можно воспользоваться и для неравновесного случая в связи со слабой интенсивностью фотовозбуждения, считая в области ОМС Δσ_{кв}/σ₂ \simeq Δρ/ρ.

в области ОМС Δσ_{кв}/σ₂ ≃Δρ/ρ. Для расчета τ_φ по (3) необходимо найти μ₂. В образце 1 по исследованию фотопроводимости найдена подвижность по ВЗХ μ_d=μ₂ ~ 1 см²/В·с [^{8, 10}]. В наиболее легированных образцах 3 и 4 μ₂ можно оценить из соотношения

$$\sigma_{02} = e N \mu_2,$$

где σ_{02} — удельная проводимость по B3X при $T^{-1} \rightarrow 0$. Это дает практически одинаковые значения $\mu_2 \simeq 13 \text{ см}^2/\text{B} \cdot \text{с}$ для обоих образдов. В связи с тем что мы не имеем возможности оценить μ_2 в образце 2, для расчета τ_{φ} в нем будут использованы значения $\mu_2 = 1$ и $\mu_2 = 13 \text{ см}^2/\text{B} \cdot \text{с}$. На рис. 5 представлены график зависимости $\tau_{\rm ph}$ (*T*) при T=4.2-40 К для *p*-Si и найденные по (3) экспериментальные зависимости τ_{φ} (*T*). Видно, что в диапазоне температур 20-40 К τ_{φ} отличается от $\tau_{\rm ph}$ не более чем в 2 раза. На рисунке приведены также значения τ_{φ} образца 2 при $\mu_2=1$ и 13 см², В·с, которые показывают, что для выбранных нами значений $\mu_2 \tau_{\varphi}$ меняется всего лишь в 2.5 раза. Лучшего совпадения τ_{φ} и $\tau_{\rm ph}$ трудно ожидать, поскольку как для τ_{φ} , так и для $\tau_{\rm ph}$ есть некоторая неопределенность в коэффициентах выражений, определяющих зависимость их от температуры и параметров материала. Важно, что $\tau_{\varphi} \sim T^{-\tau_{12}}$ и, как и следовало ожидать, определяется временем релаксации импульса дырки на акустическом фононе.

Рас. 5. Зависимость от температуры времени рассеяния дырок на акустических фононах т_{ри} (сплошная линия) и времени сбоя фазы волновой функции т_φ (точки) исследованных образцов. Цифры соответствуют номерам образцов в таблице. Расчет т_φ для образца 2 выполнен для µ₂=13 (1') и

1 cm², B·c (2').

Для фотовозбужденных в B3X носителей заряда при T=4.2 K (образец 1) τ_{φ} менее чем в 3 раза отличается от τ_{ph} , что мы рассматриваем как вполне удовлетворительное совпадение.

4. В заключение обсудим характер магнитосопротивления в валентной зоне (рис. 3). Видно, что оно положительно во всем диапазоне *H*. Однако если проанализировать критерии возникновения ОМС для невырожденного электронного газа [⁵], то для свободных дырок в образце *I* при *T*=4.2 К следует ожидать ОМС. Действительно, время релаксации импульса электронов, определяемое рассеянием на нейтральных акцеиторах, $\tau \simeq 10^{-12}$ с $\ll \tau_{\rm ph} \simeq 3 \cdot 10^{-10}$ с, а характерное изменение энергии дырки при столкновении с фононом $\Delta \varepsilon = \sqrt{ms^2 kT} = 4 \cdot 10^{-10}$ Дж, так что $\Delta \varepsilon \tau_{\varphi} \simeq 10^{-25}$ Дж $\gg h$. Таким образом, условия, необходимые для существования квантовых поправок к проводимости, выполнены, однако ОМС для свободных дырок не наблюдается (рис. 3). По-видимому, требуются еще какие-то дополнительные условия для получения ОМС на свободных носителях заряда. Заметим, что ОМС в сильно легированных полупроводниках (см., например, [⁹]) наблюдается также при движении электронов по примесным состояниям, образующим единый континуум с зоной проводимости.

Авторы глубоко признательны Е. М. Гершензону и Ю. А. Гурвичу за обсуждение результатов.

Список литературы

- [1] Гершензон Е. М., Литвак-Горская Л. Б., Рабинович Р. И. // ФТП. 1983. Т. 17. В. 10. C. 1873—1876.
- [2] Гершензон Е. М., Литвак-Горская Л. Б., Луговая Г. Я., Шапиро Е. З. // ФТП. 1983. Т. 17. В. 10. С. 1873—1876.
 [3] Kawabata A. // J. Phys. Soc. Japan. 1980. V. 49. N 2. P. 628—637.
- [4] Альтшулер Б. Л., Аронов А. Г., Ларкин А. И., Хмельницкий Д. Е. // ЖЭТФ. 1981. Т. 81. В. 2 (8). С. 768—783.
- [5] Афонин В. В., Гальперин Ю. М., Гуревич В. Л. // ЖЭТФ. 1985. Т. 88. В. 5. С. 1806-1819.
- [6] Ворожцова Л. А., Гершензон Е. М., Гурвич Ю. А., Исмагилова Ф. М., Литвак-Гор-ская Л. Б., Мельников А. П. // ЖЭТФ. 1987. Т. 93. В. 4 (10). С. 1419-1430.
- [7] Банная В. Ф., Гершензон Е. М., Мельников А. П., Рабинович Р. И., Трофимов И. Е. // ЖЭТФ. 1983. Т. 85. В. 2 (8). С. 746—763.
 [8] Смит Р. Полупроводники. М., 1962. 467 с.
 [9] Полянская Т. А., Сайдашев И. И. // ЖЭТФ. 1983. Т. 84. С. 997—1005.

- [10] Трофимов И. А., Демин А. И., Мурзин В. Н., Батанов В. А. // Препринт № 25 ФИ АН им. П. Н. Лебедева. М., 1989. 14 с. [11] Fritzsche H. // Phys. Rev. 1955. V. 99. N 2. P. 406—416.
- [12] Шмарцев Ю. В., Шендер Е. Ф., Полянская Т. А. // ФТП. 1970. Т. 4. В. 11. С. 2311— 2321.
- [13] Гершензон Е. М., Ильин В. А., Куриленко И. Н., Литвак-Горская Л. Б. // ФТП. 1972. т. 6. В. 10. С. 1868—1873.
- [14] Мотт Н., Дэвис Э. Электронные процессы в некристаллических веществах. М., 1974. 472 c.

Московский государственный

педагогический институт им. В. И. Ленина

Получена 11.07.1990 Принята к печати 9.10.1990