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Pulse shaping by a frequency filtering of a sawtooth phase-modulated cw laser
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The spectrum of a cw field the phase of which experiences a periodic sawtooth modulation is analyzed. Two
types of the sawtooth phase modulation are considered. One is created by combining many harmonics of the
fundamental frequency. The second is produced by an electro-optic modulator fed by the relaxation oscillator,
which generates a voltage slowly rising during charging of the energy storage device and dropping fast due
to discharge by a short circuit. It is proposed to filter out the main spectral component of the sawtooth phase-
modulated field. This filtering produces short pulses from the phase-modulated cw field. The duty cycle of this
train is equal to the modulation period, while duration of the pulses depends on the rate of the phase drop. In the
case of harmonics, this duration is 4N + 2 shorter than the period of the fundamental frequency, where N is the
number of the harmonics. In the case of the charge and discharge, duration of the pulses is close to TD/2, where
TD is a drop time of the phase in the discharge period. Depending on the modulation frequency, the proposed
method is capable to produce pulses with duration ranging from nanoseconds to a fraction of a picosecond.

DOI: 10.1103/PhysRevA.100.043823

I. INTRODUCTION

Ultrafast optics is applied in widespread domains including
but not limited to high-field laser matter interactions, ul-
trafast time-resolved spectroscopy, high-precision frequency
metrology, and development of optical clocks, nonlinear mi-
croscopy, and optical communications (see, for example,
Refs. [1,2]). Initially, short periodic pulses are generated
by high-repetition-rate mode-locked lasers. However, in this
method the generated pulses and their corresponding spectral
lines can suffer from instability problems. Alternative passive
systems generating pedestal-free optical pulses with high peak
power from a low-power laser employ a large variety of
methods to compress the pulses. Among them one can men-
tion, for example, acousto-optic modulators [3–5], frequency
chirping followed by dispersive compensators [6–10], disper-
sive modulators [11,12], high rf power spatial modulation of
the field phase by electro-optic modulators (EOMs) followed
by a lens [13], and modification of phases and amplitudes
of the spectral components of the phase-modulated field by
programmable filters to engineer the desired spectrum of
the field [14]. Passive systems using phase-modulated cw
lasers offer several advantages. Among them are lower cost
and complexity, easy tuning of the frequency comb offset,
continuous tunability of the duty cycle, and reasonably stable
operation without active control.

Phase modulating techniques, mentioned above, are based
on the phase manipulation of the spectral components of the
frequency comb, which leads to phasing of these components.
The number of the components with noticeable amplitudes
increases with increasing of the modulation index and hence
the bandwidth of the comb increases. Therefore, duration of
the compressed pulses by the phasing of the frequency comb
components shortens with increasing of the phase modulation
index. The duty cycle of the pulse train is always equal to the
modulation period.

A different method of pulse compression was recently
reported in Refs. [15–18]. The capabilities of this method
were experimentally demonstrated for gamma photons with
long duration of a single-photon wave packet [15,16]. Split-
ting of a single-photon long pulse into short pulses can
be used to create time-bin qubits, the concept of which
was introduced before in quantum informatics for optical
photons [19,20].

The method [15] is also based on harmonic phase modu-
lation of the radiation field. However, instead of subsequent
control of the spectral components producing their phasing,
absorption (removal) of the component with “the wrong
phase” is proposed. This removal leads to phasing of the
remaining spectral components. The removal method is also
flexible and allows fine control of the duration and repetition
rate of the pulses.

An appreciable shortening of the pulses in the method
[16,17] is achieved for high phase-modulation index as in the
previous passive methods of the pulse shaping. However, with
increase of the modulation index and removal of “the wrong
component” the number of which increases with the increase
of the modulation index, the generated pulses are grouped into
bunches. The number of pulses in each bunch is equal to the
number of the removed spectral component. Duration of the
individual pulse in the bunch is 4n times shorter than the phase
modulation period, where n is the number of the removed
spectral component. A drawback of the pulse shortening with
the increase of n is the accompanying decrease of the pulse
amplitude and increase of the pedestal, i.e., the field amplitude
in the “dark windows” between bunches. Therefore, the most
favorable case in the removal method is deletion of the n = 1
or −1 component. In this case the pulse duration is four times
shorter than the phase modulation period. To overcome the
drawback, arising for high modulation index, several spectral
components are proposed to be removed in Ref. [17]. In this
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case, one needs specially prepared filters complicating the
method.

In this paper, a modification of the phase modulation
technique with subsequent removal of one of the spectral com-
ponents of the comb is proposed. In this variant, appreciable
pulse compression can be achieved for a moderate value of the
modulation index, which is even smaller than that produced
by an EOM fed by the half-wave voltage Vπ , which makes a
π shift of the field phase.

The core idea of the method is a sawtooth phase modula-
tion in which the phase periodically ramps upward and then
sharply drops. It is proposed to construct a linear phase rise
and sharp drop using additive synthesis of many harmonics
of frequency � with decreasing amplitudes according to the
law 1/n, where n is the number of the harmonic n�. The
larger the number N of the highest harmonic, which is N�,
the sharper the phase drop. This simple model of the phase
modulation allows one to describe analytically all the details
of the pulse shaping based on one spectral component removal
in the spectrum of the phase-modulated field. Duration of the
compressed pulse, predicted by the model, is 2(2N + 1) times
shorter than the period T = 2π/� of the phase modulation.

Sawtooth phase modulation produces from a single line cw
field a frequency comb with a period �. The main spectral
component of the comb with n = 1 has a frequency offset −�

with respect to the carrier of the cw field, ωr . The phases of the
satellites of the main component nm = 1 have unusual prop-
erties very different from those produced by harmonic phase
modulation [17]. The nearest satellites with numbers nm ± 1
have the same phase as the main component. The phase of
the next pair, nm ± 2, is shifted by π . The components nm ± 3
are again in phase with the main component, etc. Therefore,
simple removal of the main component results in phasing
of the satellites each time when �t = (2k + 1)π , where k
is an integer. Thus, to generate pulses from the sawtooth
phase modulation cw field there is no need to manipulate
with phases of the spectral components of the comb. Duration
of the pulses shortens appreciably for a large number of
harmonics.

The physical processes in the pulse generation from the
combs, produced by harmonic and sawtooth phase modula-
tions, are quite different. However, it is demonstrated in this
paper that both can be theoretically described by the same
quite simple method. It can be shown that this method can
be easily applied to describe, for example, experiments [21]
with a many-pixel liquid crystal modulator (LCM) array con-
trolling phases of the frequency comb, produced by harmonic
phase modulation.

Understanding of the physics of the proposed method
allows one to extend the method to the case of nonideal
sawtooth phase modulation with periodic nonlinear phase rise
and exponential phase drop. The faster the phase drops, the
shorter the pulse is produced.

It is proposed to implement the filtering of the main
component of the comb by a cloud of cold atoms, atomic
vapors, organic molecules doped in a polymer matrix, and a
liquid crystal phase and amplitude modulator. Depending on
the value of the modulation frequency and selected frequency
filter, one can generate a sequence of pulses ranging from
nanoseconds to a fraction of a picosecond.

FIG. 1. Time evolution of the sawtooth phase ϕ(t ) (blue dotted
line) and the phase ϕN (t ), synthesized from N = 5 harmonics (solid
red line). Both are normalized to π . Horizontal black bars show
limiting values of the phase change, ±π .

The paper is organized as follows. In Sec. II, a sawtooth
phase modulation I, created by mixing many harmonics of
the fundamental frequency, is considered. In Sec. III, fre-
quency filtering of the phase-modulated field is discussed.
Comparison of the sawtooth phase modulation I with har-
monic modulation is presented in Sec. IV. In Sec. V, periodic
sawtooth phase modulation, which consists of a slowly rising
stage according to the law (1 − e−t/TR ) and a fast dropping
stage according to e−t/TD , and frequency filtering of the phase-
modulated field are considered. Frequency filtering methods
are discussed in Sec. VI.

II. SAWTOOTH PHASE MODULATION I

We consider cw radiation field E (t ) = E0 exp(−iωrt +
ikz), which after passing through the electro-optic modulator
acquires a sawtooth phase modulation:

EEO(t ) = E (t )eiϕ(t ), (1)

where

ϕ(t ) =
+∞∑

n=−∞
(�t − 2πn)

{
θ

[
t − T

(
n − 1

2

)]

− θ

[
t − T

(
n + 1

2

)]}
, (2)

� and T = 2π/� are the modulation frequency and period,
n is an integer varying from −∞ to +∞, and θ (x) is the
Heaviside step function. This kind of phase modulation is
shown in Fig. 1 by the dotted blue line. Here, in the definition
of the cw radiation field, Eq. (1), only the positive frequency
part of the field is considered for convenience.

Physically, it is difficult to make an instantaneous phase
drop after a linear ramp up. This problem can be solved by
using additive synthesis of many harmonics of frequency �

with decreasing amplitudes (see, for example, Refs. [22,23]).
Fourier transforms,

1

T

∫ T/2

−T/2
ϕ(t )e−in�t dt = i

(−1)n

n
, (3)

043823-2



PULSE SHAPING BY A FREQUENCY FILTERING OF A … PHYSICAL REVIEW A 100, 043823 (2019)

FIG. 2. Frequency content of the field with sawtooth phase mod-
ulation synthesized from N = 5 harmonics. The amplitudes of the
spectral components are shown by red (positive amplitudes) and blue
(negative amplitudes) bars. Their maxima are linked by black solid
lines for visualization.

for n �= 0 and
∫ T/2
−T/2 ϕ(t )dt = 0 for n = 0, give the frequency

content of ϕ(t ) for the limited number N of the harmonics,
i.e.,

ϕN (t ) = 2
N∑

n=1

(−1)n+1 sin(n�t )

n
, (4)

where N defines the highest frequency N� of the Fourier con-
tent of the synthesized periodic phase evolution. An example
of ϕN (t ) with N = 5 is shown in Fig. 1 by the red solid line. It
is interesting to notice that the modulation index of the main
spectral component with n = 1 is 2, while together with the
other four components the maximum phase shift is π , which
can be produced by the half-wave voltage Vπ applied to the
EOM.

Fourier transform

1

T

∫ T/2

−T/2
eiϕN (t )−in�t dt = en(N ) (5)

allows one to find the Fourier content of the field EEO(t ) =
E (t )eiϕN (t ) transmitted through the EOM, which can be
expressed as

EEO(t ) = E0e−iωr t+ikz
n=∞∑

n=−∞
en(N )ein�t . (6)

The amplitudes of the spectral components en(N ) are shown in
Fig. 2. The component with n = 1 has the largest amplitude.
For example, for N = 5 this amplitude is e1(5) = 0.879.
With increase of N , this amplitude tends to 1, i.e., e1(10) =
0.936 for N = 10 and e1(50) = 0.987 for N = 50. Numerical
analysis shows that e1(N ) can be approximated as e1(N ) ≈
1 − 1.33/(2N + 1).

The satellites of the component with n = 1 have smaller
amplitudes, and their signs change such that the nearest
components to the main one, which we denote as nm = 1, are
positive (nm ± 1), the next pair (nm ± 2) is negative, then the
next amplitudes with numbers nm ± 3 are positive, etc., until
nm ± N (see Fig. 2). The amplitudes of the components in
each pair are not equal, i.e., e0(5) = 0.102 and e2(5) = 0.111
for the nearest pair and e−1(5) = −0.085 and e3(5) = −0.105

for the next pair. With increase of N , the absolute values of
the amplitudes of the satellites decrease, while the number of
satellites with noticeable value of the amplitudes increases,
resulting in the spectrum broadening of the field. In addition,
the amplitudes of the pairs with numbers nm ± 1 and nm ± 2
tend to be equal for large N , i.e., e2(50) = e0(50) = 0.013 and
e3(50) = e−1(50) = −0.013. This tendency is almost con-
served for the satellites with large numbers. For example, we
have e10(50) = e12(50) = 0.012 and e−8(50) = e−10(50) =
0.011.

III. FREQUENCY FILTERING OF THE
PHASE-MODULATED FIELD I

If we selectively remove the main component nm of the
phase-modulated field without change of all other spectral
components, we expect that the remaining 2N components
will phase and rephase with the period T . To explain this point
we just consider, for example, the interference of only the two
nearest spectral pairs of the main component,

Et p(t ) = E (t )[e−1(N )e−i�t + e0(N )

+ e2(N )e2i�t + e3(N )e3i�t ], (7)

and assume that e0(N ) = e2(N ) = −e−1(N ) = −e3(N ) = a,
which is the case when N = 50 and a = 0.013. Then, Eq. (7)
can be expressed as

Et p(t ) = 2aE (t )ei�t (cos �t − cos 2�t ). (8)

This equation shows that when �t = 2kπ the amplitude
Et p(t ) is zero because of destructive interference of the spec-
tral pair e0(N ) and e2(N ) with the pair e−1(N ) and e3(N ).
When �t = (2k + 1)π the amplitude Et p(t ) is equal to −4aE0

due to constructive interference of the spectral pairs. Here, k
is an integer.

It should be noted that the amplitudes of the harmonics
(nm + n)� and (nm − n)�, produced by the sawtooth phase
modulation, have always the same sign for n � N . For n > N
their signs become opposite (see Fig. 2). Therefore, only 2N
spectral components interfere destructively or constructively
depending on the value of �t .

Analysis of the interference of all the pairs of the fre-
quency comb, which is described by Eq. (6) with the removed
main component nm, is quite complicated. Essential simpli-
fication is achieved if one employs the method proposed in
Refs. [16,17]. It is suggested to express the filtered comb as

E f (t ) = E (t )

(
n=∞∑

n=−∞
en(N )ein�t − enm (N )einm�t

)
(9)

or

E f (t ) = E (t )[eiϕN (t ) − enm (N )einm�t ]. (10)

Then, the intensity of the filtered field I f (t ) = |E f (t )|2 can be
presented as

I f (t ) = I0
{
1 − 2enm (N ) cos[nm�t − ϕN (t )] + e2

nm
(N )

}
,

(11)
where I0 = E2

0 . According to this expression the evolution of
the phase ψ (t ) = nm�t − ϕN (t ) fully defines the interference
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FIG. 3. (a) Time evolution of the phase ψ (t ) = nm�t − ϕN (t ),
which specifies the interference of the comb with the scattered field
Esc(t ). (b) Time dependence of the intensity of the pulses normalized
to I0. Solid red lines correspond to the sawtooth phase modulation
with N = 10, and blue dots correspond to N = 5.

of the spectral pairs, mentioned above. Formally, this interfer-
ence can be considered as an interference of the whole comb,
EEO(t ), with the removed component the phase of which is
changed by π , i.e., with the field Esc(t ) = −enm (N )E (t )einm�t .
In the case of atomic or molecular filters, the field Esc(t ) has
a physical meaning. This field is coherently scattered in the
forward direction by atoms the resonant frequency of which
is ωr − � [16,17,25,26].

The scattered field Esc(t ) is in phase with the field EEO(t )
when ψ (t ) = (2k + 1)π , where k is an integer. Constructive
interference of these fields produces a pulse with intensity
Imax = I0[1 + enc (N )]2. When ψ (t ) = 2kπ , destructive inter-
ference of the fields results in the drop of intensity to the
level Imin = I0[1 − enm (N )]2. Substantial contrast between the
pulse maximum and the pedestal is achieved if enm (N ) −→ 1.
For example, for the sawtooth phase modulation, synthesized
from five harmonics, we have e1(5) = 0.879, which gives
Imax = 3.53I0 and Imin = 0.015I0. Thus, for N = 5, there is
a 23.7-dB contrast ratio between the pedestal and the pulse
maximum. For N = 10 and 50, the contrast ratios are 30 and
43.5 dB, respectively.

Time evolution of the phase difference ψ (t ) of the comb
EEO(t ) and coherently scattered field Esc(t ) is shown in
Fig. 3(a) for N = 5 and 10. In time intervals (k + 1/2)T <

t < (k + 3/2)T , the phase difference ψ (t ) is close to 2π (k +
1), which results in destructive interference of the fields. Here
k is an integer. On the borders of these time intervals the phase
difference ψ (t ) jumps from 2π (k + 1) to 2π (k + 2) crossing
the value 2π (k + 3/2). At the crossing when ψ (t ) = 2π (k +
3/2), the pulse is formed due to constructive interference of
the fields [see Fig. 3(b)]. The larger the number of harmonics
N , the faster phase ψ (t ) crosses the value 2π (k + 3/2) and the
shorter the pulse that is formed. The slope of the phase change
at the crossing point, which takes place at tk = (k + 3/2)T ,
is equal to ∂ψ (t )/∂t |tk = (2N + 1)�. Thus, the rate of the

FIG. 4. Time evolution of the phase ψ (t ) near one of the crossing
points, i.e., at tk with k = −1, is shown by the red solid line. Its
approximation by linear time dependence is shown by blue dots
(see the text for details). The number of harmonics constituting the
sawtooth phase modulation is N = 5 (a) and 10 (b).

crossing point is proportional to the modulation frequency
� and the number of harmonics N constituting the sawtooth
phase modulation.

The phase rise at the crossing point tk can be approximated
as a linear function ψ (t ) ≈ �tk + (2N + 1)�(t − tk ) with the
slope ∂ψ (t )/∂t |tk = (2N + 1)�. This function fits well with
the evolution of the phase ψ (t ) around the crossing points
(see Fig. 4, where the t−1 crossing is shown). In the case k =
−1, shown in the figure, the linear approximation is reduced
to ψ (t ) ≈ (2N + 1)�t − 2πN . It is predicted that at t−1 =
T/2 we have �t−1 = π and ψ (t−1) = π . Then, constructive
interference produces a field with maximum intensity Imax =
I0[1 + enm (N )]2, which is Imax = 4I0 if enm (N ) −→ 1. Ne-
glecting the pedestal Imin = I0[1 − enm (N )]2, one can roughly
estimate from Fig. 4 that intensity of the pulse drops to its
half value Imax/2 when t = t−1 ± thalf where thalf satisfies
the relation (2N + 1)�thalf = π/2. At times t = t−1 − thalf

and t−1 + thalf the phase ψ (t ) takes the values π/2 and
3π/2, respectively. Intensity of the pulse drops two times at
these moments since cos ψ (t ) in Eq. (11) is zero. Thus, the
full width at half maximum (FWHM) of the pulse can be
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estimated as 2thalf = T/(4N + 2), i.e., it is (4N + 2) times
shorter than the period of the phase modulation. Taking into
account that enc (N ) is slightly smaller than 1, we numerically
found that thalf satisfies slightly a different relation, which is
(2N + 1)�thalf = π/1.923. It does not deviate significantly
from our rough estimation.

IV. COMPARISON OF THE SAWTOOTH PHASE
MODULATION I WITH HARMONIC MODULATION

Harmonic phase modulation ϕh(t ) = M sin �t , where M is
the modulation index, creates a frequency comb:

EEO(t ) = E (t )
+∞∑

n=−∞
Jn(M )ein�t , (12)

where Jn(M ) is the Bessel function of the nth order. The
amplitudes of the harmonics +n� and −n� have the same
sign if n is even, and they have opposite signs if n is odd.

It is well known that any periodic phase modulation is inca-
pable to produce periodic intensity oscillation. This statement
simply follows from the relation E (t )eiφ(t )E∗(t )e−iφ(t ) = I0,
where φ(t ) is an arbitrarily time varying phase. In the case
of harmonic phase modulation, one can calculate directly the
product

∑n=+∞
n=−∞

∑k=+∞
k=−∞ Jn(M )Jk (M )ei(n−k)�t and find that it

equals 1 and does not contain harmonic oscillation [see, for
example, Eqs. (11)–(15) in Ref. [24]]. This is because of a
particular balance between the amplitudes and phases of the
harmonics. It was shown in Ref. [24] that any changes (even
small) in the amplitudes or phases of the spectral components
in Eq. (12) result in intensity oscillations. This effect was
proposed to use for high-resolution spectroscopy in Ref. [24].

In Refs. [16,17] it was shown that removal of the nth
component of the comb, Eq. (12), creates pronounced pulses
if the amplitude of this component, ∼|Jn(M )|, has a global
maximum. For n = 1 this takes place when M = 1.8 and
J1(1.8) = 0.582. Pulses with maximum intensity Imax = 2.5I0

are formed when �t = (2k + 1)π , where k is an integer.
Minimum intensity of the radiation field, Imin = 0.175I0, takes
place at the centers of the dark windows when �t = 2kπ .
Therefore, the contrast ratio between the pulse maximum
and the pedestal is 11.5 dB, which is 2 (2.6) times smaller
compared with the pulses created by the filtering of the
sawtooth phase-modulated field with N = 5 (10). Duration
of the pulses is equal to a quarter of the phase modulation
period T , while for the sawtooth phase-modulated field with
N = 5 (10) this duration is 22 (42) times shorter than T .
Thus, substantial pulse shortening is obvious in the case of
the sawtooth phase-modulated field.

If, in the case of the harmonic phase modulation, one
removes the nth spectral component with n > 1, then the cw
field is transformed into bunches of pulses separated by the
dark windows. The number of pulses in the bunch is equal
to n. Duration of the individual pulse in the bunch is 4n times
shorter than T . For example, for n = 3 pulse duration is T/12.
The spectral component with n = 3 has global maximum
J3(M ) = 0.434 when M = 4.2. Thus, pulse shortening takes
place when the modulation index is properly increased. At the
same time, the contrast ratio Imax/Imin decreases with increase

of n. For example, for n = 3, this contrast drops down to 8 dB
since Imax decreases to 2I0 and Imin increases to 0.32I0.

Moderate performance of the harmonic phase-modulated
field originates from the incomplete phasing of the spectral
components after removal of the selected component of the
comb. For example, for n = 1, the intensity of the filtered
field is

I f (t ) = I0

∣∣∣∣∣
+∞∑
k=1

J1−k (1.8)e−ik�t + J1+k (1.8)eik�t

∣∣∣∣∣
2

, (13)

the main components of which are 0.34e−i�t + 0.306ei�t ,
−0.582e−2i�t + 0.1e2i�t , 0.306e−3i�t + 0.023e3i�t , and
−0.1e−4i�t + 0.004e4i�t . Large difference of the amplitudes
of the interfering components, for example, −0.582 and 0.1
for k = 2, does not give appreciable pulse shortening in spite
of the large number of the interfering components (four pairs
with noticeable amplitudes for n = 1).

Thus, filtering of the sawtooth phase-modulated cw field
produces shorter pulses with larger contrast between the pulse
maximum and the pedestal than filtering of the harmonic
phase-modulated field. Frequency synthesis of many har-
monics is a routine method now in modern electronics. For
example, a cw synthesized microwave generator is capable to
produce a field with a frequency of several GHz and spectral
width below several Hz [27]. One can also find examples of
experimental implementation of the sawtooth wave genera-
tion, for example, in Refs. [22,23].

The method of LCM control of phases of the comb com-
ponents, created by the harmonic phase modulation of the
cw, shows even better performance. However, LCM technique
suffers from fiber-to-fiber insertion loss, circulator loss, focus-
ing back into the fiber mode after the pulse shaper, etc., which
result in 11.6-dB total loss (see Ref. [21]).

LCM is capable to change selectively the phases of the
spectral components of the comb, Eq. (12). Thorough the-
oretical analysis of phasing of spectral components of the
harmonic phase-modulated field by LCM is not yet avail-
able. Below, to explain briefly the physics of this technique
we consider, as an example, the case when M = 5. Among
the components with noticeable amplitudes, five are neg-
ative, i.e., their phases are π shifted with respect to oth-
ers. Their amplitudes are proportional to J−7(5) = −0.053,
J−5(5) = −0.261, J−3(5) = −0.365, J0(5) = −0.178, and
J1(5) = −0.328, where the numbers of the components co-
incide with the orders of the corresponding Bessel functions.
If the phases of all the necessary components are properly
adjusted, the modified field Emod(t ) can be expressed as
follows:

Emod(t ) = E (t )

[
|J0(M )| + 2

+∞∑
n=1

|Jn(M )| cos n�t

]
. (14)

The spectral components of the modified frequency comb are
phased when �t = 2kπ , where k is an integer. Dependence
of the maximum intensity of the pulses Imax on the modu-
lation index M is shown in Fig. 5(a). This dependence can
be roughly approximated as Imax = (2M + 1)I0. When �t =
(2k + 1)π , the spectral components interfere destructively
and the radiation intensity drops to the minimum value Imin.
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FIG. 5. (a) Dependence of the maximum intensity of the pulse
Imax on the modulation index is shown by the red solid line and
its approximation is shown by blue dots. (b) Dependence of the
minimum intensity in the dark windows on M.

Its dependence on M is shown in Fig. 5(b) demonstrating
noticeable oscillations. From this figure it follows that to keep
large contrast between the pulse maximum and the pedestal
special care is needed when choosing an appropriate value of
the modulation index. For example, for M = 5 the contrast
ratio is only 14 dB, which is even smaller than that which
can be achieved by the sawtooth phase modulated field with
N = 5.

Numerical calculation of the pulse durations for M equal to
5, 10, and 15 shows that duration of the pulses (FWHM) can
be roughly approximated as T/πM. For example, for M = 5
pulse duration is nearly 15 times shorter than the modulation
period. This result is comparable with the performance of the
sawtooth phase-modulated field with N = 5.

Interference of the comb with the scattered field, proposed
to describe pulse shaping in Refs. [16,17], is also applicable
for the description of LCM controlling the harmonic phase-
modulated field. This is because in a real experiment the
phases of only a limited number of harmonics are modified.
Therefore, instead of Eq. (14), one has to use the equation

Emod(t ) = E (t )[eiϕh (t ) + ecomp], (15)

where ecomp is the sum of the modified components the
amplitudes En of which are changed as −2En, i.e., their am-
plitudes are doubled and phases are shifted by π . This formal
procedure results in the appropriate change of phases of the
selected spectral components. In the case of the programmable
filters [14], the field ecompE (t ) is virtual.

The core idea of the method is a consideration of the inter-
ference of the comb with a fictitious field or fields essentially

simplifying analysis. This is very similar to the method of
images in electrostatics, which helps to find the electric field
created by the real charge on the conducting surface. The
problem is essentially simplified by introducing the image
charge with opposite sign located mirrorlike symmetrically
in the bulk with respect to the conducting surface and thus
simulating the conducting medium.

V. SAWTOOTH PHASE MODULATION II

The sawtooth phase modulation can be also realized by
an EOM fed by a sawtooth voltage, which is produced by
relaxation oscillators. In the simplest type of this oscillator
the energy storage capacitor is charged slowly but discharged
rapidly by a short circuit through the switching device. Then,
the ramp voltage can be described by the equation

UR(t ) = U0(1 − e−t/TR ) + Umin, (16)

where U0 is a maximum charge voltage, TR is a rise time, and
Umin is an initial voltage, from which the ramp starts. The
voltage drop is described by

UD(t ) = Umaxe−t/TD , (17)

where Umax is a voltage when the discharge starts and TD is a
drop time.

A periodic phase modulation, produced by such a sawtooth
voltage, can be expressed as follows:

ϕRO(t ) = C
+∞∑
k=0

φ[t − k(TR + TD)], (18)

where

φ(t ) = φR(t ) + φD(t ), (19)

φR(t ) = (1 − e−t/TR )[θ (t ) − θ (t − TR)], (20)

φD(t ) = [e−(t−TR )/TD − e−1][θ (t − TR) − θ (t − TR − TD)].
(21)

Here, for simplicity, it is assumed that the rise and drop time
periods are equal to TR and TD, respectively, and the time inde-
pendent part of the phase is disregarded, resulting in the condi-
tion φ(0) = 0. The maximum value of the phase φ(t ) at t = TR

is taken equal to 2π , which gives C = 2π/(1 − e−t/TR ). The
period of this sawtooth-phase modulation is T = TR + TD.
Time evolution of the phase ϕRO(t ) is shown in Fig. 6. The
case when the rise and drop time periods are not equal to TR

and TD, respectively, will be considered separately.
Fourier transform

1

T

∫ T

0
eiϕRO (t )−in�t dt = cn (22)

allows one to find the Fourier content of the field ERO(t ) =
E (t )eiϕRO (t ), which is

ERO(t ) = E0e−iωr t+ikz
n=∞∑

n=−∞
cnein�t , (23)

where � = 2π/T .
Following the derivation method presented in Sec. III, one

can obtain that removing the frequency component ωr − �,
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FIG. 6. Time evolution of the phase ϕRO(t ). The time scale is
normalized to T = TR + TD. The parameters of the sawtooth phase
modulation are related as TD = TR/10. The black horizontal bar
corresponds to 2π .

the amplitude of which is c1E0, modifies the phase-modulated
field as

E f (t ) = E (t )(eiϕRO (t ) − c1ei�t ), (24)

the intensity of which is

I f (t ) = I0
[
1 − 2a1 cos ψRO(t ) + a2

1

]
, (25)

where

ψRO(t ) = �t + ξ1 − ϕRO(t ). (26)

Here a1 and ξ1 are the modulus and argument (phase) of the
complex number c1, i.e., c1 = a1 exp(iξ1).

An example of the formation of pulses is shown in Fig. 7(a)
by the blue dotted line for the case when the phase drop
is ten times faster than the phase rise, i.e., for TD = TR/10.
In this case a1 = 0.892 and ξ1 = 0.808 ≈ π/3.9. Absolute
value a1 of c1 is close to unity. Therefore the peak pulse
intensity is 3.58 times larger than the intensity of the cw
field I0. Evolution of the phase ψRO(t ), which governs the
interference of the incident field, EEO(t ), with scattered field,
Esc(t ) = −c1E (t )ei�t , is shown in Fig. 7(a) by the red solid
line. Each time when ψRO(t ) crosses the value (2k + 1)π , the
pulse is formed.

A zoom in on the area of the pulse formation around t = T
is shown in Fig. 7(b). Numerical analysis gives an estimation
of the pulse duration tp (full width at half maximum), which
is 0.041TR for TD = TR/10, i.e., 0.037T . Thus, during a short
time of the phase drop TD, the pulse is mainly formed within
the time interval 0.41TD, which is slightly less than a half
of TD.

Slight asymmetry of the pulses and small kinks at their
right shoulders originate from two factors. The first comes
from the unbalanced competition of the phases �t and ϕRO(t )
in the function ψRO(t ) and the second results from the non-
linear time dependence of the phase ϕRO(t ) in the rising and
dropping stages.

Unbalanced competition of the phases follows from the
definition of ϕRO(t ). The phase �t equals 2π at t = T , while
ϕRO(t ) reaches this value earlier at time t = TR. Nonlinear
time dependence of ϕRO(t ) in the rising and dropping stages
produces nonzero phase ξ1 ≈ π/3.9 of the main spectral
component. Both factors result in the rise of the phase ψRO(t )
beyond 2πk at the end of the phase rising stage producing a
kink in the pulse intensity at t = kT when the phase ψRO(t )

FIG. 7. (a) Time evolution of the phase ψRO(t ) (in units of π ) is
shown by the red solid line. The sequence of pulses, generated by
the frequency filtering, is shown by the blue dotted line. The field
intensity is normalized to I0. The time scale is in units of the period
T . Both plots correspond to the case when TD = TR/10. (b) Zoom
in on the area of the pulse formation around t = T . In both plots,
horizontal black thin lines indicate the levels corresponding to the
phase values equal to (2k + 1)π .

starts to reduce due to the unbalanced competition of phases
�t and ϕRO(t ) [see Fig. 7(b)].

To reduce the contribution of the first factor, one can
shorten duration of the drop of phase ϕRO(t ). An example
of the pulse formation when drop time is 100 times shorter
than the rise time (TD = TR/100) is shown in Fig. 8. Reduction
of the amplitude of the kink is obvious. Also, the pulse shape
looks more symmetric. It should be noted that an order-
of-magnitude reduction of TD leads to a nearly 1.5 factor
reduction of phase ξ1, i.e., ξ1 = 0.548.

To exclude directly the contribution of the first factor, one
can reduce the coefficient C in Eq. (18) by a factor TR/T and
keep the same ratio between TR and TD as in Fig. 7. Compar-
ison of pulses produced by the phase modulation ϕRO(t ) with
C (red solid line) and reduced coefficient C (dotted blue line)
is shown in Fig. 9. The improvement in the pulse shape is
obvious.

To avoid the influence of both factors, we consider the
case when durations of the phase rising and dropping stages
are reduced by an order of magnitude. Then, time evolution
in both stages becomes almost linear in time. Maximum
amplitude of the phase excursion is also properly reduced to
exclude unbalanced competition of the phases �t and ϕRO(t ).
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FIG. 8. (a) Sequence of pulses, generated by the frequency fil-
tering, when TD = TR/100. The time scale is in units of the duration
of the phase rising stage, TR. (b) Zoom in on the area of the pulse
formation around t = TR.

Such a modified phase is described by the equation

ϕsh(t ) = Csh

+∞∑
k=0

φsh

[
t − k

(
TR + TD

10

)]
, (27)

where

φsh(t ) = φRs(t ) + φDs(t ), (28)

φRs(t ) = (1 − e−t/TR )

[
θ (t ) − θ

(
t − TR

10

)]
, (29)

φDs(t ) = [
e−(t− TR

10 )/TD − e−1
]

×
[
θ

(
t − TR

10

)
− θ

(
t− TR + TD

10

)]
, (30)

and Csh = 2πTR/[(1 − e−0.1)(TR + TD)] is reduced by a factor
of TR/(TR + TD) excluding unbalanced competition of phases.

FIG. 9. Comparison of pulses produced by the phase modulation
ϕRO(t ) with C (red solid line) and reduced coefficient C (dotted blue
line). Durations of the phase rising and dropping stages satisfy the
relation TD = TR/10.

FIG. 10. (a) Phase ϕsh(t ) evolution in time. (b) Evolution of
phase ψsh(t ) (blue dotted line) and pulse sequence produced by the
filtering of the phase-modulated field (red solid line).

The period of phase modulation is T = (TR + TD)/10 in this
case. Phase modulation and formation of pulses are shown in
Fig. 10, demonstrating perfect pulses and desirable evolution
of phase ψsh(t ), which is

ψsh(t ) = �t + ξ1s − ϕsh(t ). (31)

Here, ξ1s is calculated with the help of Eq. (22), where ϕRO(t )
is substituted by ϕsh(t ). As a result of shortening of the phase
rise and drop periods, duration of pulses shortens to TD/20.

It can be shown that in contrast to the considered case
proportional lengthening of the durations of the phase rising
and dropping stages with respect to TR and TD deteriorates the
shape of the generated pulses.

Two methods of the sawtooth modulation of the field phase
(i) by additive synthesis of many harmonics and (ii) by charge
and discharge processes allow one to generate short pulses.
Duration of the pulses is limited by the highest number of the
harmonic in the method (i) (see Sec. III), and its advantage is
a clean spectrum defined by the modulation frequency � and
spectral width of the fundamental frequency. In the method (ii)
duration of the pulses is defined by the rate of the discharge
process. To my best knowledge the Gunn diode and IMPATT
diode are capable to produce discharge with the rate up to
1 THz. Thus, quite short pulses could be produced by the
method (ii) (see Refs. [28,29]).

VI. FREQUENCY FILTERING METHODS

Removal of the selected spectral component of the fre-
quency comb with frequency ωs can be implemented by
resonant filters with a single absorption line L(ω − ω f ) cen-
tered at frequency ω f . The width of this line, �, has to be
much smaller than the distance � between the frequency
components of the comb, i.e., � � �.
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Details of the application of resonant filters are discussed
in Ref. [17]. Below, only the list of conditions, restrictions,
and results is given.

For the filter with a homogeneously broadened absorption
line, the amplitude of the selected line, which is tuned in ex-
act resonance (ωs = ω f ), decreases as E f s = exp (−d/2)Es,
where d = αBl is the optical thickness of the filter and αB

is Beer’s law absorption coefficient. The filtering becomes
effective if d/2 	 1. However, there is a limit set to the
optical thickness of the filter by the condition that the spectral
components ωs ± � neighboring the selected component ωs

must be unaffected. This condition is satisfied, if d � 4�/�,
where � is a width at half maximum of the Lorentzian
absorption line of a single particle in the absorber. If only
the selected frequency component is affected by the resonant
filter, then Eq. (10), describing in Sec. III the filtered comb in
the ideal case of 100% removal and filtering, is modified as

E f (t ) = E (t )
[
eiϕN (t ) − enm (N )(1 − e−d/2)einm�t

]
. (32)

In a similar way, Eq. (24) in Sec. V is modified in the case of
the resonant filter.

If the absorption line in the filter is Doppler broadened,
then the amplitude of the component filtered by the ab-
sorber decreases as E f s = exp[−dFD(0)/2]Es, where FD(0) =√

π ln 2�/ωD and ωD is the Doppler width, which is
supposed to be much larger than �, for example, �/ωD =
10−2. It seems that the neighboring components are not af-
fected if � 	 ωD. However, because for �/ωD = 10−2

and � > 1.8ωD the Voigt profile, which is the convolution
of the Lorentzian with the Gaussian describing the Doppler
broadening, has Lorentzian wings [30], their influence on the
spectral neighbors of the filtered component is negligible if
d � 4�/�. Thus, effective filtering takes place if � 	 ωD

and optical thickness satisfies the condition 1.35ωD/� �
d � 4�/�.

The filtering of the selected spectral component can be also
implemented by the method based on a spectral line-by-line
pulse shaper (see, for example, Ref. [21]). A many-pixel LCM
array allows one in this technique to control both amplitude
and phase of individual spectral lines of the field with a comb
spectrum. The LCM can be tuned such that only the selected
spectral line of the comb is suppressed.

An effective and flexible method of creating nanosecond
pulses can be implemented by filtering of the frequency comb
through laser-cooled atoms with a modest optical depth. For
example, a D1-line transition (λ = 795 nm) of 85Rb atoms
in a two-dimensional magneto-optical trap has an almost
homogeneous width � ≈ 6 MHz (see, for example, Ref. [31]).
Therefore, with the modulation frequency of EOM � =
30 MHZ one can generate 1.5-ns pulses for the sawtooth phase
modulation I with N = 5 and 1.24 ns for the sawtooth phase
modulation II with TD = TR/10 by the filtering through the
cloud of laser-cooled 85Rb atoms. For N = 10, pulse duration
shortens to 800 ps. If the modulation frequency is increased
to � = 300 MHZ, then the duration of the generated pulses
is shortened to 150 ps for N = 5 and to 80 ps for N = 10.
For the sawtooth phase modulation II with TD = TR/10 pulses
shorten to 124 ps.

For a frequency filter one can use a vapor of 87Rb atoms.
Assume that the selected frequency of the comb is tuned in
resonance with the S1/2, F = 1 → P1/2, F = 2 transition of
the D1 line of natural Rb (λ = 795 nm). Below, we take the
parameters of the experiment [32] where spectral properties
of the electromagnetically induced transparency were studied
in this vapor. The natural linewidth of the Rb D1 line is � =
5.4 MHz and Doppler broadening is ωD = 500 MHz. Se-
lecting the phase modulation frequency � = 10 GHz, which
is 20 times larger than the Doppler width ωD = 500 MHz,
we satisfy the condition � 	 ωD. According to the es-
timates given in Ref. [17] for the Rb cell with the length
l = 5 cm and atomic density N1 = 6 × 1010 cm−3, the mod-
ification of the spectral components neighboring the selected
one is almost negligible. For this atomic density the effective
optical depth of the cell at the selected line center is dFD(0) =
14.4 while d = 905. With these values of the parameters �,
ωD, �, and d , the condition 1.35ωD/� � d � 4�/� is
easily satisfied.

For the modulation frequency � = 10 GHz, filtering
through the atomic vapor or removing the selected spectral
component with the help of the LCM [21] produces much
shorter pulses. For example, for the sawtooth phase modu-
lation I with N = 5 and sawtooth phase modulation II with
TD = TR/10 one can generate 4.5- and 3.7-ps pulses, respec-
tively. For the sawtooth phase modulation I consisting of ten
harmonics (N = 10), duration of the pulses shortens to 2.4 ps.
If the number of the harmonics increases to N = 50, pulse
duration shortens to 495 fs.

For a selective filter one can use organic molecules doped
in a polymer matrix. It is experimentally possible to burn a
broad spectral hole in their spectrum with a sharp absorption
peak sitting at its center. Such a structure is persistent at liquid
helium temperature. The frequency resolution of the persistent
spectral hole burning is limited by the width of the homoge-
neous zero-phonon line of the chromophore molecules, which
typically has a width of 10−2–10−4 cm−1 or less [33,34]. The
holes could be burned in a planar waveguide geometry where
a thin polymer film with doped molecules is superimposed
as a cover layer on a planar glass waveguide [35,36]. Then,
illumination in the transverse direction with low absorption
creates a hole, while a weak probing field propagates in a
longitudinal wave guiding direction with high absorption. For
example, such a waveguide with a spectral hole acting as
subgigahertz narrow-band filter was proposed to observe slow
light phenomena in Refs. [37,38].

VII. CONCLUSION

The methods of pulse shaping with the help of harmonic
phase modulation and subsequent removal of the selected
spectral component (i) by a resonant filter or (ii) by control of
phases of several spectral components have many advantages.
Because of small losses and an easy method to group pulses,
the method (i) can be used to shape single-photon wave
packets, creating time-bin qubits and qutrits. However, pulse
duration in the method (i) is limited since by elevating the
modulation index sufficiently for pulse shortening the contrast
between the pulse amplitude and the pedestal decreases. By
the method (ii) one can produce very short pulses with a good
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amplitude-pedestal contrast. However, large losses inherent
in this method do not allow one to work with single-photon
fields.

Pulse shaping by the removal of the selected spectral com-
ponent of the sawtooth phase-modulated cw field works with
the fixed modulation index of moderate value. Short pulses
are generated during fast dropping of the phase. The faster
this drop is, the shorter the pulse is formed. Its duration can
be made an order or two orders of magnitude shorter than the
phase modulation period. The contrast between the pedestal
and the pulse maximum increases with increasing of the rate
of the phase drop. Frequency synthesis of many harmonics
or charge and fast discharge can be used to produce sawtooth

wave forms, which feed EOMs, producing a sawtooth phase-
modulated field. Both methods of producing sawtooth wave
forms are easily available in modern electronics. Therefore,
the method proposed in this paper is applicable to shape
single-photon fields of short duration with low losses and
can compete with the method (ii) to shape pulses of classical
fields.
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