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МОДЕЛИ И МЕТОДЫ
МАССОВОГО ОБСЛУЖИВАНИЯ

ASYMPTOTIC ANALYSIS OF RETRIAL QUEUE M/GI/1
WITH IMPATIENT CALLS UNDER HEAVY LOAD CONDITION*

Ekaterina Fedorova
Tomsk State University, Tomsk, Russia

Retrial queueing systems are mathematical model of real systems, where
unserved calls perform repeated attempts to get a service after a random time.
The main results and comprehensive description of retrial queues are
contained in the books [1, 2].

In this paper, we use the asymptotic analysis method, that gives analytical
result for different types of queueing systems and networks, in particular
with non Poisson arrivals [3, 4]. Here we expand results obtained previously
for retrial queues without loss (patience time equals infinity), where the
gamma form of the probability distribution of number of calls in the orbit
under heavy load limit condition was proved [5, 6].

Mathematical model

Let us consider a retrial queueing system of M/GI/1 type with impatient
calls. The structure of the model is presented in Figure 1.

The input process is Poisson with a rate λ. There is one server with the
service time distribution function B(x). If a call arrives when the server is
free, the call occupies it for the service. Otherwise, the call goes to the orbit,
where it stays during a random time distributed exponentially with a rate σ.
After the delay, the call makes an attempt to reach the server again. If it is
free, the call occupies it, otherwise the call instantly returns back to the orbit.
From the orbit calls can leave the system after a random time distributed

                                                       
* The publication was financially supported by RFBR according to the research project

No.16-31-00292mol-a.
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exponentially with dynamical rate α/i, where i is a number of calls in the
orbit at this moment.

α/i
α/i

α/i

λ
B x( )

Fig. 1. Retrial queue M/GI/1
with impatient calls

Denote the random process that describes the number of calls in the orbit
as i(t), the random process of remaining service time as z(t), and the random
process that defines server states as k(t) = {0, if the server is free; 1, if the
server is busy}.

The problem is to find the probability distribution of the number of calls
in the orbit. The process i(t) is not Markovian, therefore we consider the
multidimensional process {k(t), i(t), z(t)}.

Denote the stationary probability distribution of the system states as
P(k, i, z) = P{k(t) = k, i(t) = i, z(t) < z}.

Considered process is Markovian, so the following system of
Kolmogorov equations for P(k, i, z) can be written:

1
0 0

1 1
1 0 0 1

1
0 0

1 1
1 1

0

(0,0)
(0) (1) 0,

(0, ) (0,0)
(0, ) (1) ( ) (0) ( ) (1, ) 0,

( ,0)
( ) ( ) ( 1) 0,   for 1,

( , ) ( ,0)
( ) ( , ) ( 1, )

   ( ) ( )( 1

P
P P

z
P z P

P z P B z P B z P z
z z

P i
i P i P i i

z
P i z P i

P i z P i z
z z

P i B z i

∂
− λ + α =

∂
∂ ∂

− − λ + σ + λ + α =
∂ ∂

∂
− λ + σ + α + α + = ≥

∂
∂ ∂

− − λ + α + λ − +
∂ ∂

λ + 0 1) ( 1) ( ) ( 1, ) 0.P i B z P i z

⎧
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪ σ ⋅ + + α + =⎩

(1)
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Asymptotic analysis under a heavy load condition

We introduce partial characteristic functions:

0 0( ) ( )jui

i
H u e P i= ∑ , 1 1( , ) ( , )jui

i
H u z e P i z= ∑ , (2)

where j is an imaginary unit.
Substituting functions (2) into Eq. (1), the following equation system is

obtained:

01
0 0

0

01 1

0 1 1

1

( )( ,0)
( ) ( ) ( )

(0)( 1),
( )( , ) ( ,0)

( )

( ) ( ) ( 1) ( , ) ( 1) ( , )

(0, )( 1),

ju

ju

ju

ju ju

ju

H uH u
b b H u j b be H u

z u
bP e

H uH u z H u
b b e j b B z

z z u
H u B z e H u z b e H u z

bP z e

−

−

−

−

−

∂∂⎧ − ρ + α + σ + α =⎪ ∂ ∂⎪
= α −⎪

⎪ ∂∂ ∂⎨ − − σ +
⎪ ∂ ∂ ∂
⎪

+ρ + ρ − + α − =⎪
⎪= α −⎩

(3)

where ρ = λb is the system load parameter, b is a mean of the service time.
System (3) is solved by the asymptotic analysis method under limit

condition of a heavy load ρ → S, where S is the system throughput (the
supremum of the load value when the stationary regime exists for the retrial
queue).

Theorem. Let i(t) be a number of calls in the orbit in the retrial queue
М/GI/1 with impatient calls in the stationary regime, then

( ) ( )limM 1
( )

s
jw S i t

S

jwe
S

−
−ρ

ρ→

⎛ ⎞= −⎜ ⎟β − ρ⎝ ⎠
,

where 
2

2
2

2
2 ( 1)

b
b b S

β =
+ −

, 1s
b

β
= +

σ
, b is the mean of the service time, b2

is the second moment of the service time and S = 1+αb is the system
throughput.

To prove the theorem, we introduce the following notations for ε→0:
ρ εS= − , εu w= , ( ) ( )0 0ε ,εH u F w= , ( ) ( )1 1, ,ε,H u z F w z= ,

0 0επP = , ( )1 1επP z= . (4)
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Substituting notations (4) into system (3), we obtain

01
0

0 0

01 1

0 1

1

( , )( ,0, )
( ) ( , )

 ( , ) ( 1),
( , )( , , ) ( ,0, )

( )

( ) ( , ) ( ) ( )( 1) ( , , )  
+ ( 1) ( , , )

j w j w

j w

j w

j w

F wF w
b j b S b F w

z w
be F w b e

F wF w z F w
b b e j b B z

z z w
S F w B z S e F w z
b e F w z b

− ε − ε

− ε

ε

− ε

∂ ε∂ ε
+ σ − − ε + α ε ε +

∂ ∂
+ α ε ε =α επ −

∂ ε∂ ε ∂ ε
− − σ +

∂ ∂ ∂
+ − ε ε ε + − ε − ε +

α − ε =α επ1( )( 1).j wz e− ε

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪ −⎩

 (5)

Denoting limits 
0

( , ) lim ( , , )k kF w z F w z
ε→

= ε , 1 1( ) lim ( , )
z

F w F w z
→∞

=  and

using expansions
2( , , ) ( , ) ( , ) ( )k k kF w z F w z f w z Oε = + ε ⋅ + ε , (6)

the following system of asymptotic equations can be derived from system (5):

1
0

1 1

1
0 0

1 1
0

0 0 1

( ,0)
'( ),

( , ) ( ,0)
(1 ( )) 0,

( ,0)
( ) '( ) 0,

( , ) ( ,0)
'( ) ( )

  '( ) ( ) ( ) ( )  ( ) ( , ) 0.

F w
b j bF w

z
F w z F w

b b B z
z z

f w
b SF w j bf w

z
f w z f w

b b jwj bF w B z
z z

j bf w B z SF w B z S b jwF w z

∂⎧ = − σ⎪ ∂⎪ ∂ ∂⎪ − − =
⎪ ∂ ∂⎪ ∂⎨ − + σ =⎪ ∂
⎪ ∂ ∂⎪ − + σ −
⎪ ∂ ∂
⎪ σ + + − α =⎩

(7)

Then summing up Eq. (5), we obtain the following equation for z → ∞:

0
0 1 1 1 0

( , )
( , ) ( ) ( , ) ( , ) ( ).j wF w

j b b F w S e F w bF w b
w

ε∂ ε
− σ + α ε ε − −ε ε + α ε =α ε π + π

∂
Substitute expansions (6) and write equalities for members with equal

powers of ε:

0 1 1

0 0 1

1 1 1 0

'( ) ( ) ( ) 0,
'( ) ( ) (1 ) ( )

( ) ( ) ( ).

j bF w SF w bF w
j bf w bF w Sjw F w
Sf w bf w b

− σ − + α =⎧
⎪− σ + α + − −⎨
⎪− + α =α π + π⎩

(8)
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The asymptotic characteristic function of probability distribution of
number of calls in the orbit h(u) under the heavy load condition can be
presented as

( ρ) ( )
1 1( ) M ( ) (ε) ( ).jw S i th u e F w O F w−= = + ≈ (9)

So, it is necessary to obtain the function F1(w) from Eqs. (7), (8).
The derivation is performed in four stages.
Stage 1. Let the function F1(w, z) have the form

1( , ) ( ) ( )F w z A z w= ⋅ Φ . (10)

Thus F1(w) = Φ(w).
From the second equation of system (7), it is easy to show that

0

( ) '(0) (1 ( )) ,
z

A z A B x dx= −∫

where '(0) 1/A b= .
Stage 2. From the first equation of System (7), we have the following

expression:

0
1'( ) ( )j F w w
b

σ = − Φ . (11)

Substituting formulas (10), (11) into the first equation of system (8), the
value of the system throughput is obtained

S = 1 + αb. (12)
So, the stationary regime for this retrial queue exists, when ρ < 1 + αb or
λ < α + 1/b.

Stage 3. From the third equation of system (7), we have

1
0 0

( ,0)
'( ) ( ).

f w
j bf w b SF w

z
∂

σ = − +
∂

Perform some transformations in the fourth equation of system (7):

1
1

0 0

( ,0)
( , ) (1 ( )) ( ) ( ( ) ( )) .

z zf w jwf w z B x dx w A x B x dx
z b

∂
= − − Φ −

∂ ∫ ∫
Let us find the solution f1(w, z) in the form

1( , ) ( ) ( ).jwf w z w v z
b

= Φ
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Then we obtain

1
0

( ) ( ) '(0) ( ) ( ( ) ( )) ,jwf w jw w v w A x B x dx
b

∞

= Φ − Φ −∫ (13)

where 2
0

1( ( ) ( ))
2

A x B x dx b b
b

∞

− = −∫ .

Thus, on the one hand,

1 2
1( ) ( ) '(0) ( )
2

jwf w jw w v w b b
b b

⎛ ⎞= Φ − Φ −⎜ ⎟
⎝ ⎠

.

On the other hand,

1 1( ) ( , ) ( ) ( ).jwf w f w w v
b

= ∞ = Φ ∞

Comparing these expressions, it can obtained that

2
1'(0) ( )
2

bv v b b
b

− ∞ = − . (14)

Stage 4. Substitute formulas (11) – (14) into the last equation of system
(8):

0 2 1 0
1( ) ( ) (1 ) ( ) ( ) ( ).
2

jwb S F w Sjw w w b b b
b b

⎛ ⎞α − + − Φ + Φ − =α π + π⎜ ⎟
⎝ ⎠

Then we differentiate this equation. After some transformations, it is easy
to obtain the following equation

( )'( ) ( ) 0,sw jw j wΦ β − − Φ =
β

where

 
2

2
2

2
2 ( 1)

b
b b S

β =
+ −

, 1s
b

β
= +

σ
.

The solution of this equation has the form

( ) 1 .
sjww C

−
⎛ ⎞Φ = −⎜ ⎟β⎝ ⎠
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Turning back to expressions (10) and (9), we finally obtain the following
function:

( ) 1 ,
( )

sjuh u C
S

−
⎛ ⎞= −⎜ ⎟β − ρ⎝ ⎠

where C = 1 due to the normalization requirement, q.e.d.

Conclusions

In this regard, the mathematical model of the retrial queue M/GI/1 with
impatient calls (impatience time is distributed exponentially with dynamical
rate α / i,) is considered in the paper. For its studying, we propose the
asymptotic method under a heavy load condition. It is proved the theorem
about the gamma form of the asymptotic probability distribution of the
number of calls in the orbit. In addition, the expression for the system
throughput is derived.
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TOTAL CUSTOMERS’ CAPACITY
IN THE MULTI SERVER QUEUES*

Ekaterina Lisovskaya
Tomsk State University, Tomsk, Russia

In this paper we consider queueing system with N servers and unlimited
queue. Below we present a review of the work on the studies of resource
queuing systems or queuing systems with random capacity of customers.

In the paper [1] an efficient analytical model that evaluates the behavior
of the downlink LTE channel with CLA is presented. Since video traffic is
resource intensive, it is a challenging issue to stream video over low
bandwidth networks, whereas video communication over LTE becomes an
open research topic nowadays due to LTE’s high throughput capabilities.

The paper [2] considered a model of a multi-server queueing system with
losses caused by lack of resources necessary to service claims. A claim
accepted for servicing occupies a random amount of resources of several
types with given distribution functions. Random vectors that define the
requirements of claims for resources are independent of the processes of
customer arrivals and servicing, mutually independent, and identically
distributed. Under the assumptions of a Poisson arrival process and
exponential service times, we analytically find the joint distribution of the
number of customers in the system and the vector of amounts of resources
occupied by them. We show sample computations that illustrate an
application of the model to analyzing the characteristics of a
videoconferencing service in an LTE wireless network.

In the paper [3] authors consider queueing systems, in which customers
occupy some resources that are released after customer departure. Arriving
customers are lost if there are not enough free resources required for their
servicing. In such systems for each customer it is necessary to record vector
of occupied resources until its departure.

In the paper [4], multi-server M/M/n-type queueing system with a
bounded total volume and finite queue size is considered. An AQM

                                                       
* The publication was financially supported by RFBR according to the research project

No.16-31-00292mol-a.
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algorithm with the “accepting” function is being used to control the arrival
process of incoming packets. The stationary queue-size distribution and the
loss probability are derived. Numerical examples illustrating theoretical
results are attached as well.

The paper [5] investigated single server queueing systems with batch
Poisson arrivals and without demands losses under assumption that each
demand has some random capacity (generally, each demand is characterized
by l-dimensional indication vector). Service time of the demand arbitrary
depends on its capacity (indications). The Laplace – Stieltjes transform of
total capacities (random vector of sum of indications) of demands that were
served during a busy period of the system is determined.

Mathematical model

We consider queuing system (QS) M/GI/N/∞. The system arrival process
is distributed by Poisson law with rate λ. The system has N servers. Service
times on each server are i.i.d. with distribution function A(x). The arriving
customer occupies any free server or goes to the queue in case of all servers
are busy. Let each customer has some random capacity v > 0 with
distribution function G(y). Customers' capacities and service times are
mutually independent and do not dependent on the epochs of customers’
arrivals.

Denote by i(t) and V(t) the number of customers in the system at time t
and their total capacity, respectively.

Approximation of probability distribution
of the customers’ number in the system

Let P(i) = P{i(t) = i} is the stationary probability distribution of the
number of customers in the system. Denoted πi as an approximation of the
probability distribution which is defined as a composite distribution [6]

( )

( )
1 1

2 2

, 0 ,
π

1 , .i

C P i i N

C P i N i N

≤ ≤⎧⎪= ⎨
− + ≥⎪⎩

(1)

The probabilities P1(i), where 0 ≤ i ≤ N, are the probabilities of the
number of occupied servers in N-server QS with customer’s losses
(M/GI/N/0), when all servers are busy. Then it can be determined by the
Erlang formulas:
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( ) ( ) ( )
1

1
0

λ λ
! !

i kN

k

a a
P i

i k

−

=

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ,

where a is mean of service time.
The probabilities P2(i) are defined when all servers are busy. In this case,

the block of occupied servers is considered as a single and its service has
distribution function B(x). Therefore, the probabilities P2(i), where i = 0,1,…
are defined as the probabilities of the number of customers in the single-
server system M/GI/1/∞ with waiting. It can be determined by the Pollaczek
– Khinchin formula [6] and we can write

( ) ( )2
0

1 λ α
i

k i k
k

P i b b −
=

= − ∑ ,

where coefficients of expansion

0
0

1α
β

= , 
1

1
00

1α α α β
β

n

n n k n k
k

−

− −
=

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∑ ,

0 0βb = , 1β βn n nb −= − ,

( ) ( )λ

0

λ
β

!

n
z

n
z

e dB z
n

∞
−= ∫ ,

and the distribution function B(x) has the form

( ) ( )( ) ( )( )
1

0

11 1 1 1
Nx

B x A x A z dz
a

−
⎛ ⎞

= − − − −⎜ ⎟⎜ ⎟
⎝ ⎠

∫ ,

b is mean of a random value with the distribution function B(x).
Constants C1 and C2 from (1) founded from the normalization condition

and the conditions of «stitching» [6]. So the expression (1) has the form

( )
( ) ( ) ( ) ( )( )( )

( )

( )
( ) ( ) ( ) ( )( )( )

( )

2
1

2 1 2 2

1
2

2 1 2 2

1
, 0 ,

1 1 0
π

1 , .
1 1 0

i

P
P i i N

P P N P P N

P N
P i N i N

P P N P P N

⎧ ≤ ≤⎪ + − +⎪= ⎨
⎪ − + ≥⎪ + − +⎩

(2)
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Characteristic function for the total capacity

We write the characteristic function of the total capacity probability
distribution in the form

( ) ( ){ } ( )1

i
k

k
ju v

juV th u M e M M e i t i=
∑⎧ ⎧ ⎫⎫⎪ ⎪ ⎪⎪= = = =⎨ ⎨ ⎬⎬

⎪ ⎪ ⎪⎪⎩ ⎩ ⎭⎭

( ){ } { }( ) ( ){ }1

0 0

i
k

k
ju v ijuv

i i
M e P i t i M e P i t i=

∞ ∞

= =

∑⎧ ⎫⎪ ⎪= = = =⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑ .

Then, using approximation (2):

( ) { }( )
0

π
ijuv

i
i

h u M e
∞

=

= ∑ .

Using the inverse Fourier transform, we obtain an approximation of the
density function of the customers’ total capacity in the system M/GI/N/∞

( ) ( )jux
Vf x e h u du

∞
−

−∞

= ∫ . (3)

Simulation and numerical examples

Simulation was performed in the same way as [7]. Its result is the
distribution function of the total capacity of customers in this system. Also
we obtained the distribution function by (3). Let us compare this results. We
will use the Kolmogorov distance as a measure between simulation and
approximation results

sup ( ) ( )V
x

F x D x∆ = − .

Here FV(x) is the approximation based on (3), and D(x) is the cumulative
distribution function build on the basis of simulation results. As typically
done in the literature [8], we suppose that an approximation is applicable if
its Kolmogorov distance is less than 0,03.

We can note, that the parameters for the arriving and service of customers
are selected in such a way that the condition for the stationary regime
existence is met ( λN a> ).
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Example 1. Let the rate of arrivals λ = 25, the number of servers is
N = 10, the distribution function of service time is

( )
μ1 , 0,

0, 0,

xe xA x
x

−⎧ − ≥= ⎨ <⎩

the distribution function of customers’ capacity is

( )

0, 0,

, ,

1, .

y
y aG y a y b
b a

y b

<⎧
⎪ −⎪= ≤ ≤⎨

−⎪
>⎪⎩

In this example μ = 5; a = 0; b = 1. In this case, we obtain that ∆ = 0,012.

0 1,8 3,6 5,4 7,2 9 10,8 12,6 x
0

0,4

0,8

0,2

0,6

1,0

F xV ( )

Approximation Simulation

Fig. 1. Distributions of the total capacity

Example 2. Let the rate of arrivals λ = 25, the number of servers is
N = 10, the distribution function of service time is

( )
( )

( )
γ α,β

, 0,
α

0, 0,

x
x

A x
x

⎧ ≥⎪= Γ⎨
⎪ <⎩

the distribution function of customers’ capacity is
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( )

0, 0,

, ,

1, .

y
y aG y a y b
b a

y b

<⎧
⎪ −⎪= ≤ ≤⎨

−⎪
>⎪⎩

In this example α = 0,5; β = 2,5; a = 0; b = 1. In this case, we obtain that
∆ = 0,007.
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Fig. 2. Distributions of the total capacity

Example 3. Let the rate of arrivals λ = 45, the number of servers is N = 6,
the distribution function of service time is

( )
( )

( )
γ α,β

, 0,
α

0, 0,

x
x

A x
x

⎧ ≥⎪= Γ⎨
⎪ <⎩

the distribution function of customers’ capacity is

( ) { } ( )1 yG y P v y p p= = = − .

In this example α = 3,5; β = 29,7; p = 0,4. In this case, we obtain that
∆ = 0,048.

We will simulate this queue at the same parameters, but increase the
servers’ number. For N = 7, we obtain that ∆ = 0,016, for N = 8, we obtain
that ∆ = 0,005.
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Fig. 3. Distributions of the total capacity (N = 6)
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Fig. 4. Distributions of the total capacity (N = 8)

We can conclude that the accuracy of the total capacity approximation has
a wide application and improves with the increase the number of servers in
the system.

Conclusions

We studied the total capacity of customers in the system M/GI/N/∞. The
characteristic function of this distribution was obtained. Simulation has been
carried out, it is shown that the approximation has a wide application.



Total customers’ capacity in the multi server  17

REFERENCES

1. Efimushkina T., Gabbouj M., Samuylov K. Analytical Model in Discrete Time for
Cross-Layer Video Communication over LTE // Automatic Control and Computer
Sciences. – 2014. – V. 48. – No. 6. – P. 345–357.

2. Naumov V.A., Samuilov K.E., Samuilov A.K. On the total amount of resources occupied
by serviced customers // Automation and Remote Control. – 2016. – V. 77. – No. 8. –
P. 1419–1427.

3. Naumov V.A., Samuilov K.E. On Modeling Queueing Systems with Multiple Resources
// Vestn. Ross. Univ. Druzhby Narodov, Ser. Mat. Informatika. Fiz. – 2014. – No. 3. –
P. 60–64.

4. Tikhonenko O., Kempa W.M. On the queue-size distribution in the multi-server system
with bounded capacity and packet dropping // Kybernetika. – 2013. – V. 49. – No. 6. –
P. 855–867.

5. Tikhonenko O., Kawecka M. Busy Period Characteristics for Single Server Queue with
Random Capacity Demands // Communications in Computer and Information Science.
– 2012. – V. 291. – P. 393–400.

6. Lisovskaya E., Moiseeva S. Study of the Queuing Systems M/GI/N/∞ // Communi-
cations in Computer and Information Science. – 2015. – V. 564. – P. 175–184.

7. Lisovskaya E., Pagano M. Imitacionnoe modelirovanie sistemy massovogo
obsluzhivaniya trebovanij sluchajnogo ob"ema // Problemy optimizacii slozhnyh sistem
Trudy 12-j Mezhdunarodnoj Aziatskoj shkoly-seminara. Pod redakciej S.I. Kabanihina,
A.V. Kel'manova, A.S. Rodionova. – 2016. – P. 352–357.

8. Moiseev A., Sinyakov M. Razrabotka ob'ektno-orientirovannoj modeli sistemy
imitacionnogo modelirovaniya processov massovogo obsluzhivaniya // Vestnik
Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitel'naya tekhnika i
informatika. – 2010. – V. 1. – P. 89–93.

9. Kempa W.M. On main characteristics of the M/M/1/N queue with single and batch
arrivals and the queue size controlled by AQM algorithms // Kybernetika. – 2011. –
V. 47. – No. 6. – P. 930–943.



OPTIMIZATION OF PIPELINING AND DATA PROCESSING

P.A. Mikheev, A.A. Pichugina, S.P. Suschenko, R.V. Tkachev
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Introduction

The most important indicator of efficiency of functioning of the network
packet switching is the transmission time of user data between the
communicating subscribers [1, 2]. Functions for the delivery of message flow
to the user and compensation of overhead in the transmission of packets that
may occur in the communication network are performed by the transport
layer protocol [2]. The basis of a reliable transport protocol is the principle of
decision feedback. The delay in subscriber traffic in a virtual connection
depends to a large extent on the characteristics of the individual links of the
connecting path, the length of the data transmission path, the size of the user
messages, the intensity of the network streams and the protocol parameters,
among which the most important is the packet size, which actually
determines the power of the pipeline effect [3−6]. It should also be noted that
the connecting path of the virtual channel in the packet switching network is
used in by many interacting subscribers. This leads to the fact that the load
on various parts of the data path along which the virtual connection goes can
be significantly different. Then the effective bandwidth of individual links
for the traffic of this virtual connection will be reduced by the corresponding
parts of "external" flows, as a result of which the time of packet transfer over
inter-node connections even of a uniform virtual channel can be substantially
different [6−8].

Simulation of the transport connection and analysis of its operational
characteristics under various loading conditions is performed in [3−8]. A
wide range of studies [9−13] are aimed at optimizing protocol parameters by
various criteria and adapting protocol parameters to the changing network
load, the level of losses, the activity of interacting subscribers. A key
indicator of the quality of service for network subscribers is the message
delivery time, which is determined by the pipelining effect. This indicator is
also very important for pipelined implementation of the instruction
processing [14, 15]. The development of the results of [9−15] is to optimize
the size of the protocol data units when sending the subscription message via
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the transport connection and the structure of the data transmission path. In
the proposed method of this work the partitioning the subscriber messages
into packets of optimum size and the conditions the feasibility of converting
transmission path and pipelined processor to a uniform appearance.

The virtual connection model

Consider an nonuniform virtual connection consisting of D links of data
transmission. Define the time of the message transmission from the N
packets, according to the deterministic virtual connection in the data transfer
phase. We believe that the flow control procedure carried by the virtual
connection provides end-to-end confirmation of the delivery of individual
messages, and each virtual connection node can simultaneously perform data
reception and transmission, however, packet transmission can be started only
after its reception is completed. All message packets have the same length,
except the last one, which can contain the remainder of dividing the message
into fragments and can be smaller. We believe that there is no competing
traffic and there are no packet queues at the switching nodes to the output
communication channels. Then the delay of the subscriber's message in the
data transmission path will be [10]

( ) ( )
1

, 1 τ τ
D

m d
d

T D N N
=

= − + ∑ , 
1,

τ max τm d
d D=

= , (1)

where τ , 1,d d D= , – packet delay in d sector of the hops.

The optimal partitioning of the message into the packets

For further analysis, we express explicitly the time of packet transmission
in inter-node connection through the parameters of data transmission link.
Suppose that the transmission rate and time of node packet processing is
independent of the size of the package. In fact, the assumption of rate is true
only for absolutely reliable inter-node communication channels included in
the virtual connection.

Then the packet delay at the d link of the transmission path taking into
account the previously introduced notation we can write as: τd d dL C t= + .

Here τ , 1,d d D= , the packet processing time in the receiver node of the d
data link. Substituting this relation in (1) and taking into account that
L B N H= + , where B is the size of the transmitted message, we get
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( ) ( )
1

, 1
D

m d
dm d

B N H B N HT D N N t t
C C=

⎡ ⎤ ⎡ ⎤+ +
= − + + +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∑ ,

1,
maxm d
d Dm d

B N H B N Ht t
C C=

⎡ ⎤+ +
+ = +⎢ ⎥

⎣ ⎦
. (2)

Obviously, when transmitting a message in the form of a sequence of
packets, it is possible to reduce the time of its delivery significantly over a
virtual connection in comparison to its transmission by one packet. This gain
is due to the pipelining effect [10], as a result of which the different parts of
the message are simultaneously in the transmission state at different parts of
the path. On the one hand, the number of packets in the sequence should be
increased in order to enhance the pipelining effect and thereby reduce the
message delivery time. On the other hand, sequence growth leads to an
increase in the volume of the transferred service information and the
processing time of packets by nodes. Hence it follows that the dependence
(2) is unimodal from the argument N. Using (2), we determine the benefit in
time from the transmission of a message over a virtual connection of length
D by a sequence of N > 1 packets in comparison with its delivery as a whole:

( ) ( ) ( ) ( )
1

1, ,1 , 1
D

m
d d m
d m

B HD N T D T D N N t
N C C=

≠

⎛ ⎞
⎜ ⎟

∆ = − = − − −⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ . (3)

For uniform virtual connection, , , 1,d dC C t t d D= = = , the benefit (3) is
converted to the form

( ) ( )1, 1N BD N D H Ct
C N
− ⎛ ⎞∆ = − − −⎜ ⎟

⎝ ⎠
. (4)

The relations (3), (4) define unimodal of the argument 1N ≥  functions
with asymptotes

( )
1

1( , ) 1
D

m
dm d
d m

HD N N t B
C C=

≠

⎛ ⎞
∆ = − − + +⎜ ⎟

⎝ ⎠
∑

and ( ) ( ) ( )11,
B DND N H Ct

C C
−−

∆ = − + +

accordingly. It can be seen from (3), (4) that it is expedient to split/divide
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the message into packets only for long 1D >  virtual connections and

if condition 
1

1D

m
d d m
d m

HB t
C C=

≠

> +∑  is fulfilled, and benefit (3) is positive

for partitions that satisfy the inequality ( )
1

11
D

m m m
d d
d m

N BC H C t
C=

≠

< < +∑ .

For a uniform virtual connection, this inequality, which determines the

set of expedient partitions, takes the form of ( )1
1

B D
N

H Ct
−

< <
+

. When

1

1D

m
d d m
d m

HB t
C C=

≠

> +∑  splitting ( )
1

1D

m m m
d d
d m

N BC H C t
C=

≠

> +∑  lead to the fact

that the losses from transmission and processing of the sequence of packets

prevail over the benefit from the pipeline effect. When 
1

1D

m
d d m
d m

HB t
C C=

≠

< +∑

splitting N > 1 increase the negative effect of exceeding the overhead on user
information.

On virtual connections of a single length, there is no pipelining effect, and
N > 1 partitions lead to an increase in the multiplex packet delay due to an
increase in the amount of overhead transfer of the service information and the
node packet processing. From the size of the subscriber message B the
benefit (3), (4) has a linear dependence. When transferring over the uniform
virtual connection, the benefit (4) also grows linearly with the path length,

and the values ( , )D N∆  are positive for ( )1
N H Ct

D
B
+

> + .

From (3) we find that the partition 
1

1 , 1
D

o o
dm m d
d m

BN N
H C t C=

≠

= ≥
+ ∑

maximizes the benefit (3). Substituting the relation for N in (3) we obtain:

1 1

1 1 1( , ) 2
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D D
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d dm d m d
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H HD N t B t B
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∑ ∑ .
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Hence it is easy to see that the optimal benefit is equal to twice the difference

between the arithmetic mean and geometric mean values 
1

1D

d d
d m

B
C=

≠

∑  and

/ m mH C t+ , which correspond respectively to the transmission time of the
information part of the message as a single unit over a virtual connection
without a narrow link and the overhead of a narrow link in the form of the
time for transmitting the service part of the packet and the processing time of
the packet. For a uniform virtual connection, the optimal benefit is:

{ }2
( , ) ( 1)oD N H Ct B D∆ = + − − . Since 1N ≥ , we can conclude that the

area of definition ( , )oD N∆  for the uniform virtual connection is the length
of the paths that satisfy the inequality (1 ) /D H Ct B≥ + + . Knowing the
optimal ratio of splitting N, it is easy to determine the packet size oL , that
minimizes the delivery time of a message over the virtual connection:

( )
1

1D

o o m m
d d
d m

L H B N H B H C t
C=

≠

= + = + + ∑ . On the uniform connection the

expression for the optimal packet size is simplified: ( )
1o

B H Ct
L H

D
+

= +
−

.

The conditions of feasibility of unification
of the non-uniform phases in the pipeline

One of the most important conditions for achieving minimum latency on
the line as in (1) is to eliminate the most time-consuming stages of processing
(transmission) data through their pipeline. Most often, this approach of
bringing the individual phases of the pipeline to a uniform duration of stages is
used in the processor of the data processing or telecommunication systems to
eliminate low-speed, geographically distributed network sections. In this case,
the narrow phases of the pipeline are broken (if possible) into sub-phases of the
minimal complexity of the input of the original or desired conveyor, which
leads to an increase in its length.

Let us analyze the conditions under which such a partition of complex
phases into sub-phases reduces the processing time of the data stream.
Consider fully ununiformed pipeline, which should lead to a uniform with
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the duration of the phases equal to τ τ , 1,d d D≤ = . We assume that each

phase of an ununiformed pipeline has a duration τ τ, 1,d dl d D= = , where
1dl ≥  – is an integer. Then every d phase of the source pipeline should be

pipelined in the form 1dl ≥  of stages of the same duration τ . The normalized
delay in the original ununiformed pipeline length is

( ) ( ) ( )
1,1

,
, 1 , max

D

н m d m d
d Dd

T D N
t D N N l l l l

==

= = − + =
τ ∑ ,

and in the uniformed – with the resulting number of stages, equal 
1

D

d
d

l
=
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take the form

1

1 1

,
, 1
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D

dD D
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o d d
d d

T l N
t l N N l=

= =

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎝ ⎠= = − +⎜ ⎟

⎝ ⎠

∑
∑ ∑ .

We determine normalized to the complexity of the uniformed phase τ  the
benefit from the unification of pipelining N applications in the form of a
difference of the processing times of the original ununiformed pipeline and
extended uniformed pipeline:

( ) ( ) ( )( )
1

, , , 1 1
D

н o d m
d

D N t D N t l N N l
=

⎛ ⎞
∇ = − = − −⎜ ⎟

⎝ ⎠
∑ .

Hence it follows that the positive values of the benefit are invariant to the
complexity dl  of all stages of the pipeline, except the most labor-intensive
and possible when 1N >  and 1ml > .

Conclusions

The paper proposes the method of optimal partitioning of subscriber
messages into protocol data units by the transport layer according to the
criterion of delays in the multi-hop transmission path. Analytical dependence
for the optimal packet size from the structure of network traffic and settings
of the virtual connections. The conditions of feasibility of super pipelining,
ununiformed pipeline and bring it to a uniform by splitting time-consuming
stages into uniformed phase. The direction of the further development of
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research on the unification of the pipeline should be distinguished by the task
of analyzing the delay in conditions of rebooting of the pipeline with
repeated transmissions of distorted data in networks or incorrect branch
prediction processed by the processor of instruction stream.
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CONTROLLABLE QUEUEING SYSTEMS
FROM THE VERY BEGINNING UP TO NOWADAYS*

V.V. Rykov
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The theory of Controllable Queueing Systems (CQS) is a special direction
of investigations of a general theory of controllable stochastic processes from
one side, and of a Queueing Theory (QT) from another side. The theory of
controllable stochastic processes is a special topic, which we will not touch
here, and will fix on CQS. Some papers devoted to the problems of Queueing
Systems (QS) control have been arisen almost simultaneously with the first
works about QS, but the special approach to CQS has been done by Rykov
[1] in 1975. Several monographs devoted to this problem arisen thereafter
[2−5].

The present paper represents a review of the Controllable Queueing Sys-
tems (CQS) theory development from the very beginning up to nowadays. A
main stages of this theory development are considered. Some new problems
are mentioned.

It is destined for those who want to know the theory of CQS with the ori-
gin and its development from its generation up to now and to understand its
development tendency and its new directions and new problems

The lecture contains several Sections:
•  Introduction.
•  CQS. Definition and main properties.
• Examples.
• Discrete time controllable semi-regenerative processes.
• Optimal strategy construction.
• Qualitative properties of optimal policies.
• Arrival control.
• Service mechanism control.
• System structure control.
                                                       

* The publication has been financially supported by the Ministry of Education and Science
of the Russian Federation (the Agreement number 02.A03.21.0008) and by the Russian
Foundation for Basic Research according to the research projects No. 17-07-00142 and
No. 17-01-00633.
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• Service discipline control.
• Conclusion and further problems.
Because the theory of QCS based on the theory Discrete time controllable

semi-regenerative processes (DTC SRP) then after the Controllable Queue-
ing System definition the short review of this theory will be proposed. As a
result of this theory application it follows the main theorem about Markov
property of optimal strategies for the CQS. Moreover, it is known that the
Markov strategy is determined with the optimal policy, which can be found
as a solution of optimality (or Bellmen) equation. This result allows to turn
the theoretical investigations about general properties of optimal policies to
algorithmic and computing sphere and concentrate on the construction of the
algorithms for real calculation of optimal policies. Some of such algorithms
are considered. Moreover, the optimality principle allows to investigate some
qualitative properties of optimal policies before their determination. The last
approach allows extremely simplify real calculation of optimal policies for
many examples of CQS’s. Some examples of CQS’s investigation based on
the proposed approach will be considered. The lecture closed with some new
problems settings and new direction of investigations in the theory of CQS.
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ОБ ОДНОЙ МОДЕЛИ СИСТЕМЫ УПРАВЛЕНИЯ ЗАПАСАМИ
С МГНОВЕННЫМ ОБСЛУЖИВАНИЕМ ЗАЯВОК

С.А. Багирова
Бакинский государственный университет,

г. Баку, Азербайджан

В последние годы интенсивно исследуются модели систем управле-
ния запасами (СУЗ) при различных допущениях относительно схемы
обслуживания заявок, политики пополнения запасов (ППЗ) и времени
доставки заказов [1−3]. Подробный обзор известных результатов можно
найти в работах [4−5]. Анализ литературы показал, что почти не иссле-
дованы модели СУЗ, в которых объемы заказов являются переменными
величинами, зависящими от текущего уровня запасов системы [6]. От-
метим, что, с одной стороны, изучение моделей СУЗ с переменным
объемом заказов представляет определенный теоретический интерес,
так как они в ряде случаев обобщают известные ППЗ; а с другой сторо-
ны, с практической точки зрения использование таких ППЗ расширяет
область определения надлежащей политики, которая, в свою очередь,
позволяет увеличить эффективность работы системы.

Исходя из этого, в данной работе предложен класс ППЗ, основанной
на переменном объеме заказов. Предложены точный и приближенный
методы расчета характеристик модели с мгновенным обслуживанием и
повторными заявками.

Максимальный размер склада изучаемой СУЗ равен , 0 .S S< < ∞
В эту систему поступает пуассоновский поток заявок с интенсивностью
λ . Рассматривается модель с мгновенным обслуживанием заявок. Не-
удовлетворенные заявки, т.е. первичные заявки (p-заявки), поступившие
в моменты отсутствия запасов системы, окончательно не теряются, а
образуют источник повторных заявок (r-заявки). При этом если в мо-
мент поступления p-заявки в системе отсутствуют запасы, то она либо с
вероятностью 0pH >  уходит на орбиту для повторения своего запроса,

либо с дополнительной вероятностью 1 pH−  окончательно уходит из
системы.
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Времена пребывания в орбите r-заявок являются независимыми друг
от друга случайными величинами (с.в.) с общей показательной функци-
ей распределения (ф.р.) с конечным параметром η, 0 η< < ∞ . После за-
вершения времени пребывания на орбите r-заявки независимо друг от
друга повторяют свои запросы. Если в момент поступления r-заявки на
складе имеется хотя бы одна единица запаса, то она мгновенно обслу-
живается и уходит из орбиты; иначе, r-заявка либо с вероятностью

0rH >  покидает орбиту, либо с дополнительной вероятностью 1 rH−
остается там для дальнейшего повторения своего запроса.

Каждая заявка (первичная или повторная) требует запас единичного
размера. Здесь рассматривается модель с ограниченным размером орби-
ты для повторных заявок, т.е. максимальное r-число заявок на орбите
может быть равно ,R R < ∞ . Если p-заявка поступила на орбиту в мо-
мент, когда в ней уже имеется R заявок, то она теряется.

Политика пополнения запасов определяется следующим образом.
Отпуск запасов по заявкам продолжается, пока склад системы не явля-
ется пустым. Определяется некоторая пороговая величина , ,s s S<  и
если уровень запасов на складе выше этой величины, то система не де-
лает заказов для пополнения запасами; а когда текущий уровень запасов
системы m  становится меньшим или равным величине s , делается за-
каз такого объема, чтобы полностью заполнить склад системы.

Сделанный заказ выполняется с некоторой задержкой, при этом для
общности здесь предполагается, что указанная задержка имеет показа-
тельную ф.р. с параметром ( )nv m , который в общем случае зависит от
текущего уровня запасов m  на складе системы, 0,1,...,m s= , и числа r-
заявок на орбите, 0,1,...,n R= .

Задача исследования состоит в определении совместного распреде-
ления уровня запасов системы и числа заявок на орбите. Решение этой
задачи позволяет вычислить характеристики изучаемых систем обслу-
живания-запасания (СОЗ): средний уровень запасов на складе ( )avS ,
вероятности потери p-заявок ( )pP  и r-заявок ( )rP , а также среднее чис-

ло r-заявок на орбите ( )oL .
Работа системы описывается двумерной конечной цепью Маркова

(ЦМ) с состояниями вида ( ),m n , где m  означает уровень запасов сис-
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темы, а n  указывает число r-заявок на орбите. Фазовое пространство
состояний (ФПС) определяется так:

( ){ }, : 0,1,..., ; 0,1,...,E m n m S n R= = = . (1)

Интенсивность перехода из состояния ( )1 1,m n E∈  в другое состоя-
ние ( )2 2,m n E∈  обозначим как ( ) ( )( )1 1 2 2, , ,q m n m n . Переходы между
состояниями ФПС (1) связаны со следующими событиями: поступлени-
ем p-заявок, уходом p-заявок на орбиту, поступлением r-заявки из орби-
ты и поступлением запасов со склада верхнего уровня.

Элементы Q-матрицы данной модели определяются так:
случай 1m s> :

( ) ( )( )
2 1 2 1

1 1 2 2 1 2 1 2 1

λ, если 1, ,
, , , η, если 1, 1,

0, в остальных случаях;

m m n n
q m n m n n m m n n

= − =⎧⎪= = − = −⎨
⎪⎩

(2)

случай 10 m s< ≤ :

( ) ( )( )
1

2 1 2 1

1 2 1 2 1
1 1 2 2

1 2 2 1

λ, если 1, ,
η, если 1, 1,

, , , ( ), если , ,
0, в остальных случаях;

n

m m n n
n m m n n

q m n m n v m m S n n

= − =⎧
⎪ = − = −⎪= ⎨ = =⎪
⎪⎩

(3)

случай 1 0m = :

( ) ( )( ) ( )
1

2 2 1

1 2 2 1
1 2 2

2 2 1

λ , если 0, 1,
η , если 0, 1,0, , ,

0 , если , ,
0, в остальных случаях.

p

r

n

H m n n
n H m n nq n m n
v m S n n

= = +⎧
⎪ = = −⎪= ⎨ = =⎪
⎪⎩

(4)

Стационарную вероятность состояния ( ),m n E∈  обозначим через
( ),p m n . Эти величины находятся в результате решения системы урав-

нения равновесия (СУР), которая известным способом составляется на
основе соотношений (2) – (4).

Нахождение стационарных вероятностей состояний позволяет вы-
числить характеристики исследуемой системы. Действительно, исполь-
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зуя результаты работ [4, 5], можно показать, что искомые величины оп-
ределяются так:

( )
1 0

,
S R

av
m n

S m p m n
= =

= ∑ ∑ ; (5)

( )
1 0

,
R S

o
n m

L n p m n
= =

= ∑ ∑ ; (6)

( ) ( ) ( )
1

0
0, 1 0,

R

p p
n

P p N H p n
−

=

= + − ∑ ; (7)

( )
1

0,
R

r r
n

P H p n
=

= ∑ .  (8)

Отметим, что СУР данной системы имеет матрицу сложной структу-
ры и потому не удалось найти ее аналитическое решение, т.е. возникает
необходимость использования стандартных численных методов теории
марковских процессов. Указанные методы являются работоспособными
для моделей умеренной размерности и становятся бесполезными для
моделей большой размерности.

Ниже предлагается приближенный метод расчета стационарного
распределения данной модели. Он использует подход, разработанный в
[4, 5].

Этот метод имеет высокую точность для моделей СУЗ, в которых
интенсивность p-заявок намного превосходит интенсивности r-заявок.
При выполнении данного допущения рассмотрим следующее расщеп-
ление исходного ФПС (1):

0
, , ,

R

n n n
n

E E E E n n′
=

′= = ∅ ≠∪ ∩ (9)

где ( ){ }, : 0,1,..., , 0,1,..., .nE m n E m S n R= ∈ = =

Далее в исходном ФПС (1) определяется следующая функция укруп-
нения:

( ),U m n n= < > , (10)

где n< >  означает укрупненное состояние, которое объединяет в себе
класс состояний , 0,1,...,nE n R= . Обозначим { }: 0,1,...,n n RΩ = < > = .



Об одной модели системы управления запасами с мгновенным обслуживанием  31

Через ρ ( )n m  обозначается вероятность состояния ( ),m n  внутри
расщепленной модели с пространством состояний , 0,1,..., .nE n R=  То-
гда из соотношений (2) – (4) получаем, что эти вероятности вычисляют-
ся так:

( )
( )( ) ( )

( )( ) ( )

1
1

1
1

1 1 λ ρ 0 , если 1 1,
λρ

1 1 λ ρ 0 , если 1 ,
λ

m

n nm
i

n s

n ns
i

v i m s
m

v i s m S

=
+

+
=

⎧
− + ≤ ≤ +⎪⎪= ⎨

⎪ − + + < ≤⎪⎩

∏

∏
(11)

где ( )ρ 0n  находится из условия нормировки, т.е. ( )
0
ρ 1.

S

n
m

m
=

=∑
Укрупненная модель описывается процессом размножения и гибели.

Интенсивность перехода из укрупненного состояния 1n< >  в другое
укрупненное состояние 2n< >  обозначим через ( )1 2,q n n< > < > . Тогда
с учетом (2) – (4) и (11) после определенных математических преобра-
зований получаем, что указанные величины вычисляются так:

( ) ( )
( ) ( ) ( )( )
( )

, 1 λ ρ 0 , 0,1,..., 1;
, 1 η 1 1 ρ 0 , 1,2,..., ;
, 0,  если 1.

p n

r n

q i i H i R
q i i i H i R
q i j i j

< > < + > = = −
< > < − > = − − =
< > < > = − >

(12)

Тогда из системы соотношений (12) находим, что вероятности ук-
рупненных состояний π( ),n n< > < >∈Ω  вычисляются следующим об-
разом:

( )
( )

( )
1

0

, 1
π( ) π 0 , 1,..., ,

1,

n

i

q i i
n n R

q i i

−

=

+
< > = < > =

+∏ (13)

где вероятность ( )π 0< >  находится из условия нормировки, т.е.

( )
0
π 1

R

n
n

=

< > =∑ .

Вероятности состояний исходной модели приближенно определяют-
ся так:

( ) ( ) ( ), ρ πnp m n m n≈ < > . (14)
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Тогда из соотношений (11) – (14) находим следующие формулы для
приближенного расчета характеристик (5) – (8)исследуемой системы:

( ) ( )
1 0

ρ π
S R

av n
m n

S m m n
= =

≈ < >∑ ∑ ; (15)

( )
1
π

R

o
n

L n n
=

≈ < >∑ ; (16)

( ) ( ) ( ) ( ) ( )
1

0
1 ρ 0 π ρ 0 π

R

p p n R
n

P H n R
−

=

≈ − < > + < >∑ ; (17)

( ) ( )
1
ρ 0 π

R

r r n
n

P H n
=

≈ < >∑ . (18)

Таким образом, изучена модель системы управления запасами с
мгновенным обслуживанием и повторными заявками. В этой системе
используется политика пополнения запасов, согласно которой объемы
заказов являются переменными величинами, при этом их значения за-
висят от текущего уровня запасов и числа повторных заявок на орбите.
Изучена модель с ограниченным размером орбиты. Получены явные
формулы для расчета характеристик изучаемой системы.
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ПРИМЕНЕНИЕ МЕТОДА РАСЩЕПЛЕНИЯ
ДЛЯ ИМИТАЦИОННОГО МОДЕЛИРОВАНИЯ
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В последние годы модели старения и деградации для технических и
биологических объектов достаточно популярны [1−3]. Модели старения
и деградации предполагают изучение систем с постепенными отказами,
для которых было разработано большое количество многоуровневых
моделей надежности (см., например, [4, 5]). Предлагается метод уско-
ренного имитационного моделирования для оценивания основных ха-
рактеристик процесса деградации в системе с постепенными и внезап-
ными отказами.

Процесс деградации
Рассмотрим процесс деградации ( ){ } 0tX X t ≥=  с фиксированным

пространством состояний { }0,1,..., , ,..., ,E L M K F= , который представ-
ляют стадии деградации системы (рис. 1.) Процесс стартует из состоя-
ния ( )0 0X =  и затем переходит от одной стадии к другой (постепен-
ный или наблюдаемый отказ), время пребывания на стадии i  определя-
ется значением с.в. Ti. Переход из состояния i в j происходит за время

1j

ij k
k i

S T
−

=

= ∑ ,

где 0 1,i K j i≤ ≤ − > , { }kT  предполагаются н.о.р. с.в.
                                                       

* Исследование выполнено при финансовой поддержке РФФИ в рамках научных
проектов № 15-07-02341, 15-07-02354, 15-07-02360, 16-37-60072, 16-37-60072
mol_a_dk. Работа поддержана Министерством образования РФ (номер
02.a03.21.0008 от 24 июня 2016 г.)
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отказ S VMK ≥ 
стадия профилактического ремонта

стадия внезапного отказа

стадия  возврата после ремонта
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Рис. 1. Динамика процесса деградации с двумя типами циклов регенерации

После достижения стадии M либо произойдет переход в состояние K за
время

1K

MK i
i M

S T
−

=

= ∑
и далее будет выполнен профилактический ремонт, либо случится отказ
системы за случайное время MKV S≤ . Процесс X является регенери-
рующим с моментами регенерации { }τi  (момент перехода на стадию M)
и имеет два типа циклов регенерации: с отказом и без. Необходимо вы-
числить вероятность внезапного отказа

[ ]F MKp S V= Ρ ≥ , (1)

а также такие характеристики, как время до случайного отказа, сред-
нюю длину цикла регенерации, средние длины циклов с отказом и без
отказа, определить значение асимптотической функции надежности в
заданной точке и т. д.

Поскольку оценить аналитически параметры деградирующего про-
цесса и вероятность внезапного отказа, как правило, не представляется
возможным, то необходимо предложить метод имитационного модели-
рования, который также будет эффективен для случаев, когда отказ
является редким событием (в этом случае метод Монте-Карло неэффек-
тивен).
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Метод расщепления для процесса деградации

Для построения циклов регенерации будем применять модификацию
стандартного динамического метода расщепления [6−8], которая объе-
диняет технику расщепления и регенеративное имитационное модели-
рование.

Расщепление траекторий процесса деградации начинается в момен-
ты регенерации { }τi . Стадии деградации мы используем в качестве по-
рогов для метода расщепления. Таким образом, для нашей задачи поро-
ги являются жестко заданными, в отличие от стандартного алгоритма
расщепления, где значения порогов (уровней) выбираются специальным
образом. Каждый момент регенерации с учетом расщепления дает
группу из 1...M KD R R −= ⋅ ⋅ зависимых циклов регенерации, где iR  – это
количество расщеплений на каждой стадии деградации. Общее количе-
ство отказов в i-й группе

( )

( )
1

1 1
, 1,...,

i D
j

i M
j i D

A I i R
⋅

−
= − ⋅ +

= =∑ ,

где ( ) 1jI =  ( )( )0jI =  для цикла с отказом (без отказа) и группы являют-

ся н.о.р. Оценка ˆFp  для вероятности (1) является несмещенной и стро-
го состоятельной, т.е. при iR → ∞  имеет место сходимость с в. 1:

( )
1

1 1

1

ˆ

R DM
j

j
j j

F F
M

A I
p p

R D D

−

= =

−

Ε

= → =
⋅

∑ ∑
.

Кроме того, регенеративные свойства последовательности
( ){ }, 1jI j ≥  дают основания для построения доверительного интервала

для (1) с использованием регенеративного метода [9−11].

Заключение

Результаты имитационного моделирования показали, что при равном
числе циклов регенерации время, затраченное на моделирование мето-
дом расщепления, значительно меньше, чем у метода Монте-Карло.
При этом, метод расщепления дает хорошую близость оценок характе-
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ристик деградирующего процесса к аналитическим значениям, в одно-
родном случае для экспоненциально распределенных с.в. { }iT .
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АЛГОРИТМ РАСЧЕТА
ОДНОЙ СХЕМЫ РАЗДЕЛЕНИЯ КАНАЛОВ В СЕТЯХ
С ШИРОКОПОЛОСНЫМИ ВЫЗОВАМИ ДАННЫХ

Г.М. Велиджанова
Институт систем управления НАН Азербайджана,

г. Баку, Азербайджан

Проблемы распределения общего пула каналов между разнотипны-
ми вызовами подробно изучены для моделей, в которых предполагает-
ся, что разнотипные вызовы требуют одинаковых полос пропускания
(каналов). Вместе с тем в сетях сотовой связи (ССС) вызовы данных для
их передачи требуют одновременно несколько каналов (т.е. вызовы
данных являются широкополосными), в то время как для передачи вы-
зовов речи достаточно лишь одного свободного канала (т.е. вызовы ре-
чи являются узкополосными). Анализ доступной литературы показал,
что задачи разделения общего пула каналов между разнотипными вызо-
вами в таких моделях недостаточно изучены (см. [1−4] и список их ли-
тературы).

Автором предлагается одна схема изолированного разделения кана-
лов. Она идейно близка к схеме [5], но отличается от нее по следующим
моментам. Во-первых, в отличие от указанной схемы, здесь различают-
ся новые и хэндовер-вызовы данных; во-вторых, здесь предполагается,
что общая зона каналов может быть использована лишь хэндовер вызо-
вами данных и речи. Главное отличие этой работы от [5] состоит в том,
что здесь для исследования этой схемы предложен аналитический под-
ход. Подобный подход ранее был использован в работе [6], где изучены
модели ССС, в которых разнотипные вызовы требуют одинаковых по-
лос пропускания.

Базовая станция изолированной соты сети имеет 1N >  радиокана-
лов. В этих каналах обрабатываются четыре пуассоновских потока вы-
зовов: хэндовер-речевые вызовы (hv-вызовы), новые речевые вызовы
(ov-вызовы), хэндовер-вызовы данных (hd-вызовы) и новые вызовы
данных (od-вызовы).

Вызовы речи (новые и хэндовер) требуют для обработки лишь один
канал, а для обработки вызовов данных (новых и хэндовер) требуются
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одновременно b, b > 1, каналов. Весь пул каналов разделен на три груп-
пы: vN  каналов из общего числа N каналов выделяются лишь для рече-
вых вызовов (v-вызовов), dN  каналов из общего числа N каналов выде-
ляются лишь для вызовов данных (d-вызовы), а остальные

vd v dN N N N= − −  каналов используются совместно вызовами речи и
данных. Иными словами, весь пул из N каналов делится на три зоны:
индивидуальную зону из vN  каналов (v-зона лишь для v-вызовов), ин-
дивидуальную зону из dN  каналов (d-зона лишь для d-вызовов) и об-
щую из vdN  каналов (vd-зона для v- и d-вызовов). Изолированность
распределения каналов означает, что ни один канал не может быть пе-
реведен из одной зоны в другую. При этом для эффективного использо-
вания d-зоны каналов считается, что b является делителем dN , т.е.

d dN K b= , где dK  является максимально возможным числом d-вызовов
в указанной зоне каналов.

Интенсивность x-вызовов равна { }λ , , , , .x x hv ov hd od∈  Функции
распределения времени занятости каналов разнотипными вызовами яв-
ляются экспоненциальными, среднее время занятости канала для одного
речевого вызова (нового или хэндовер) равно 1 μv , а соответствующий
показатель для вызовов данных (новых или хэндовер) равен 1 μ .d

Идентичность средних времен занятия каналов новых и хэндовер-
вызовов обоих типов объясняется отсутствием памяти экспоненциаль-
ного распределения. Функция распределения времени занятости канала
v-вызовом (d-вызовом) каждого типа в vd-зоне также является экспо-
ненциальной с тем же средним.

Разнотипные вызовы используют каналы соответствующих индиви-
дуальных зон согласно полнодоступной схеме (Complete Sharing, CS),
т.е. если в момент поступления вызова речи (данных) любого типа име-
ется хотя бы один свободный канал в соответствующей индивидуаль-
ной зоне, то он занимает любой свободный канал этой зоны; иначе этот
свободный канал ищется в общей зоне. Это означает, что поступивший
вызов речи (новый или хэндовер) принимается в vd-зону, если в этой
зоне имеется хотя бы один свободный канал; в противном случае, по-
ступивший в vd-зону вызов речи теряется. Точно так же поступивший
вызов данных (новый или хэндовер) принимается в vd-зону, если в этой
зоне имеются хотя бы b свободных каналов; в противном случае, т.е.
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если число свободных каналов в общей зоне меньше, чем b, то посту-
пивший в vd-зону вызов данных теряется.

Основными показателями QoS разнотипных вызовов являются веро-
ятности их потери, { }, , , ,xP x hv ov hd od∈ , и коэффициент использова-
ния каналов общей зоны, uC . Проблема состоит в нахождении этих па-
раметров.

Согласно данной схеме, v-вызовы и d-вызовы, которые получили от-
каз в своей (индивидуальной) зоне каналов, поступают в общую зону.
Потому интенсивность поступления v-вызовов ( )λv

�  и d-вызовов ( )λd
�  в

общую зону определяются так:
( ) ( )λ λ , λ λ ,i i

v v v d d dP P= =� � (1)

где λ λ λ , λ λ λv ov hv d od hd= + = +  и ( )i
vP  и ( )i

dP  обозначают соответст-
венно вероятности потери ov-вызовов и hv-вызовов в v-зоне каналов.

Очевидно, что величины ( )i
vP  и ( )i

dP  определяются как вероятности
потери в классических моделях Эрланга / / / 0vM M N  и / / / 0dM M K  с
нагрузками ν λ μv v v=  и ν λ μd d d=  соответственно, т.е. с помощью
В-формулы Эрланга:

( ) ( )

0 0

νν
! !

; .
ν ν

! !

dv

v d

KN
v d

ii v d
i dN Kk k

v d

k k

N K
P P

k k= =

= =

∑ ∑
(2)

Потерянные в индивидуальных зонах разнотипные вызовы поступа-
ют в общую зону, которая имеет 1vdN >  каналов. Поэтому далее нужно
исследовать систему обслуживания с двумя пуассоновскими потоками с
интенсивностями λv

�  и λd
� .

Поскольку средние времена обработки новых и хэндовер вызовов
каждого типа являются одинаковыми, то состояние данной системы в
произвольный момент времени определяется двумерным вектором

( ),d vn n=n , где dn  и vn  указывают соответственно суммарное число d-
вызовов и v-вызовов в общей зоне. Разнотипные вызовы равноправно
используют каналы общей зоны, поэтому фазовое пространство состоя-
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ний (ФПС) соты определяется так:
[ ]{ }: 0,1,..., / , 0,1,..., ; ,d vd v vd d v vdS n N b n N n b n N= = = + ≤n (3)

где [x] означает целую часть x.
Элементы производящей матрицы данной двумерной цепи Маркова

(ЦМ) обозначим через ( )1 ,q ′n n . Эти величины определяются из сле-
дующих соотношений:

( )

1

2

1

2

λ , если ,
λ , если ,

, μ , если ,
μ , если ,

0, в остальных случаях,

d

v

d d

v v

q n
n

′⎧ = +
⎪ ′ = +⎪

′ = ′⎨ = −
⎪ ′ = −⎪
⎩

n n e
n n e

n n n n e
n n e

�
�

(4)

где 1 2(1,0), (0,1).= =e e
Вероятность состояния ( ),d vn n  обозначим через ( ),d vp n n .
Утверждение. Стационарное распределение вероятностей состояний

системы имеет следующий вид:

( ) ( ) ν ν
, 0,0 ,

! !

d vn n
d v

d v
d v

p n n p
n n

=
� �

(5)

где ν λ /μ ,d d d= �� ν λ /μ ,v v v= �� ( )1 0,0p  находится из условия нормиров-
ки, т.е. ( )

( ),
, 1

d v

d v
n n S

p n n
∈

=∑ .

Доказательство. Из теоремы Колмогорова [7] об обратимости
двумерных цепей Маркова получаем, что в данной системе существу-
ет нулевая циркуляция между ее состояниями, т.е. удовлетворяется
условие локального баланса. Тогда удается выразить вероятность лю-
бого состояния ( ),d vn n  через вероятность состояния ( )0,0 , при этом
можно выбирать любой путь между этими двумя состояниями в соот-
ветствующем графе переходов между состояниями цепи. Таким обра-
зом, выбирая путь ( ) ( ) ( ) ( ) ( )0,0 , 1,0 ,..., ,0 , ,1 ,..., ,d d d vn n n n  между со-
стояниями ( )0,0  и ( ),d vn n , получим, что мультипликативное пред-
ставление (5) справедливо для нахождения вероятностей состояний
изучаемой модели.
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Поскольку речевые вызовы теряются тогда, когда все каналы общей
зоны заняты, то для вычисления вероятности потери таких вызовов по-
лучим следующую формулу:

( ) ( )
( ),

, ,
d v

v d v v d vd
n n S

P p n n I n bn N
∈

= + =∑ (6)

где I(A) – индикаторная функция события A.
Вызовы данных теряются тогда, когда число свободных каналов об-

щей зоны меньше, чем b , следовательно вероятность потери таких вы-
зовов вычисляется из следующей формулы:

( ) ( )
( ),

, .
d v

d d v vd v d
n n S

P p n n I N n bn b
∈

= − − <∑ (7)

Коэффициент использования каналов общей зоны определяется так:

( )( )
( ),

, .
d v

u d v v d vd
n n S

C p n n n bn N
∈

⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ (8)

Выводы

Предложена одна схема разделения каналов в интегральных сотовых
сетях связи, в которых осуществляется обработка речевых вызовов и
вызовов данных. Предполагается, что вызовы данных являются широ-
кополосными. Весь пул каналов изолированно разделен между разно-
типными вызовами, при этом имеется общая зона каналов для обслужи-
вания разнотипных вызовов. Индивидуальные зоны и общая зона кана-
лов используются равноправно вызовами любого типа. Разработан ал-
горитм расчета показателей QoS предложенной схемы разделения кана-
лов при заданных значениях числа каналов и нагрузок разнотипных вы-
зовов. С помощью этого алгоритма можно проводить расчет характери-
стик системы.
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ИССЛЕДОВАНИЕ ДВУХФАЗНОЙ БЕСКОНЕЧНОЛИНЕЙНОЙ
СМО С ММРР-ВХОДЯЩИМ ПОТОКОМ ТРЕБОВАНИЙ

СЛУЧАЙНОГО ОБЪЕМА*

А.А. Галилейская, Е.Ю. Лисовская
Томский государственный университет, г. Томск, Россия

Рассматривается двухфазная ресурсная система массового обслужи-
вания (СМО), которая характеризуется наличием буфера, имеющего не-
ограниченный размер. Каждое поступающее в систему требование за-
нимает некоторый случайный объем памяти в буфере, а по окончании
обслуживания освобождает его. Объем занимаемой памяти не меняется
в течение пребывания требования в системе [1].

Данные системы представляют интерес для практических приложе-
ний, в частности для систем передачи данных при их проектировании
или оптимизации [2], а также для моделирования процессов в социаль-
но-экономических системах (страховых компаний, банков, негосудар-
ственных пенсионных фондов).

В работах [3, 4] были получены асимптотические характеристиче-
ские функции первого и второго порядков в условии высокой интен-
сивности непуассоновских входящих потоков, показано, что распреде-
ление вероятностей суммарного объема требований в системе является
асимптотически гауссовским.

Математическая модель

Рассмотрим двухфазную СМО с неограниченным числом приборов,
с поступающим на вход MMPP-потоком заявок. Данный поток, управ-
ляемый цепью Маркова ( ) 1,2,...,k t K∈ , задается матрицей инфините-
зимальных характеристик Q = ||qij|| размера K×K и набором неотрица-
тельных величин 1λ ,...,λK . Предполагаем, что каждое требование ха-
рактеризуется некоторым случайным объёмом 0v > . ( )G y  – функция

                                                       
* Исследование выполнено при финансовой поддержке РФФИ в рамках научного
проекта № 16-31-00292 мол_а.
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распределения случайной величины v, ( )1B x  и ( )2B x  – функции рас-
пределения продолжительности обслуживания заявок на первой фазе и
второй фазах соответственно. После обслуживания на первой фазе за-
явка с тем же объемом переходит на вторую фазу, после обслуживания
на второй фазе заявка покидает систему и «уносит» с собой свой объем.

Пусть ik(t)– число заявок на k-й фазе в момент времени t, Vk(t) – сум-
марный объем заявок на k-й фазе в момент времени t, где k = 1,2 – но-
мер фазы.

Поставим задачу нахождения характеристик четырехмерного слу-
чайного процесса ( ) ( ) ( ) ( ){ }1 1 2 2, , ,i t V t i t V t . Отметим, что исследуемый
процесс не является марковским, поэтому для его исследования приме-
ним метод динамического просеивания.

Метод динамического просеивания

Более подробно просеивание заявок рассматривается в работах
[3−5]. Отметим лишь, динамические вероятности просеивания заявок
входящего потока.

Вероятность того, что заявка входящего потока, поступившая в сис-
тему в момент времени t > t0 к моменту времени T не закончит обслу-
живание на первой фазе, то есть просеется на первую ось, равна
S1(t) = 1 – B1(T – t). Вероятность того, что заявка входящего потока, по-
ступившая в систему в момент времени t > t0, к моменту времени T
закончит обслуживание на первой фазе и не закончит на второй, то
есть просеется на вторую ось, равна S2(t) = B1(T – t) – B2

*(T – t), где
B2

*(τ) = (B1*B2)(τ) – свертка функций распределения B1(x), B2(x) дли-
тельности обслуживания на фазах системы. Причем заявка может не
просеяться ни на одну из фаз с вероятностью S0(t) = 1 – S1(t) – S2(t), то
есть к моменту времени T заявка закончит обслуживание на обеих фа-
зах и покинет систему.

Обозначим через nk(t) – число событий, наступивших на k-й оси про-
сеянного потока до момента t; Wk(t) – суммарный объем просеянных
заявок на k-ю ось.

Нетрудно показать, что для процесса {i1(t), V1(t), i2(t), V2(t)} справед-
ливо

( ) ( ) ( ) ( ){ }1 1 1 1 2 2 2 2, , ,P i T m V T z i T m V T z= < = < =

( ) ( ) ( ) ( ){ }1 1 1 1 2 2 2 2, , ,P n T m W T z n T m W T z= = < = < , (1)
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для любых m1, m2 = 0, 1, 2, … и z1, z2 ≥ 0. Будем использовать равенство
(1) для исследования процесса {i1(t), V1(t), i2(t), V2(t)} с помощью иссле-
дования процесса {n1(t), W1(t), n2(t), W2(t)}.

Система дифференциальных уравнений Колмогорова

Введем обозначение распределения вероятностей марковского про-
цесса {k(t), n1(t), W1(t), n2(t), W2(t)}:

( ){ }
1 1 2 2

1 1 1 1 2 2 2 2

( , , , , , )
, ( ) , ( ) , ( ) , ( )

P k n w n w t
P k t k n t n W t w n t n W t w

=
= = = < = < ,

где ( )k t  – состояние управляющей цепи Маркова в момент времени t.
Для этого распределения составим ∆t-методом прямую систему диффе-
ренциальных уравнений Колмогорова:

( ) ( ) ( )( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

1

2

1 1 2 2
1 2 1 1 2 2

1 1 1 2 2
0

2 1 1 2 2
0

ν 1 1 2 2
ν

, , , , ,
λ , , , , ,

λ , 1, , , ,

+λ , , , 1, ,

ν, , , , , ,

k

w

k

w

k

k

P k n w n w t
S t S t P k n w n w t

t

S t P k n w y n w t dG y

S t P k n w n w y t dG y

q P n w n w t

∂
= − + +

∂

+ − − +

− − +

+

∫

∫
∑ (2)

при k = 1,…,K, n1, n2 = 0,1,2,…, w1, w2 > 0.
Начальное условие определим в виде

( ) { 1 1 2 2
1 1 2 2 0

( ), 0,, , , , ,
0, ,
r k n w n wP k n w n w t
иначе

= = = =
=

где r(k) – стационарная вероятность того, что цепь Маркова будет нахо-
диться в состоянии k.

Характеристические функции

Введем характеристическую функцию вида

( ) ( )1 1 1 1 2 2 2 2

1 2

1 1 2 2 1 1 2 2
0 00 0

, , , , , , , , , ,ju n jv w ju n jv w

n n
h k u v u v t e e e e P k n dw n dw t

∞ ∞∞ ∞

= =

= ∑ ∑∫ ∫ ,
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где 1j = −  – мнимая единица. Тогда из (2) можем записать следующие
уравнения:

( ) ( )

( ) ( )( ) ( ) ( )( ) ( )

1 1 2 2
1 1 2 2

*1 2
1 1 2 2 ν 1 1 2 2

ν

, , , , ,
λ , , , , ,

* 1 1 ν, , , , ,

k

k

h k u v u v t
h k u v u v t

t
ju juS t e G v S t e G v q h u v u v t

∂
= ×

∂
⎡ ⎤× − + − +⎢ ⎥⎣ ⎦ ∑ ,

при k = 1,…,K, где ( ) ( )*

0

jvyG v e dG y
∞

= ∫ .

Перепишем полученную систему в виде матричного уравнения:
( ) ( )1 1 2 2

1 1 2 2
, , , ,

, , , ,
u v u v t

u v u v t
t

∂
= ⋅

∂
h

h

( ) ( )( ) ( ) ( )( )( )1 2* *
1 1 2 21 1ju juS t e G v S t e G v⎡ ⎤⋅ − + − +⎣ ⎦Λ Q , (3)

с начальным условием ( )1 1 2 2 0, , , ,u v u v t =h r , где

( ) ( ) ( )[ ]1 1 2 2 1 1 2 2 1 1 2 2, , , , 1, , , , , ,..., , , , , ,u v u v t h u v u v t h K u v u v t=h ,

r = [r(1), …, r(K)] – вектор стационарного распределения вероятностей
управляющей цепи Маркова, удовлетворяющий следующей системе:

{ ,
1,

=
=

rQ 0
re

где e – единичный вектор-столбец.

Метод асимптотического анализа

Точное решение уравнения (3) в общем случае невозможно, но его
можно решить при асимптотическом условии. В данной работе рас-
сматривается асимптотическое условие высокой интенсивности входя-
щего потока и предельно частых изменений состояний управляющей
цепи Маркова. Подставим в уравнение (3) Λ = NΛ1 и Q = NQ1, где
N → ∞ – некоторый параметр. Тогда можно записать

( ) ( )1 1 2 2
1 1 2 2

, , , ,1 , , , ,
u v u v t

u v u v t
N t

∂
= ×

∂
h

h

( ) ( )( ) ( ) ( )( )( )1 2* *
1 1 1 2 2 11 1ju juS t e G v S t e G v⎡ ⎤× − + − +⎣ ⎦Λ Q (4)



Исследование двухфазной бесконечнолинейной СМО с ММРР-входящим потоком  47

с начальным условием ( )1 1 2 2 0, , , ,u v u v t =h r . Решение уравнения (4) бу-
дем находить методом асимптотического анализа, алгоритм решения
изложен подробно в работах [3, 4, 6].

Лемма. Асимптотическая характеристическая функция первого по-
рядка четырехмерного случайного процесса {n1(t), W1(t), n2(t), W2(t)}
имеет вид

( ) ( ) ( ) ( ) ( )
0 0

1 1 2 2 1 1 1 1 1 2 2 1 2, , , , exp κ κ
t t

t t

u v u v t jN u v a S d jN u v a S d
⎧ ⎫⎪ ⎪= + τ τ+ + τ τ⎨ ⎬
⎪ ⎪⎩ ⎭

∫ ∫1h r ,

где 1 1κ = rΛ e  – средняя интенсивность входящего потока, a1 – средний
объем заявки.

Теорема. Асимптотическая характеристическая функция второго
порядка четырехмерного случайного процесса {n1(t), W1(t), n2(t), W2(t)}
имеет вид
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( ) ( ) ( ) ( )
0 0 0

2
2 2 1 1 2 2 1 2 1 2 1 1 2κ τ τ κ τ τ κ τ τ τ
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где ( )2 1 1κ 2 κ= −g Λ I e , ( )2
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= ∫ , и g – вектор-строка, удовлетво-

ряющая системе матричных уравнений
( ){ 1 1 1κ ,

.const
= −

=
gQ r I Λ
ge

Следствие. Для характеристической функции процесса {i1(t), V1(t),
i2(t), V2(t)} в стационарном режиме получим
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Очевидно, что случайный процесс {i1(t), V1(t), i2(t), V2(t)} является
асимптотически гауссовским с вектором математических ожиданий

[ ]1 1 1 1 2 1 2κN b a b b a b= ⋅a  и ковариационной матрицей

1 1 2 1 1 1 1 2 1 1 1 2 1
2 2

1 1 1 2 1 1 1 2 1 2 1 1 2 1 2 1

1 2 1 1 2 2 2 1 1 2 2 1 2
2 2

2 1 2 1 1 1 2 2 1 2 1 2 2 2 1 2

κ κ β κ κ β κ κ
κ κ β κ κ β κ κ

κ κ κ κ β κ κ β
κ κ κ κ β κ κ β

b a b a b a b
a b a a b a a b a bN b a b b a b a

a b a b a b a a b a

+ +⎡ ⎤
⎢ ⎥+ +⎢ ⎥= ⋅

+ +⎢ ⎥
⎢ ⎥+ +⎣ ⎦

K .

Заключение

Проведено исследование двухфазной ресурсной СМО с бесконеч-
ным числом приборов. Показано, что совместное распределение веро-
ятности числа заявок на фазах и их суммарного объема на каждой фазе
сходится к четырехмерному гауссовскому распределению в асимптоти-
ческом условии высокой интенсивности входящего потока.
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ИССЛЕДОВАНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ
СТРАХОВОЙ КОМПАНИИ В ВИДЕ СИСТЕМЫ МАССОВОГО
ОБСЛУЖИВАНИЯ С ВЫСОКОИНТЕНСИВНЫМ ПОТОКОМ

ВХОДЯЩИХ РИСКОВ И В СЛУЧАЙНОЙ СРЕДЕ

Д.Д. Даммер, А.А. Назаров
Томский государственный университет, г. Томск, Россия

Исследования в области потоков событий в различных предметных
областях показывают, что классические модели потоков (например, пу-
ассоновские) не совсем точно моделируют реальные потоки. В связи с
этим достаточно актуальной является задача исследования моделей
экономических систем с учетом этого аспекта. Например, интенсив-
ность поступления рисков в страховую компанию не является постоян-
ной величиной, а зависит от воздействия каких-то внешних случайных
факторов, таких, как время года, политика государства (закон об обяза-
тельном страховании автогражданской ответственности), вероятность
стихийных бедствий и т.д. В основном во всех работах, посвященных
исследованию математических моделей страховых компаний, находятся
их характеристики при пуассоновском потоке входящих рисков. Так, в
[1, 2] получено двумерное распределение числа застрахованных рисков
и требований на выплату единовременных страховых сумм в модели с
ограниченным и неограниченным полем. Автором [3] исследуется мо-
дель с учетом неявной рекламы. В данной работе рассматривается ма-
тематическая модель страховой компании в случайной среде, то есть в
случае, когда интенсивность входящего потока, интенсивность наступ-
ления страховых случаев и время действия договора страхования не яв-
ляются постоянными величинами, а зависят от воздействия внешних
факторов и меняются со временем.

Рассмотрим модель страховой компании с неограниченным страхо-
вым полем [4] в виде системы массового обслуживания с неограничен-
ным числом обслуживающих приборов (рис. 1).

Пусть в компанию поступают риски (заявки), образуя высокоинтен-
сивный модулированный пуассоновский поток событий [5], управляе-
мый случайным процессом ( )k t , который является цепью Маркова
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γk

μk

Nλk

γk

•
•
•

μk

Рис. 1. Модель страховой компании в виде системы
массового обслуживания с неограниченным количест-
вом приборов в случайной среде

с непрерывным временем, определяемым матрицей NQ  инфинитези-
мальных характеристик 

1 2k kNq , 1 1...k K= , 2 1...k K= . При этом выпол-
няются условия

( ) ( ) ( ){ } ( )1 , λkP i t t i i t i k t k N t t+ ∆ = + = = = ∆ + ο ∆ ,

( ) ( ) ( ){ } ( )1 ,P i t t i i t i k t k t+ ∆ > + = = = ο ∆ .

Определим диагональную матрицу NΛ  с элементами λkN на главной
диагонали. Здесь λ 0kN ≥  – интенсивность поступления рисков в ком-
панию, когда цепь Маркова находится в состоянии 1....k K= , N – пара-
метр высокой интенсивности потока, λk  – фиксированная величина.
Таким образом, состояние цепи Маркова ( )k t  определяет состояние
случайной среды.

При поступлении в компанию риска (заявки) заключается договор
страхования. Срок действия договора соответствует длительности об-
служивания заявки на приборе. Каждый риск, находящийся в компании,
на протяжении длительности действия договора страхования независи-
мо от других рисков генерирует с интенсивностью γk  требование на
выплату страховых сумм. Эти интенсивности также зависят от состоя-
ния среды и образуют диагональную матрицу Γ . Требования на выпла-
ту страховых сумм также образуют поток событий. Естественно счи-
тать, что требование риска на выплату определяется наступлением
страхового случая. Величину продолжительности договора страхования
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для каждого риска, находящегося в компании, будем считать случайной
величиной, распределённой по экспоненциальному закону с парамет-
ром μk , который также зависит от состояния среды. Эти величины об-
разуют диагональную матрицу Μ .

Обозначим: n(t) – число требований на выплату за интервал времени
[0,t], i(t) – число страховых рисков, находящихся в компании в момент
времени t, ( ) ( ) ( ) ( ){ }, , , ,kP i n t P i t i  n t n k t k= = = =  – вероятность того,
что в момент времени t в компании находится i застрахованных рисков
и число требований на выплату страхованных сумм к этому же моменту
составило n, среда находится в состоянии k. Задача состоит в том, чтобы
найти распределение вероятностей двумерного процесса ( ) ( ){ },i t n t .

Используя ∆t-метод, составим систему дифференциальных уравне-
ний Колмогорова [6] для распределения вероятностей Pk(i,n,t). Сначала
запишем допредельные равенства:

( ) ( ) )( )(( )( ), , , , 1 λ 1 μ 1 γ 1k k k k k kkP i n t t P i n t N t i t i t Nq t+ ∆ = − ∆ − ∆ − ∆ + ∆ +

( ) ( )( )1, , λ 1, , 1 μk k k kP i n t N t P i n t i t+ − ∆ + + + ∆ +

( ) ( ) ( )ν ν
ν

, 1, γ , ,k k k
k

P i n t i t P i n t Nq t t
≠

+ − ∆ + ∆ + ο ∆∑ .

Перейдем к пределу при 0t∆ → , получим систему дифференциаль-
ных уравнений

( ) ( )( ) ( ), ,
, , λ μ γ 1, , λk

k k k k k k
P i n t

P i n t N i i P i n t N
t

∂
= − + + + − +

∂

( )( ) ( ) ( )ν ν
ν 1

1, , 1 μ , 1, γ , ,
K

k k k k kP i n t i P i n t i P i n t Nq
=

+ + + + − + ∑ . (1)

Для решения системы (1) определим частичные характеристические

функции ( ) ( )1 2
1 2

, 0
, , , ,ju i ju n

k k
i n

H u u t e e P i n t
∞

=

= ∑ , 1...k K= , где j – мнимая

единица. Тогда из системы (1) с учетом свойств характеристических
функций получим дифференциальное уравнение в частных производ-
ных первого порядка относительно функции ( )1 2, ,kH u u t :
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( ) ( )
1 21 2 1 2

1

, , , ,
μ μ γ γju juk k

k k k k
H u u t H u u t

j e e
t u

−∂ ∂ ⎡ ⎤= − + − +⎣ ⎦∂ ∂

( ) ( ) ( )1
1 2 ν 1 2 ν

ν 1
λ 1 , , , ,

K
ju

k k kN e H u u t H u u t Nq
=

+ − + ∑ , 1...k K= . (2)

Рассмотрим векторную характеристическую функцию
( ) ( ) ( ) ( ){ }1 2 1 1 2 2 1 2 1 2, , , , , , , ,...., , ,Ku u t H u u t H u u t H u u t=H ,

тогда уравнение (2) относительно этой функции можно записать так:
( ) ( ) ( ) ( )1 21 2 1 2

1

, , , ,
1 1ju juu u t u u t

j e e
t u

−∂ ∂ ⎡ ⎤= − + − +⎣ ⎦∂ ∂
H H

Μ Γ

( ) ( )1
1 2, , 1juu u t N e N⎡ ⎤+ − +⎣ ⎦H Λ Q . (3)

Полученное уравнение будем решать методом асимптотического
анализа [7] в предельном условии высокой интенсивности потока вхо-
дящих рисков и предельно частых изменений состояний среды. Сначала
рассмотрим асимптотику первого порядка. Для этого в уравнении (3)
выполним замены

1ε
N

= , 1 1εu w= , 2 2εu w= , ( ) ( )1 2 1 2, , , , ,εu u t w w t=H F ,

получим
( ) ( ) ( ) ( )1 2ε ε1 2 1 2

1

, , ,ε , , ,ε
ε 1 1jw jww w t w w t

j e e
t w

−∂ ∂ ⎡ ⎤= − + − +⎣ ⎦∂ ∂
F F

Μ Γ

( ) ( )1ε
1 2, , ,ε 1jww w t e⎡ ⎤+ − +⎣ ⎦F Λ Q . (4)

Обозначим ( ) ( )1 2 1 2ε 0
lim , , ,ε , ,w w t w w t
→

=F F , и эту функцию будем на-

зывать асимптотическим решением уравнения (4). В этом же уравнении
сделаем предельный переход ε 0→ , получим ( )1 2, ,w w t =F Q 0 , т.е.
функция ( )1 2, ,w w tF  является решением однородной системы линей-
ных алгебраических уравнений (5). Решение этой системы имеет вид

( ) ( )1 2 1 2, , , ,w w t w w t= ΦF R , (6)

где ( )1 2, ,w w tΦ  – некоторая скалярная функция, а R – вектор стацио-
нарного распределения вероятностей значений цепи Маркова k(t), опре-
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деляемой системой уравнений =R Q 0  и условием нормировки 1=R E ,
где E  – единичный вектор-столбец размерности K. Чтобы найти функ-
цию ( )1 2, ,w w tΦ , просуммируем уравнения системы (4), с учетом усло-
вия ( )1 2, ,w w t =F Q 0 , получим

( ) ( ) ( ) ( )1 2ε ε1 2 1 2

1

, , ,ε , , ,ε
ε 1 1jw jww w t w w t

j e e
t w

−∂ ∂ ⎡ ⎤= − + − +⎣ ⎦∂ ∂
F F

E ΜE ΓE

( )( )1ε
1 2, , ,ε 1jww w t e+ −F ΛE . (7)

Разделим выражение (7) на ε , совершим предельный переход ε 0→ , с
учетом (6) и условия 1=R E , получим уравнение

( ) ( ) ( )1 2 1 2 1 2
1 2

1 1

, , , , , ,w w t w w t w w t
w w

t w w
∂Φ ∂Φ ∂Φ

= − + +
∂ ∂ ∂

RΜE RΓE

( )1 1 2, ,jw w w t+ Φ RΛE , (8)

с начальным условием

( ) ( ) { }1 2 1 1, ,0 expw w w j wΦ = Φ =
RΛE
RΜE

.

Решение дифференциального уравнения (5) определяется решением
системы обыкновенных дифференциальных уравнений для характери-
стических кривых [8]:

1 1 2

1 1 2 2 1 2 1

( , , )
1 κ κ ( , , ) κ

dw d w w tdt
w w j w w t w

Φ
= =

− Φ
, (9)

где κ = RΛE , 1κ = RΜE , 2κ = RΓE . Решение уравнение (8) с учетом
начального условия будет иметь вид

( ) 2
1 2 1 2

1 1

κκκ, , exp
κ κ

w w t j w j w t⎧ ⎫
Φ = +⎨ ⎬

⎩ ⎭
. (10)

Рассмотрим асимптотику второго порядка. Обозначим через
( )2 1 2, ,u u tH  векторную функцию, удовлетворяющую выражению

( ) ( ) 2
1 2 2 1 2 1 2

1 1

κκκ, , , , exp
κ κ

NNu u t u u t j u j u t⎧ ⎫
= +⎨ ⎬

⎩ ⎭
H H . (11)
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Подставим это выражение в (3), получим уравнение относительно
функции ( )2 1 2, ,u u tH :

( ) ( ) ( ) ( ) ( )1 22 1 2 2 1 2
2 1 2

1

, , , ,
1 1 , ,ju juu u t u u t

j e e u u t
t u

−∂ ∂ ⎡ ⎤= − + − + ×⎣ ⎦∂ ∂
H H

Μ Γ H

( ) ( ) ( )1 1 22
2

1 1

κκ κ1 1 1
κ κ

ju ju juN NN e N j u e e−⎡ ⎤⎡ ⎤× − + − − − + −⎢ ⎥⎣ ⎦⎣ ⎦
Λ Q I Μ Γ , (12)

где I – диагональная единичная матрица.
В (12) выполним замены

2 1ε
N

= , 1 1εu w= , 2 2εu w= , ( ) ( )2 1 2 2 1 2, , , , ,εu u t w w t=H F .

Тогда уравнение (12) с учетом этих обозначений будет иметь вид
( ) ( )2 2 1 2

2 1 2
, , ,ε

ε ,ε
w w t

w ,w ,t
t

∂
= ×

∂
F

F

( ) ( ) ( )1 1 2ε ε2
2

1 1

κκ κ1 ε 1 1
κ κ

jw jw jwe j w e eε −⎡ ⎤⎡ ⎤× Λ − + − − − + − +⎢ ⎥⎣ ⎦⎣ ⎦
Q I Μ Γ

( ) ( ) ( )1 2ε ε2 1 2

1

,ε
ε 1 1jw jww ,w ,t

j e e
w

−∂ ⎡ ⎤+ − + −⎣ ⎦∂
F

Μ Γ . (13)

Обозначим ( ) ( )2 1 2 2 1 2ε 0
lim , , ,ε , ,w w t w w t
→

=F F , и эту функцию мы будем

называть асимптотическим решением уравнения (13). Далее в этом же
уравнении выполним предельный переход ε 0→ , получим уравнение

( )2 1 2, ,w w t =F Q 0 , решение которого запишем в виде ( )2 1 2, ,w w t =F
( )2 1 2, ,w w t= ΦR , где скалярная функция ( )2 1 2, ,w w tΦ  будет определена

ниже. Решение уравнения (13) будем искать в виде разложения

( ) ( ) ( )( )2
2 1 2 2 1 2 1 1 2 2, , ,ε , , ε ε εw w t w w t jw jw= Φ + + + ΟF R f f , (14)

подставив которое в (13) и с учетом =R Q 0 , получим систему уравне-
ний для определения векторов 1 2,f f :

1
1

κ
κ

= −f Q RΜ RΛ , 2 2
1 1

κ κκ
κ κ

= −f Q R RΓ . (15)
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Для нахождения функции ( )2 1 2, ,w w tΦ  просуммируем все уравнения
системы (13), подставим разложение (14), получим уравнение

( ) ( ) ( )2 1 2 2 1 2
1 1 2 2

1

, , , ,
κ κ

w w t w w t
w w

t w
∂Φ ∂Φ

+ − =
∂ ∂

 
( ) ( ) ( )2 2 2

2 1 2 1 1 1 2 2 2 1 2 2 1 1 2
1

κκ
, , κ ,

2κ
w w t w A w A w w A A⎛ ⎛ ⎞ ⎞

= Φ − + − + +⎜ ⎜ ⎟ ⎟
⎝ ⎝ ⎠ ⎠

f f f f (16)

с начальным условием

( )
2

1 1 1
2 1 2

1

κ
, ,0 exp

κ 2
A w

w w
⎧ ⎫−

Φ = ⋅⎨ ⎬
⎩ ⎭

f
,

где 1
1

κ
κ

A ⎛ ⎞
= −⎜ ⎟

⎝ ⎠
Μ Λ E , 2 2

1 1

κ κκ
κ κ

A ⎛ ⎞
= −⎜ ⎟

⎝ ⎠
I Γ E , I  – единичная матрица.

Решение дифференциального уравнения (16) будем искать в виде

( ) ( ) ( )( ){ }2 2
2 1 2 11 1 12 1 2 22 2

1, , exp 2
2

w w t K w K t w w K t wΦ = − + + , (17)

где ( )11 22,K K t  – дисперсии процессов ( ) ( ),i t n t  соответственно,
( )12K t  – ковариация ( ) ( ),i t n t . Подставим предполагаемое решение

(17) в (16) и с учетом ( ) ( )12 220 0, 0 0K K= =  получим ( )11 22,K K t  и
( )12K t  в виде

1 1
11

1

κ
κ

A
K

−
=

f
,

( ) ( )1κ1 1 1 2 2 1
12 22

11

κ
κ 1

κκ
tA A A

K t e−⎛ ⎞− +
= − −⎜ ⎟

⎝ ⎠

f f f
,

( ) 21 1 1 2 2 1 2
22 2 2 2 22

1 11

κ κκ
2 κ κ

κ 2κκ
A A A

K t t A
⎛ ⎞− + ⎛ ⎞

= − − − +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

f f f
f

( )1κ 21 1 1 2 2 1
2 23 2

1 1

κ
2 1 κ κ

κ κ
t A A A

e− ⎛ ⎞− +
+ − −⎜ ⎟

⎝ ⎠

f f f
.
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Теперь запишем выражение для функции ( )1 2, ,u u tH :

( ) ( ) ( ) ( )( )( ){ 2 22
1 2 11 1 12 1 2 22 2

1, , exp 2
2

u u t K Nu K t N u u K t Nu= − + + +H R

2
1 2

1 1

κκκ
κ κ

NNj u j u t⎫
+ + ⎬

⎭
.

Таким образом, характеристическая функция ( ) ( )1 2 1 2, , , ,h u u t u u t= H E
двумерного процесса числа застрахованных в компании рисков и числа
требований на выплату страховых сумм в указанных выше предельных
условиях имеет вид двумерной характеристической функции гауссов-
ского распределения. Полученные результаты могут быть полезны для
анализа деятельности страховых компаний.
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МНОГОПРОДУКТОВАЯ МОДЕЛЬ БЫСТРО ПОРТЯЩИХСЯ
ЗАПАСОВ С ЗАВИСЯЩИМ ОТ ЦЕНЫ СПРОСОМ

А.В. Китаева, К.И. Лившиц, Е.С. Ульянова
Томский государственный университет, г. Томск, Россия

Одной из классических задач теории управления запасами является
проблема управления запасами, имеющими ограниченный срок годно-
сти, которая интенсивно изучается в последнее время [1, 2]. Первона-
чально исследовалась задача реализации единственного товара, имею-
щего фиксированную цену, затем аналогичные задачи начали рассмат-
риваться для многопродуктовых моделей [2]. Целью данной работы яв-
ляется определение оптимального размера многопродуктовой партии
товара, имеющего ограниченный срок реализации, и оптимальных роз-
ничных цен, которые обеспечивают продавцу наибольшую среднюю
прибыль.

1. Постановка задачи и асимптотическая
плотность вероятностей спроса

Продавец, располагая средствами размера S , приобретает партию
товара 1 2[ , ]Тmq q q q= …  по оптовым ценам 1 2[ , ]Тmd d d d= …  и перепро-

дает её по розничным ценам 1 2[ , ]Тmc c c c= … . Считается, что время реа-
лизации ограничено. По истечению времени T  товар не может быть
реализован, а продавец несет дополнительные затраты 1 2[ , ]Тmb b b b= … ,
связанные с утилизацией непроданной части товара. Необходимо опре-
делить оптимальный размер партии товара q  и розничные цены c , ко-
торые обеспечивают продавцу максимальную среднюю прибыль.

Предполагается, что поток покупателей – пуассоновский поток с из-
вестной интенсивностью ( ),t cλ , где t  – текущий момент времени. Ин-
тенсивность потока покупателей зависит, в частности, от розничных цен
c  и может меняться, например, при изменении розничных цен. Далее
предполагается, что покупатели приобретают товар независимо друг от
друга. Объем покупки – случайная величина 1 2[ , ]Тmz z z z= …  с вектором
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средних значений 1 2[ , ]Тma a a a= … , ковариационной матрицей [ ]pqR R=

и плотностью распределения ( )1 2, mp z z z… .
Пусть T  – длительность торговой сессии и n  – число покупателей

за время T . При сделанных предположениях число покупателей рас-
пределено по закону Пуассона

( )( ) ( )( )( ) exp
!

nT
P n T

n
Λ

= −Λ , (1)

где ( ) ( )
0

, ,
T

T c t c dtΛ = λ∫ . Пусть 1 2[ , ]Тj j j mjz z z z= …  – объем j -й покуп-

ки. Тогда если было совершено (или могло быть совершено) n  покупок,
то объем спроса nx  в течение торговой сессии

1 2
n

nx z z z= + + +… . (2)

Если ( )/P x n  – плотность вероятностей величины nx  и 1 2[ , ]Тmx x x x= …
– общий объем спроса на товар в течение торговой сессии, то плотность
распределения x

( ) ( ) ( )( ) ( )( )
0

,
/ exp ,

!

n

n

T c
P x P x n T c

n

∞

=

Λ
= −Λ∑ . (3)

Теорема 1. Если при ( ), ,T T c→ ∞ Λ → ∞  то случайные величины

( )
( )

i i
i

x T a
y

T
− Λ

=
Λ

, 1,i m= ,

имеют совместное нормальное распределение с нулевым средним и ко-
вариационной матрицей R.

Пример. Пусть 1m = , то есть продается один вид товара. Объемы
покупок z  – случайные величины, имеющие гамма-распределение с
параметрами α  и 1n − , где n  – целое. Тогда из (3), учитывая свойства
гамма-распределения, получим, что плотность распределения спроса x
в течение торговой сессии имеет вид

( ) ( ) ( )

( )
( ) ( )1 ,,

1

,
.

!1 !

xkkn T cT c
kn

k

T cxP x x e e
kkn

−∞ − −Λ−Λ α

=

Λ
= δ + ⋅

α −
∑  (4)
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В табл. 1 приведены значения расстояния Колмогорова

( ) ( )
( ) ( )2

,
max

1 ,x

x n T c
P x N

n n T c

⎛ ⎞− α Λ
⎜ ⎟∆ = −
⎜ ⎟α + Λ⎝ ⎠

между истинным распределением ( )P x  и его нормальной аппроксима-
цией при 2n =  и 0,5α = .

Т а б л и ц а  1

Расстояние Колмогорова между истинным распределением
и нормальной аппроксимацией

( )TΛ 5 10 50 100 200 1000

, 2n∆ = 0,031 0,014 32,604 10−⋅ 31,277 10−⋅ 46,303 10−⋅ 0

, 3n∆ = 30,019 10−⋅ 38,756 10−⋅ 31,615 10−⋅ 47,941 10−⋅ 0 0

Зная плотность распределения объема спроса, можно определить ве-
роятность ( ),P q T  того, что партия товара объема q  будет продана за
время T :

( )
1

1 2 1 2, ( , )
m

m m
q q

P q T p x x x dx dx dx
∞ ∞

= ∫ ∫… … … .

Или в асимптотическом случае:

( ) ( )

( )( ) ( ) ( )( )1 1

1
2

1 2
, ,2

det
, exp ,

2 ,2 , m m

T

mm
q T c a q T c a

R x WxP q T dx dx dx
T cT c

− ∞ ∞

−Λ −Λ

⎛ ⎞
= −⎜ ⎟Λ⎝ ⎠πΛ

∫ ∫… … (5)

где матрица 1W R−= .
В общем случае интеграл (5) через элементарные функции не выра-

жается. Однако наибольший интерес представляет случай, когда объе-
мы партий товара iq  растут с ростом T . При этом возможны два вари-
анта.

В первом случае при T → ∞  ( )( ) ( ), / ,i i iS T c a q T c= Λ − Λ → ∞ , т.е.
размер партии товара, iq , растет медленнее, чем ( )TΛ . Тогда при

1T �  вероятность
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( )

( )( ) ( )( )
( )

( )
( )
( )

, 1

, ,1
2 ,

1
22

11

,
,

2 det
,

m i i j j
ij

i j

q T c a q T c a
W

T c

m mm j j
ij

ji

eP q T
q T c a

R W
T c

=

−Λ −Λ
−

Λ

==

∑

≈
− Λ

⋅ π
Λ

∑∏
.

Во втором случае при T → ∞  ( )( )
( )

,
,
i i

i
T c a q

S
T c

Λ −
= → −∞

Λ
, т.е. размер

партии товара iq  растет быстрее, чем ( ),T cΛ . Тогда можно показать,
что при 1T >>  ( ), 1P q T << .

2. Плотность вероятностей длительности продаж при постоянной
интенсивности потока покупателей

Будем теперь предполагать, что интенсивность потока покупателей
( ),t cλ = λ  не зависит от времени. Пусть S  – стоимость товара, который

покупатель может приобрести за одну покупку. Обозначим через ( )t S
– случайную длительность продажи партии товара стоимости .S

Введем случайную величину

( ) 2t s q
z

q
−

=
δ

,

где

1

sq
m

=
λ

, 
2 2

1
2
1

m
m

σ +
δ =

λ
,

{ } { }2
1

1 1
,

m m

i i ij i j
i i

m M S c a Var S R c c
= =

= = σ = =∑ ∑ .

Теорема 2. При S → ∞  случайная величина z  имеет асимптотиче-
ски стандартное нормальное распределение.

Поэтому можно считать, что при 1S >>  длительность продажи пар-
тии товара ( )t S  имеет нормальное распределение с параметрами

( )1
1

ST S
m

=
λ

, ( )
2 2
1
2 3

1

( )S m
D S

m
+ σ

=
λ

.
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Зная плотность вероятностей длительности продаж, можно опреде-
лить стоимость партии товара, которая может быть реализована за за-
данное время T  с заданной вероятностью α . Имеем

( ){ } ( )2
11 exp

22

T t T
P t S T dt

DD −∞

⎛ ⎞−
α = ≤ = −⎜ ⎟⎜ ⎟π ⎝ ⎠

∫ ,

где 1T  и D  определяются выше. Откуда

( ) ( )
2

21 2 2
2 2
1 1

4
4
m m m

S T
m m

⎡ ⎤λ
= ψ α + + ψ α⎢ ⎥

λ λ⎣ ⎦
,

где ( )ψ α  – функция, обратная интегралу вероятностей.

3. Определение средней прибыли

Обозначим через W  среднюю прибыль продавца за время торговой
сессии. Тогда

( ) ( )( ) ( )
1 0

j

j

qm

j j j j j j j
j q

W S с q p x dx c x b q x p x dx
∞

=

⎡ ⎤
⎢ ⎥= − + + − −
⎢ ⎥⎣ ⎦

∑ ∫ ∫ , (6)

где ( )jp x  – плотность вероятностей спроса на j -й товар и S  – затра-
ченный на приобретение товара капитал:

1

m

j j
j

S d q
=

= ∑ .

При фиксированных ценах jc  и jd  и затратах за утилизацию jb  оп-

тимальные объемы партий товара jq , максимизирующие среднюю при-
быль, определятся выражениями

1 j j
j j

j j

b d
q

b c
+⎛ ⎞

= ψ −⎜ ⎟⎜ ⎟+⎝ ⎠
, (7)

где ( )j zψ  – функция, обратная ( )
0

z

jp x dx∫ . Соответствующие (7) зна-

чение средней прибыли (6)
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( ) ( )
1 0

iqm

i i i
i

W c b xp x dx
=

= +∑ ∫ . (8)

Соотношения (7), (8) получены в предположении, что на закупку
партии товара могли быть затрачены неограниченные средства .S
Предположим теперь, что на закупку товара могут быть затрачены не-
которые ограниченные средства 0S . Тогда оптимальное значение jq
должны максимизировать W  (6) при дополнительном ограничении

0
1

m

j j
j

S d q S
=

= =∑ . (9)

Решение получившейся задачи на условный экстремум (6), (9) приводит
к соотношениям

1 j j
j j

j j

b d
q

b c
+ μ⎛ ⎞

= ψ −⎜ ⎟⎜ ⎟+⎝ ⎠
, (10)

где μ  – неопределенный множитель Лагранжа, определяемый из усло-
вия

( ) 0
1

1
m

j j
j j

j j j

b d
f d S

b c=

+ μ⎛ ⎞
μ = ψ − =⎜ ⎟⎜ ⎟+⎝ ⎠

∑ . (11)

Как было показано ранее, при ( ) 1TΛ >>  плотность вероятностей
спроса ( )jp x  может быть аппроксимирована нормальным распределе-

нием с параметрами ( )T iaΛ  и ( ) iiT RΛ . При этом соотношение (7)
принимает вид

( ) ( ) 1 j j
j j jj

j j

b d
q T a T R

b c
+⎛ ⎞

= Λ + Λ ψ −⎜ ⎟⎜ ⎟+⎝ ⎠
, (12)

а соотношение (10) переходит в соотношение

( ) ( ) 1 j j
j j jj

j j

b d
q T a T R

b c
+ μ⎛ ⎞

= λ + λ ψ −⎜ ⎟⎜ ⎟+⎝ ⎠
, (13)

где ( )xψ  – функция, обратная интегралу вероятностей.
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Относительная ошибка аппроксимации /asq q q∆ = − при 1m =  для
случая гамма-распределения объема покупок с параметрами

0,5, 1 1nα = − =  в зависимости от величины ( ),T cΛ , где q  вычисляется
по формуле (7), а asq  по формуле (12) при 0,1, 2, 4,b d c= = =  приведе-
на в табл. 2.

Т а б л и ц а  2

Относительная погрешность аппроксимации

( ),cTΛ 5 10 20 50 100 200

∆ 0,074 0,035 0,017 36,7 10−⋅ 33,36 10−⋅ 31,67 10−⋅

Как следует из приведенных данных, ошибка аппроксимации прак-
тически линейно уменьшается с ростом ( ),cTΛ .

4. Определение оптимальной розничной цены

Будем в дальнейшем считать, что 1T >>  и оптимальные объемы пар-
тий товара определяются соотношениями (12). Предположим так же, что
по всем товарам устанавливается одинаковая торговая наценка, то есть

,i iс d= γ  где 1γ ≥ . Далее будем предполагать, что ( ) ( )0,T c TfΛ = λ γ , где
( )f γ  – монотонно убывающая функция: (0) 1f =  и функция ( ) 0fγ γ →

при γ → ∞ , так как по бесконечно большой цене никто покупать не бу-
дет. Условие ( ), 1T cΛ >>  переходит теперь в условие 0 1Tλ >> , а задача
определения оптимальных розничных цен сводится к задаче определе-
ния оптимальной наценки γ . Средняя прибыль (8) перепишется в виде

( ) ( )( )

( ) ( )

2

0
1

1 1
2

10

1

.
2

i i

i i

m

i i
i

b dm
b d

ii i i
i

W T a d f

f
R d b e

T

=

+⎛ ⎞
− ψ −⎜ ⎟+γ⎝ ⎠

=

⎛
γ = λ γ γ − −⎜

⎝
⎞

γ ⎟− γ + ⎟πλ ⎟
⎠

∑

∑ (14)

Так как второе слагаемое в (14) имеет порядок 
0

1
Тλ

, то при

0 1Тλ >>  решение задачи можно искать в виде
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0 1
0

1
T

γ = γ + γ
λ

,

где 0γ  определяется из условия ( )( )1 maxf γ γ − = , а 1γ  – при найден-

ном 0γ  из условия ( )1

1
0.

dW
d

γ
=

γ

Заключение

Рассмотрена задача розничной продажи ассортимента продукции,
имеющей ограниченный срок годности. Найдены асимптотические рас-
пределения спроса и длительности продаж при большой интенсивности
потока покупателей. Получены соотношения, позволяющие определить
оптимальный размер партии товара, предназначенного для продажи, и
определить оптимальную торговую наценку.
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НЕНАДЕЖНАЯ СИСТЕМА МАССОВОГО ОБСЛУЖИВАНИЯ
С МАРКОВСКИМ ВХОДЯЩИМ ПОТОКОМ

И ПОВТОРНЫМИ ВЫЗОВАМИ*

В.И. Клименок
Белорусский государственный университет,

г. Минск, Республика Беларусь

Характерной особенностью некоторых телекоммуникационных се-
тей и систем является то, что поступившие в полностью занятую систе-
му заявки не буферизируются и не покидают систему навсегда, а повто-
ряют попытки занять обслуживающий прибор через случайные интер-
валы времени. Адекватными математическими моделями таких систем
являются системы массового обслуживания с повторными вызовами.
Исследование таких систем является интересным с практической и тео-
ретической точек зрения и в ряде случаев может быть выполнено с при-
влечением матрично-аналитических методов. С положением дел в этой
области можно ознакомиться, например, в [1, 2]. На сегодняшний день
достаточно хорошо изучены системы с повторными вызовами со ста-
ционарными пуассоновскими входными потоками. В то же время из-
вестно, что потоки в современных телекоммуникационных сетях имеют
коррелированный взрывной характер, что требует для их описания бо-
лее сложных моделей. Одной из наиболее известных моделей коррели-
рованного входного потока является групповой марковский поток
(Batch Markovian Arrival Process, BMAP). В данной работе рассматрива-
ется система массового обслуживания BMAP/M/N с повторными вызо-
вами. Рассматриваемая система является ненадёжной. После поломки
прибора сразу же начинается его ремонт. Заявка, обслуживание которой
было прервано поломкой, с некоторой вероятностью помещается на ор-
биту и с дополнительной вероятностью теряется.

Для рассматриваемой системы получено достаточное условие суще-
ствования стационарного режима, приведён алгоритм вычисления ста-
ционарных вероятностей и выведены формулы для основных характе-
ристик производительности.

                                                       
* Исследование выполнено при финансовой поддержке Белорусского республиканского
фонда фундаментальных исследований в рамках научного проекта № Ф16Р-017.
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Математическая модель

Рассматривается N -линейная система массового обслуживания с
BMAP-потоком. BMAP задаётся управляющим процессом , 0,t tν ≥  ко-
торый является неприводимой цепью Маркова с непрерывным време-
нем и конечным пространством состояний { }0, ,W…  и матричной про-

изводящей функцией ( )
0

, 1k
k

k
D z D z z

∞

=

= ≤∑ . Группы первичных зая-

вок поступают в систему только в моменты скачков цепи Маркова
, 0t tν ≥ . Матрицы , 1kD k ≥  и недиагональные элементы матрицы 0D

задают интенсивности переходов процесса , 0t tν ≥ , сопровождающихся
поступлением группы из k  заявок. Матрица ( )1D  является инфините-
зимальным генератором процесса , 0.t tν ≥  Интенсивность λ  поступле-
ния заявок в BMAP вычисляется по формуле ( )λ ' 1D= θ e , где вектор θ
является единственным решением системы ( )1 ,D =θ 0  1=θe . Интен-
сивность λb  поступления групп заявок определяется как ( )0λb D= −θ e .
Здесь и далее e  – вектор-столбец, состоящий из единиц, размерность
которого определяется из контекста. Коэффициент вариации интерва-
лов между поступлениями групп заявок задаётся соотношением

( ) 12
var 02λ 1,bc D −= − −θ e  коэффициент корреляции интервалов между

последовательными поступлениями групп заявок вычисляется как
( ) ( )( )( )( )1 1 2

corr 0 0 0 varλ 1 1 /bc D D D D c− −= − − − −θ e . Подробную информацию о

BMAP, его свойствах и частных случаях можно найти, например, в [3].
Если в момент поступления группы первичных заявок в системе

имеется достаточное количество свободных приборов, то каждая из зая-
вок группы занимает один обслуживающий прибор и начинает обслу-
живаться. Время обслуживания любой заявки имеет экспоненциальное
распределение с параметром μ . Если свободных приборов недостаточ-
но, то остаток группы помещается на орбиту. Если свободные приборы
отсутствуют, то на орбиту помещается вся группа заявок. Заявки с ор-
биты делают попытки занять обслуживающий прибор через случайные
интервалы времени. Если на орбите в некоторый момент времени t  на-
ходится i  заявок, то вероятность того, что в течение интервала времени
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( ),t t t+ ∆  произойдёт повторная попытка занять обслуживающий при-
бор, равна ( )α ,i t o t∆ + ∆  1i ≥ . Объём орбиты предполагается неограни-
ченным. Конкретный вид зависимости αi  от i  не фиксируется, требу-
ется лишь выполнение условия limαii→∞

= ∞ . Заметим, что этому условию

удовлетворяют, в частности, классическая стратегия повторов ( α αi i= )
и линейная стратегия ( α α γi i= + ).

Помимо входного потока в систему поступает стационарный пуас-
соновский поток поломок с интенсивностью h . Событие из этого пото-
ка с равной вероятностью вызывает поломку любого занятого прибора
(заметим, что для данной системы это эквивалентно тому, что событие
из потока поломок вызывает поломку произвольно выбранного занятого
прибора). Поломка, в момент поступления которой ни один прибор не
занят обслуживанием, игнорируется. Немедленно после поломки при-
бора начинается его ремонт, в ходе которого прибор не может обслужи-
вать заявки. Продолжительность ремонта имеет экспоненциальное рас-
пределение с интенсивностью κ и не зависит от процессов обслужива-
ния и ремонтов на других приборах. Заявка, обслуживание которой бы-
ло прервано поломкой, с вероятностью ,0 1p p≤ ≤ , помещается на ор-
биту и с дополнительной вероятностью покидает систему.

Процесс изменения состояний системы

Пусть ti  – число заявок на орбите, 0ti ≥ , tn  – суммарное число за-

нятых приборов и приборов, находящихся на ремонте, 0,tn N= , tr  –

число занятых приборов, 0,t tr n= , tν  – состояние управляющего про-

цесса BMAP, 0, ,t Wν =  в момент времени , 0t t ≥ .
Процесс изменения состояний системы описывается многомерной

неприводимой регулярной цепью Маркова с непрерывным временем
{ }ξ , , , , 0t t t t ti n r t= ν ≥ .

Лемма 1. Инфинитезимальный генератор Q  цепи Маркова ξ , 0t t ≥ ,
имеет блочную структуру ( ) , 0,ij i jQ Q ≥= , где ненулевые блоки ijQ  по-

рядка ( )( )1 2 / 2W N N+ + задаются следующим образом:
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Здесь матрицы nH  имеют порядок 1n + ; 1W W= + ; I  – диагональ-

ная матрица, последние ( )1N W+  диагональных элементов которой ну-
ли, а остальные – единицы; ⊗  – символ Кронекерова умножения мат-
риц; ,δn r  – символ Кронекера.

Следствие 1. Цепь Маркова ξ , 0t t ≥  принадлежит классу асимпто-
тически квазитеплицевых цепей Маркова с непрерывным временем
(АКТЦМ), см. [4].

Доказательство. В соответствии с данным в [4] определением, цепь
Маркова ξ , 0,t t ≥  с инфинитезимальным генератором ( ) , 0,ij i jQ Q ≥=

принадлежит классу АКТЦМ с непрерывным временем, если существу-
ют пределы 1

, 1lim , 0,2,3,k i i i ki
Y R Q k−

+ −→∞
= = … ; 1

1 ,lim i i ii
Y R Q I−

→∞
= + , причём

матрица 
0

k
k

Y
∞

=
∑ является стохастической. Здесь iR  – диагональные мат-

рицы, ненулевыми элементами которых являются модули диагональных
элементов матриц , , 0i iQ i ≥ .

Легко видеть, что диагональные элементы матрицы Ri, соответст-
вующие первым N  блочным строкам матрицы ,i iQ , содержат элемент

αi , остальная же часть диагонали от i  не зависит. С учётом этого пре-
делы, задающие матрицы , 0kY k ≥ , вычисляются следующим образом:

0

1

0

1N

O B O O
O O B O

Y
O O O B
O O O O

−

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

"
"

# # # % #
"
"

, 

( )

1

1 1
N N N

O O O

Y O O O
O R A R C pH I− −

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟+ +⎝ ⎠

"
# % # #
"
"

,

( )( )1
, 1 1, 1δ 1

k

N N k k N

O O O

Y O O O
O O R D p H−

+ − −

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟+ −⎝ ⎠

"
# % # #
"
"

, 1k > ,

где R – диагональная матрица, диагональными элементами которой яв-
ляются модули диагональных элементов матрицы CN.
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Легко убедиться, что сумма этих матриц является стохастической
матрицей. Таким образом, процесс ξ , 0t t ≥ , принадлежит классу
АКТЦМ с непрерывным временем, что и требовалось доказать.

Важную роль в исследовании АКТЦМ выполняет производящая
функция ( )Y z  матриц , 0kY k ≥ . В нашем случае эта функция имеет
следующий вид:

( )

( )

0

1
1 1

N

N

O B O O
O O O O

Y z
O O O B
O O R A z R F z zI

−
− −

⎛ ⎞
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟+⎝ ⎠

"
"

# # % # #
"
"

,

где ( ) ( ) ( )( ), 1N N N N N NF z z C D pH D z p H z= − + + + − .

Стационарное распределение

Теорема 1. Для существования стационарного распределения цепи
Маркова ξ , 0t t ≥ , достаточно, чтобы выполнялось следующее неравен-
ство:

( )( ) ( )[ ]0
0

λ 1 1 δ δ κ μ
N

r
r

p h N r r
=

+ − − < − +∑ , (1)

где ( )

( )
0

! κ /
δ , 0,

! κ /

rr
N

r N
ll

N
l

C r h
r N

C l h
=

= =

∑
.

Далее предполагается, что неравенство (1) выполнено.
Введём стационарные вероятности состояний системы ( ), , , ,p i n r ν

0, 0, , 0, , 0, ,i n N r n W≥ = = ν =  и векторы-строки , 0,i i ≥p  упорядочен-
ных в лексикографическом порядке стационарных вероятностей, соот-
ветствующих значению i  счётной компоненты цепи Маркова ξ , 0.t t ≥

Обозначим ( )0 1, ,=p p p …  и ( )
1

, 1i
i

i
z z z

∞

=

= ≤∑P p .
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Для вычисления векторов , 0,i i ≥p используется приведённый в [3]
алгоритм, разработанный для вычисления стационарного распределения
асимптотически квазитеплицевых цепей Маркова.

Характеристики производительности

Вычислив стационарные вероятности состояний системы, можно
найти ряд важных стационарных характеристик производительности
системы. Ниже приводятся наиболее важные из них:

– Среднее число заявок на орбите orb
1

.i
i

L i
∞

=

= ∑ p e

– Среднее число занятых приборов ( ) { }busy 1 diag , 0,nN J n N= =P e ,

где
{ }diag , 0, , 0,n WJ rI r n n N= = = .

– Среднее число заявок в системе orb busyL L N= + .
– Среднее число приборов, находящихся на ремонте

( ) { }repair 1 diag , 0,nN nI J n N= − =P e .

– Среднее число доступных приборов
( ) ( ){ }idle ( 1)1 diag , 0,n WN N n I n N+= − =P e .

– Совместная вероятность того, что в системе r  занятых приборов
n r−  приборов, находящихся на ремонте, и i  заявок на орбите

( ) ( ),, , 0, , 0, , 0n r
i ip n r I r n n N i= = = ≥p e ,

где ( ),
aW W

n r
W

dW W

O
I I

O

×

×

⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟
⎝ ⎠

, ( 1) / 2a n n r= + + , ( )1 / 2 1d N N a= + − − .

Здесь матрица ( ),n rI  выделяет часть вектора ip , соответствующую
числу r  занятых приборов и числу n r− , находящихся на ремонте.

– Совместная вероятность того, что в системе j  свободных прибо-
ров и i  заявок на орбите

( ) ( ) ( ),

0
, 0, , 0

N j
idle N j r

i i
r

p j I j N i
−

−

=

= = ≥∑p e .
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– Вероятность того, что в момент поступления произвольной заявки
в системе r  занятых приборов n r−  приборов, находящихся на ремон-
те, и i  заявок на орбите

( ) ( ) ( ),1

1
, λ , 0, , 0, , 0.a n r

i i k
k

p n r I kD r n n N i
∞

−

=

⎛ ⎞
= = = ≥⎜ ⎟

⎝ ⎠
∑p e

– Вероятность того, что произвольная поступившая заявка немед-
ленно начнёт обслуживаться

( ) ( ) ( ),1
imm

1 0 0
λ 1

N j jN
N j r

k
j r k

P I k j D
−

−−

= = =

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ ∑ ∑P e .

– Вероятность того, что произвольная заявка будет потеряна

( )1
loss λ 1P ph−= P e .

– Среднее число прерываний обслуживания на каждую поступив-
шую в систему заявку

1
break lossN p P−= .

Заключение

В данной работе исследована многолинейная ненадёжная система
обслуживания с групповым марковским входным потоком и повторны-
ми вызовами. Найдено в явном виде достаточное условие существова-
ния стационарного распределения, приведён алгоритм вычисления ста-
ционарных вероятностей состояний системы. Получены формулы для
ряда важных стационарных характеристик производительности системы.
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ИССЛЕДОВАНИЕ В НЕСТАЦИОНАРНОМ РЕЖИМЕ
СЕТИ С ПОЛОЖИТЕЛЬНЫМИ И ОТРИЦАТЕЛЬНЫМИ

ЗАЯВКАМИ РАЗЛИЧНЫХ ТИПОВ

Д.Я. Копать, М.А. Маталыцкий
Гродненский государственный университет им. Я. Купалы,

г. Гродно, Республика Беларусь

Описание сети. Постановка задачи

Рассмотрим открытую G-сеть массового обслуживания [1] с n одно-
линейными системами массового обслуживания (СМО), в которую по-
ступают положительные и отрицательные заявки r типов. В i-ю СМО из
внешней среды поступает простейший поток обычных заявок (положи-
тельных) с интенсивностью λ+ и дополнительный поток отрицательных
заявок, который также является простейшим с интенсивностью
λ , 1,i n− = . Все поступающие потоки независимы. Каждая положитель-
ная заявка входного потока независимо от других заявок направляется в

i-ю СМО как заявка типа c c вероятностью 0icp+ , 0
1 1

1.
n r

ic
i c

p+

= =

=∑∑  Длитель-

ности обслуживания положительных заявок в i-й СМО c-го типа рас-
пределены по экспоненциальному закону с параметром μic.

В сети циркулируют не только положительные заявки, но и отрица-
тельные [2]. Каждая отрицательная заявка входного потока независимо
от других отрицательных заявок направляется в i-ю СМО как отрица-

тельная заявка типа c c вероятностью 0 0
1 1

, 1
n r

ic ic
i c

p p− −

= =

=∑∑  и уничтожает

одну положительную заявку типа c. После окончания обслуживания
положительной заявки типа c в i-й СМО она направляется в j-ю СМО
с вероятностью icjsp+  опять как положительная заявка типа s, а с вероят-

ностью icjsp−  – как отрицательная заявка типа s и с вероятностью

( )0
1 1

1
n r

ic icjs icjs
j s

p p p+ −

= =

= − +∑∑  уходит из сети, , 1,i j n= .
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Под состоянием сети в момент времени t будем понимать вектор
( ) ( )11 12 1 21 22 2 1 2, , ,..., , , ,..., ,..., , ,..., ,r r n n nrk t k k k k k k k k k t=
G

, где kic, lic – соот-
ветственно количество положительных и отрицательных заявок типа c
в i-й СМО, который образует однородную случайную цепь Маркова
с непрерывным временем и счётным числом состояний. Требуется най-
ти вероятности состояний сети в переходном режиме, зависящие от
времени.

Следует отметить, что стационарные вероятности состояний такой
сети в форме произведения найдены в работе [3]. В [4] была рассмотре-
на G-сеть с разнотипными положительными и отрицательными заявка-
ми и различными дисциплинами их обслуживания в системах; отрица-
тельные заявки одних типов могут уничтожать положительные заявки
других типов. Установлен также мультипликативный вид стационарных
вероятностей состояний. Методики нахождения нестационарных веро-
ятностей состояний G-сетей с однотипными положительными и отрица-
тельными заявками, основанные на применении метода последователь-
ных приближений и многомерных производящих функций, описаны в
монографии [5].

В качестве примера практического использования сетей МО со мно-
гими типами положительных и отрицательных заявок можно привести
упрощенную (примитивную) модель воздействия некоторых файловых
вирусов (например, оverwriting) на ресурсы пользовательских компью-
теров или ресурсы серверов. (на персональный компьютер (ПК) пользо-
вателя). Под сетью МО в этом случае можно понимать совокупность
таких узлов (ПК пользователей (рабочее место пользователя), серверы и
т.п.), которые получают доступ, к примеру, к файловому серверу. В ка-
честве внешней среды будем понимать устройства, которые соединяют-
ся с компьютером, а также сеть Интернет, либо запросы пользователей
на доступ к определенным ресурсам и обработке необходимых файлов
на сервере. Условно разобьём файловые вирусы на типы по воздейст-
вию на некоторые типы файлов. В качестве положительных заявок пер-
вого типа могут выступать управленческие файлы семейства ОС
Windows с расширением .exe и .bat, а второго типа, к примеру, файлы
офисных приложений с расширением .doc \ docx, .xls \ xlsx, в качестве
файлов третьего типа – графические файлы формата .JPEG,.GIF и т.п., в
качестве файлов четвёртого типа – справки с расширением .HLP.
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При попадании файлового вируса он записывает свой код вместо ко-
да заражаемого файла, уничтожая его содержимое. Естественно, что
при этом файл перестает работать и не восстанавливается (другими
словами, он безвозвратно уничтожает файлы своего типа). К вирусам,
уничтожающим положительные заявки первого типа, относятся, к при-
меру, Vienna.648, SVC.3103,Win32.Neshta, к вирусам, уничтожающим
заявки второго типа, – Macro.Word97. Ethan, Word.Macro.DMV, X97.
Divi [6], к вирусам уничтожающим положительные заявки третьего ти-
па относится, к примеру, W32/Perrun, ACAD.Star и.т.п, к вирусам, унич-
тожающим файлы четвёртого типа, – WinHLP.Demo, WinHLP.Lucky.
Под переходом положительной заявки из одной системы в другую
можно понимать перемещение обрабатываемого файла между узлами
некоторой информационной сети (например, корпоративной сети пред-
приятия) либо от определённого пользователя ПК в файловый сервер и
наоборот.

Под перемещением положительной заявки (после завершения ее об-
служивания в одной из СМО) в другую систему в качестве отрицатель-
ной заявки можно понимать описанную выше маршрутизацию, но уже
как заражённого файла.

Система разностно-дифференциальных уравнений Колмогорова
для вероятностей состояний сети

Пусть icI  – вектор размерности n r× , состоящий из нулей, за ис-
ключением компоненты с номером ( )1 ,r i c− +  которая равна единице,

00I  – n r× -вектор , состоящий из нулей, а ( ),P k t
G

 – вероятность со-

стояния ( ) ,k t
G

 ( ) {1, 0,
0, 0

xu x
x
>

=
≤

 – функция Хевисайда.

Возможны следующие переходы нашего случайного марковского
процесса в состояние ( ),k t t+ ∆

G
 за время ∆t:

1) из состояния ( ),jsk I t−
G

, в этом случае в j-ю СМО за время ∆t по-
ступит положительная заявка типа s с вероятностью

( ) ( )0λ , 1, , 1, ;js jsp u k t o t j n s r+ + ∆ + ∆ = =
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2) из состояния ( ),ick I t+
G

, в этом случае в i-ю СМО за время ∆t по-
ступит отрицательная заявка типа c или после завершения обслужива-
ния положительная заявка типа c уходит из сети или переходит в j-ю
СМО как заявка типа s, но не обнаруживает там положительных заявок
данного типа с вероятностью

( )( )( ) ( )0 0λ μ μ 1 , 1, , 1, ;ic ic ic ic icjs icp p p u k t o t i n c r− − −+ + − ∆ + ∆ = =

3) из состояния ( ),ic jsk I I t+ −
G

, в этом случае из i-й СМО за время ∆t
положительная заявка типа c после обслуживания переходит в j-ю СМО
как положительная заявка типа s c вероятностью

( ) ( )μ , , 1, , , 1, ;ic icjs jsp u k t o t i j n s c r+ ∆ + ∆ = =

4) из состояния ( ),ic jsk I I t+ +
G

, в этом случае из i-й СМО за время ∆t
положительная заявка типа c после обслуживания переходит в j-ю СМО
как отрицательная заявка типа s, уничтожив положительную заявку
данного типа c вероятностью ( )μ , , 1, , , 1, ;ic icjsp t o t i j n s c r− ∆ + ∆ = =

5) из состояния ( ),k t
G

, в этом случае за промежуток времени t∆  со-
стояние сети не изменилось с вероятностью

( ) ( )
1 1

1 λ λ μ , 1, , 1, ;
n r

ic ic
i c

u k t o t i n c r+ −

= =

⎛ ⎡ ⎤ ⎞
− + + ∆ + ∆ = =⎜ ⎟⎢ ⎥

⎝ ⎣ ⎦ ⎠
∑∑

6) из остальных с вероятностью ( ).o t∆
Используя формулу полной вероятности, получаем, что нестацио-

нарные вероятности состояний рассматриваемой сети удовлетворяют
следующей системе разностно-дифференциальных уравнений (РДУ):

( )
( ) ( ) ( ) ( )0

1 1 1 1

,
λ λ μ , λ ,

n r n r

ic ic js js js
i c j s

dP k t
u k P k t p u k P k I t

dt
+ − + +

= = = =

⎡ ⎤
= − + + + − +⎢ ⎥

⎣ ⎦
∑∑ ∑∑

G
G G

( )( )( ) ( )0 0 ,
1 1

λ μ μ 1
n r

ic ic ic ic icjs ic ic
i c

p p p u k P k I t− − −

= =

+ + + − + +∑∑
G

( )
, 1 , 1

μ ,
n r

ic icjs ic js
i j s c

p P k I I t−

= =

+ + + +∑ ∑
G

( )( ) ( )
, 1 , 1

μ , .
n r

ic icjs js ic js
i j c s

p u k P k I I t+

= =

+ −∑ ∑
G

(1)
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Нахождение вероятностей состояний G-сети
методом последовательных приближений

Систему РДУ (1) можно представить в виде

( ) ( ) ( ) ( ) ( )
, 1 , 1

,
, ,

n r

icjs ic js
i j c s

dP k t
k P k t k P k I I t

dt
+−

= =

= −Λ + Φ + − +∑ ∑
G

G G G G

( ) ( )
, 1 , 1

, ,
n r

icjs ic js
i j c s

k P k I I t++

= =

+ Φ + +∑ ∑
G G

(2)

где

( ) ( )
1 1

λ λ μ ,
n r

ic ic
i c

k u k+ −

= =

Λ = + + ∑∑
G

 ( ) μ ,icjs ic icjsk p++ −Φ =
G

( ) ( ) ( )( )( )0 0 0 0δ δ λ μ μ 1icjs j s ic ic ic ic icjs ick p p p u k+− − − −Φ = + + − +
G

( )0 1 0δ δ λi c js jsp u k+ + +

( ) ( )0 0 0δ δ λ μ ,i c js js ic icjs jsp u k p k+ ++ +  {1, ,δ
0, .ij

i j
i j
=

=
≠

Из (2) следует, что

( ) ( ) ( ) ( ) ( ) ( )
, 1 , 10

, ,0 ,
t n r

k t k x
icjs ic js

i j c s
P k t e P k e k P k I I x−Λ Λ +−

= =

⎛ ⎛
= + Φ + − +⎜ ⎜⎜⎜ ⎝⎝

∑ ∑∫
G GG G G G

( ) ( )
, 1 , 1

, .
n r

icjs ic js
i j c s

k P k I I x dx++

= =

⎞ ⎞
+ Φ + + ⎟ ⎟⎟ ⎟

⎠ ⎠
∑ ∑

G G
(3)

Пусть ( ),qP k t
G

 – приближение ( ),P k t
G

 на q-й итерации, ( )1 ,qP k t+  –
решение системы (2), полученное методом последовательных прибли-
жений. Тогда из (3) вытекает, что

( ) ( ) ( ) ( ) ( ) ( )1
, 1 , 10

, ,0 ,
t n r

k t k x
q q icjs q ic js

i j c s
P k t e P k e k P k I I x−Λ Λ +−

+
= =

⎛ ⎛
= + Φ + − +⎜ ⎜⎜⎜ ⎝⎝

∑ ∑∫
G GG G G G

( ) ( )
, 1 , 1

, .
n r

icjs q ic js
i j c s

k P k I I x dx++

= =

⎞ ⎞
+ Φ + + ⎟ ⎟⎟ ⎟

⎠ ⎠
∑ ∑

G G
(4)
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В качестве начального приближения возьмём стационарное рас-
пределение ( ) ( ) ( )0 , lim , ,

t
P k t P k P k t

→∞
= =

G G G
 которое удовлетворяет соот-

ношению

( ) ( ) ( ) ( )

( ) ( )
, 1 , 1

, 1 , 1
.

n r

icjs ic js
i j c s

n r

icjs ic js
i j c s

k P k k P k I I

k P k I I

+−

= =

++

= =

Λ = Φ + − +

+ Φ + +

∑ ∑

∑ ∑

G G G G

G G
(5)

Можно доказать, что для последовательных приближений справед-
ливы следующие утверждения.

Теорема 1. Последовательные приближения ( ), , 0,1,2,...,qP k t q =
G

сходятся при t → ∞  к стационарному решению системы уравнений (2).
Теорема 2. Последовательность ( ){ }, , 0,1,2,...,qP k t q =

G
 построенная

по схеме (4), при любом ограниченном по t нулевом приближении
( )0 , ,P k t
G

 ( )00 , 1,P k t≤ ≤
G

 сходится при m → ∞  к единственному реше-
нию системы (2).

Теорема 3. Любое приближение ( ), , 1qP k t q ≥
G

 представимо в виде
сходящегося степенного ряда

( ) ( )
0

, ,l
q ql

l
P k t d k t

∞
+−

=

= ∑
G G

(6)

коэффициенты которого удовлетворяют рекуррентным соотношениям:

( ) ( )
( ) ( )

( )
( )

11

1 1
0

1 !
,0 , 0,

!

l ul

q l quu
u

k u
d k P k D k l

l k

+−
+− +−
+ +

=

⎧ ⎫−Λ −⎪ ⎪= + ≥⎨ ⎬
Λ⎪ ⎪⎩ ⎭

∑
G

G G
G

( ) ( ) ( ) ( )0 0 0,0 , ,0 ,q l ld k P k d k P k+− += = δ
G G G

(7)

( ) ( ) ( ) ( ) ( )
, 1 , 1

.
n r

ql icjs ql ic js icjs ql ic js
i j s c

D k Ф k d k I I Ф k d k I I+− +− +− ++ +−

= =

⎡
⎤= + − + + +⎢ ⎦

⎣
∑ ∑

G G G G G

Аналогично как в [6] можно показать, что радиус сходимости сте-
пенного ряда (6) равен +∞ .
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АНАЛИЗ ПОТОКОВ ПЕРВИЧНЫХ ТРЕБОВАНИЙ
В ТАНДЕМЕ ПРИ ЦИКЛИЧЕСКОМ УПРАВЛЕНИИ

С ПРОДЛЕНИЕМ

В.М. Кочеганов, А.В. Зорин
Нижегородский государственный университет им. Н.И. Лобачевского,

г. Н. Новгород, Россия

Существует ряд исследований, посвященных управлению конфликт-
ными потоками на автомобильных перекрестках. В литературе, как пра-
вило, изучаются следующие виды алгоритмов управления: циклический
алгоритм с фиксированной длительностью, циклический алгоритм с
петлей, циклический алгоритм со сменой режимов и т.д. [1−8]. Наи-
больший интерес, однако, представляет ситуация с несколькими после-
довательными перекрестками, поскольку является более близкой к ре-
альности. А именно, выходной поток автомобилей одного перекрестка
создает входной поток другого перекрестка. Таким образом, вероятно-
стная структура некоторых входных потоков априори неизвестна и су-
щественно зависит от алгоритма обслуживания перекрестков.

На данный момент существуют несколько работ, посвященных тан-
демам перекрестков. В работе [8] приведена система моделирования
смежных перекрестков с использованием компьютера. В работе [9]
исследована модель тандема перекрестков, управляемая циклическим
алгоритмом, а также были найдены условия существования стационар-
ного режима системы. В работах [10−12] учитывается немгновенность
перемещения между перекрестками и продление по приоритетному на-
правлению на втором перекрестке. Данная статья продолжает исследо-
вания работ [10−12] и излагает результаты, которые касаются потоков
первичных требований, поступающих в систему из внешней среды.

Постановка задачи на содержательном уровне

Рассмотрим систему массового обслуживания следующего вида
(рис. 1). Пусть в систему с одним обслуживающим устройством посту-
пают потоки Π1, Π2, Π3 и Π4. Требования по потоку Πj становятся в со-
ответствующую очередь Oj с неограниченной вместимостью,
j ∈ {1, 2, 3, 4}. Для j ∈ {1, 2, 3} дисциплина очереди Oj, поддерживае-
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мая устройством δj, имеет тип FIFO (First In First Out). Таким образом,
для обслуживания из соответствующей очереди выбирается то требова-
ние, которое пришло раньше. Дисциплина очереди O4 будет описана
ниже. Будем предполагать, что входные потоки Π1 и Π3 формируются
внешней средой, которая имеет только одно состояние, то есть вероят-
ностная структура потоков не меняется с течением времени. Требова-
ния потоков Π1 и Π3 формируют независимые между собой неординар-
ные пуассоновские потоки. Интенсивности соответствующих простей-
ших потоков для Π1 и Π3 будем обозначать λ1 и λ3, а распределение
числа заявок в группе по потоку Πj будем описывать производящей

функцией ( ) ( )

1

j
jf z p z

∞
ν

ν
ν=

= ∑ , которая предполагается аналитической при

|z| < (1 + ε) для некоторого ε > 0. Величина ( )jpν  определяет вероятность
того, что по потоку Πj число требований в группе равно ν, j ∈ {1, 3}.
Обслуженные требования потока Π1 поступают на повторное обслужи-
вание, формируя при этом поток Π4. Потоки Π2 и Π3 являются кон-
фликтными, что означает запрет на одновременное обслуживание тре-
бований этих потоков и, следовательно, исследование системы не мо-
жет быть сведено к задаче с меньшим числом потоков.

Рис. 1. Структурная схема системы обслуживания
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В каждый момент времени обслуживающее устройство находится в
одном из конечного множества состояний Γ = {Γ(k,r): k = 0, 1, …, d;
r = 1, 2, …, nk} с заданными натуральными числами d, n0, n1, …, nd.
В каждом состоянии Γ(k,r) обслуживающее устройство находится в тече-
ние времени T(k,r). Будем предполагать, что для каждого фиксированно-
го k* ≥ 1 цикл состояний ( ){ } * * *

*,
*: 1,2, ,k r N O I

k k k k
r n C C CΓ = = ∪ ∪…  может

быть представлен как объединение непересекающихся множеств ней-
тральных, выходных и входных состояний соответственно. Для k* = 0
состояния из множества Γ = {Γ(0,r): r = 1, 2, …, n0} будем называть со-
стояниями продления. Более подробно алгоритм смены состояний об-
служивающего устройства описан в статье [12].

В качестве наглядной физической интерпретации можно привести
тандем из двух перекрестков. В роли потоков требований, формируе-
мых внешней средой, выступают потоки прибывающих на перекрестки
машин: конфликтные потоки Π1, Π5 на первом перекрестке, а также по-
ток Π3 на втором. Каждая машина из потока Π1, проезжая первый пере-
кресток, становится в очередь O4 потока Π4 и затем с некой вероятно-
стью (а именно, с вероятностью pk,r для состояния Γ(k,r) обслуживающе-
го устройства) доезжает до следующего перекрестка или же не успевает
это сделать и остается в очереди O4 до следующего такта обслужива-
ния. В случае, если машина из очереди O4 успевает доехать до второго
перекрестка, она становится в очередь O2 и ждет своей очереди для его
прохождения. Такая пара перекрестков является примером более общей
модели системы массового обслуживания, описанной выше.

Рис. 2. Тандем перекрестков
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Математическая модель

Описанная в предыдущем разделе на содержательном уровне систе-
ма массового обслуживания должна рассматриваться как кибернетиче-
ская управляющая система обслуживания (см. работу [10]). Схема
управляющей системы приведена на (рис. 1). На схеме присутствуют
следующие блоки: 1) внешняя среда с одним состоянием; 2) входные
полюса первого типа – входные потоки Π1, Π2, Π3, Π4; 3) входные по-
люса второго типа – потоки насыщения нас

1Π , нас
2Π , нас

3Π , нас
4Π ;

4) внешняя память – очереди O1, O2, O3, O4; 5) устройство по переработ-
ке информации внешней памяти – устройства по поддержанию дисцип-
лины очереди δ1, δ2, δ3, δ4; 6) внутренняя память обслуживающего уст-
ройства – обслуживающее устройство (ОУ); 7) устройство по перера-
ботке информации во внутренней памяти – граф смены состояний; 8)
выходные полюса вых

1Π , вых
2Π , вых

3Π , вых
4Π . Координатой блока являет-

ся номер этого блока на схеме.
Введем следующие величины и элементы, а также укажем множе-

ства их возможных значений. В качестве дискретной временной шка-
лы выберем последовательность τ0 = 0, τ1, τ2, … моментов смены со-
стояний обслуживающего устройства. Обозначим Γi из множества Γ
состояние обслуживающего устройства в течение времени (τi-1; τi], ко-
личество κj,i ∈ Z+ требований в очереди Oj в момент времени τi, коли-
чество ηj,i ∈ Z+ требований, поступивших в очередь Oj по потоку Πj в
течение времени (τi; τi+1], количество ξj,i ∈ Z+ требований по потоку
насыщения Πj

нас в течение времени (τi; τi+1], количество ,j i Z+ξ ∈  реаль-
но обслуженных требований по потоку Πj в течение времени (τi; τi+1],
j ∈ {1, 2, 3, 4}.

Закон изменения состояния обслуживающего устройства будем
предполагать заданным соотношением 1 3,( , )i i ih+Γ = Γ κ , где

( )( )

( ) ( )
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Определим значения функций ϕ1(⋅, ⋅), ϕ3(⋅, ⋅) с помощью разложений

0
φ ( , ) exp(λ ( ( ) 1)),x

j j j
x

z x t t f z
∞

=

= −∑  где функции fj(z) определены выше,

j Ι {1, 3}. По своему смыслу число ϕj(x, t) есть вероятность поступления
x = 0, 1, … требований за время t ≥ 0 по потоку Πj. Если x < 0, то значе-
ние функции ϕj(x, t) положим равным нулю.

Более детально математическая модель рассмотрена в работе [12].

Потоки первичных требований

В этой работе основное внимание будет уделено стохастической по-
следовательности ( ){ }1, 3,,κ ,κ ; 0,1,...i i i iΓ = , которая включает в себя со-
стояния (κ1,i, κ3,i) очередей первичных требований и состояние Γi об-
служивающего устройства в момент τi, Приведем ниже несколько ре-
зультатов, касающихся этой последовательности.

Теорема 1. Пусть Γ0 = Γ(k,r) ∈ Γ и (κ1,0, κ3,0) = (x1,x3) ∈ 2Z+  фиксирова-
ны. Тогда стохастическая последовательность ( ){ }1, 3,,κ ,κ ; 0,1,...i i i iΓ =

является однородной счетной цепью Маркова. ■
Обозначим для γ ∈ Γ и (x1,x3) ∈ 2Z+

( ) ( )1, 1 3 1, 1 3, 3, , γ,κ ,κi i i iQ x x P x xγ = Γ = = = .

Введем множество

( )( )

( ) ( ){ } ( ) ( )
( ) ( ){ } ( )( ) ( )
( ){ } ( )( ) ( )( )

( ) ( )( )

1 01

1 2

1

, 0, 1
3

, 1 0, , I
3,

1 3 , 1 , ,O N

, I
3 3

, , 0 ;

, , ;
,

, ;

, 0  ;

k

k

k r r

k r r k r
kk r

k r k r k r
k k

k r
k

k x L

C x L
H x

C C

k x L C x L

−

−

− −

⎧ Γ Γ = ∧ ≤
⎪
⎪ Γ Γ Γ ∈ ∧ >⎪Γ = ⎨

Γ Γ ∈ ∨ Γ ∈⎪
⎪
∅ = ∧ > ∨ Γ ∈ ∧ ≤⎪⎩

где k1, r1 таковы, что ( )( )1 1,
1

k rh rΓ = и r2 таково, что ( ) ( ),
3 2

k rh r = Γ . Ото-

бражения h1(•) и h3(•) являются частью алгоритма изменения состояния
обслуживающего устройства и по своему смыслу задают правила пере-
хода из выходного состояния и состояния продления соответственно
(см. работу [12]).



86 В.М. Кочеганов, А.В. Зорин

Теорема 2. Пусть γ = Γ(k,r) ∈ Γ и (x1,x3) ∈ 2Z+ . Тогда для переходных
вероятностей {Q1,i(•,•,•)}i ≥ 0 марковской цепи ( ){ }1, 3,,κ ,κ ; 0,1,...i i i iΓ =

имеют место следующие рекуррентные соотношения:
для x1 = 0, x3 = 0:

( ) ( )
( )

( )( )( )

1 3 1 3
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1, 1 1 3 1, 1 3
0 0 γ γ,
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= = ∈

= ×∑ ∑ ∑
A A A

( )( )
( )

( )( )
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, ,
3 1

0 0
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k r x k r x
k r k r

a a
a T a T

− −

= =

× ×∑ ∑
A A

;

для x1 = 0, x3 > 0:
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для x1 > 0, x3 = 0:
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Заключение

Полученные результаты позволяют провести дальнейшее изучение
свойств последовательности ( ){ }1, 3,,κ ,κ ; 0,1,...i i i iΓ = . С помощью ре-
куррентных соотношений для переходных вероятностей могут быть
найдены рекуррентные соотношения для частичных производящих
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функций при фиксированном состоянии обслуживающего устройства.
После чего, с помощью итеративно-мажорантного метода, могут быть
получены необходимое и достаточное условия существования стацио-
нарного режима марковской цепи ( ){ }1, 3,,κ ,κ ; 0,1,...i i i iΓ = .
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УПРАВЛЕНИЕ ТЕМПОМ ПРОИВОДСТВА
И ЦЕНОЙ ПРОДАЖИ СКОРОПОРТЯЩЕЙСЯ ПРОДУКЦИИ

К.И. Лившиц, Е.С. Ульянова
Томский государственный университет, г. Томск, Россия

В теории управления запасами с ограниченным сроком годности
рассматриваются различные модели [1, 2]. При этом, как правило,
предполагается, что задан некоторый начальный объем запаса и реша-
ются задачи об оптимальном выборе начального объема и построении
оптимального алгоритма его расходования. В данной работе в продол-
жение работ [3–5] предлагается и анализируется модель одновременно-
го производства и сбыта скоропортящейся продукции, рассматривается
релейное управление темпом производства и интенсивностью продаж.

1. Математическая модель задачи

Пусть ( )S t  – количество продукции в момент времени t . Будем счи-
тать, что продукция производится с некоторой скоростью ( )с S , зави-
сящей от текущего запаса ( )S t , так что за время t∆  поступает ( )с S t∆
единиц продукции. При хранении продукция непрерывно портится.
Считается, что за малое время t∆  потери равны ( )kS t t∆ . Будем считать
далее, что продажа осуществляется партиями случайного объёма x , где
величины покупок x  – независимые случайные величины с плотностью
распределения ( )xϕ , средним значением { }M x a=  и вторым моментом

2
2{ }M x a= . Моменты продаж образуют пуассоновский поток, интен-

сивность которого λ  зависит от цены продажи b . Считается, что ин-
тенсивность потока продаж λ  монотонно убывает с ростом цены b .

При фиксированной цене продажи b  и, следовательно, интенсивно-
сти потока продаж λ  и скорости производства c  среднее количество
продукции, согласно [3], определяется соотношением

( )( ) (0) 1kt ktc aS t S e e
k

− −− λ
= + − .



Управление темпом проиводства и ценой продажи  89

При 1t �  ( )S t  ограничено сверху величиной ( ) /c a k− λ , при 0с a− λ >
и 1t �  образуется постоянный запас нереализованной продукции, что
нежелательно. При 0с a− λ ≤  появляется неудовлетворённый спрос.
В этом случае считается, что ( ) 0S t <  и заказы удовлетворяются в по-
рядке их поступления. Поэтому необходимо организовать управление
темпом производства продукции c  или (и) темпом продажи в зависи-
мости от текущего запаса продукции.

Предполагается, что управление темпом производства и продажами
осуществляется следующим образом. Устанавливается пороговое зна-
чение допустимого запаса продукции 0S . В области 0( )S t S≤  скорость
производства 0( )с S с=  и назначается цена продажи 0b , в области

0( )S t S>  скорость производства 1( )с S с=  и назначается цена продажи

1 0b b< .Так как интенсивность λ  зависит от цены продукции b , то
можно записать

0 0 0

1 1 0

, , ,
( ), ( )

, , ,
c S S

S c S
c S S

λ <⎧λ = ⎨λ ≥⎩
где 1 0с c<  и 1 0λ > λ .

Основной целью работы является определение параметров, позво-
ляющих максимизировать прибыль предприятия.

Обозначим
{ }0 0 0 0( , ) Pr ( ) , ( ) , ( ) ,P S t dS S S t S dS c t c t S S= ≤ < + = λ = λ < ,

{ }1 1 1 0( , ) Pr ( ) , ( ) , ( ) ,P S t dS S S t S dS c t c t S S= ≤ ≤ + = λ = λ ≥ .

Плотность распределения количества продукции ( , )P S t  определяет-
ся соотношением

( ) ( )
( )

0 0

1 0

, , ,
,

, , .
P S t S S

P S t
P S t S S

<⎧= ⎨ ≥⎩
Аналогично [3, 4] можно показать, что плотность распределения ко-

личества продукции определяется системой уравнений (1) и (2):

[ ]1
1 1 1 1

1 1 0
0

( , )
( , ) ( ) ( , )

( , ) ( ) , ;

P S t
P S t c kS P S t

t S

P S x t x dx S S
∞

∂ ∂
= −λ − − +

∂ ∂

+λ + ≥ϕ∫
(1)



90 К.И. Лившиц, Е.С. Ульянова

( )
0

0

0
0 0 0 0

0 0 1 1 0
0

( , )
( , ) ( ( ) ( , )

( , ) ( ) ( , ) ( ) , .
S S

S S

P S t
P S t c kSI S P S t

t S

P S x t x dx P S x t x dx S S
−

∞−

ϕ

∂ ∂
= −λ − − +

∂ ∂

+λ + λ + ϕ+ <∫ ∫ (2)

Решение системы уравнений (1), (2), очевидно, должно удовлетво-

рять условию нормировки 
0

0

0 1( , ) ( , ) 1.
S

S

P S t dS P S t dS
∞

−∞

+ =∫ ∫

2. Плотность распределения количества продукции при
экспоненциальном распределении величин покупок

В общем виде решение системы уравнений (1), (2) найти не удается
даже в стационарном режиме. Рассмотрим случай, когда величины по-
купок имеют экспоненциальное распределение

1( ) .
x
ax e

a
−

ϕ =

Тогда в стационарном режиме уравнения (1), (2) принимают вид:

[ ] 1
1 1 1 1 01( ) ( ) ( ) ( ) ,0 ;

x
a

S

S S
a

dP S c kS P S P x e dx
dS

∞ −λ
=−λ + ≥− − ∫ (3)
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0
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0 1
0 1 0
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SS x S x

a a a a

S S
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e P x e dx e P x e dx S S
a a
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λ λ
+ + = <∫ ∫ (4)

Решение системы уравнений (3), (4) имеет вид
1

0 0
0

0

0

0
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1

1

0
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Связь между константами A  и B  определяется выражением

( )

( )

1

0

1
1 0

1
0 0

.
k

k

c kS
B

c
A

kS

λ
−

λ
−

−
=

−
(6)

Константа A  находится из условия нормировки.

3. Определение средней прибыли при экспоненциальном
распределении величин покупок

Рассмотрим далее случай, когда интенсивность темпа продаж фик-
сированная: 0 1λ = λ = λ . Тогда выражение для средней прибыли опре-
деляется следующим образом (себестоимость единицы продукции счи-
тается равной 1):

0

( ) ( ) ( ) .R ab P S dS c S P S dS
∞ ∞

−∞

= λ −∫ ∫ (7)

На рис. 1 представлена зависимость прибыли от порога 0S  при сле-
дующих значениях параметров 0,05, 1,5, 2k a b= = = :

0 2 4 6 8 S0
0,487

0,488

0,489

0,490

0,491

R c0=1 8, , c1=1 5 , R

0 5,

0

–0,5
0 5 10 15 S0

c0=1 , ,6 c1=1 5 ,

c0=1 , ,55 c1=1 5 ,
c0=1 , ,2 c1= 5 0,

c0=1 , ,5 c1= 5 0,

c0= , 2,5 c1= 5 0,

Рис. 1. Прибыль в зависимости от порогового значения количества запасов

В связи с большим количеством параметров, аналитическое решение
задачи максимизации прибыли найти не удается. В таблице представле-
на зависимость прибыли R  от параметров 0 0 1, ,S c c , когда цена продажи

2b = , коэффициент порчи 0,02k = , 1,5a = .
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Зависимость прибыли R от параметров c0, c1

Значения
параметров с1 = 0,1 с1 = 0,3 с1 = 0,5 с1 = 0,7 с1 = 0,9 с1 = 1,1 с1 = 1,3 с1 = 1,5

R 0,889 0,888 0,885 0,876 0,852 0,793 0,672 0,496
с0 = 6,0

S0 4,1 3,7 3,3 2,7 1,9 1,1 0,1 0,1
R 0,885 0,884 0,881 0,873 0,849 0,791 0,672 0,496

с0 = 5,5
S0 4,3 3,9 3,5 2,9 2,1 1,3 0,3 0,1
R 0,875 0,874 0,871 0,863 0,842 0,786 0,670 0,496

с0 = 4,5
S0 4,7 4,5 3,9 3,5 2,7 1,7 0,7 0,1
R 0,857 0,859 0,856 0,849 0,830 0,778 0,667 0,495

с0 = 3,5
S0 4,9 5,3 4,7 4,3 3,5 2,5 1,3 0,3
R 0,806 0,829 0,827 0,822 0,806 0,763 0,661 0,494

с0 = 2,5
S0 4,9 6,7 6,3 5,7 4,9 3,7 2,5 1,3
R 0,728 0,797 0,796 0,792 0,780 0,745 0,654 0,493

с0 = 2,0
S0 4,9 8,5 8,1 7,5 6,5 5,3 3,7 2,3
R 0,485 0,712 0,712 0,710 0,705 0,687 0,627

с0 = 1,5
S0 4,9 12,9 12,5 11,9 11,1 9,5 7,3
R 0,375 0,671 0,670 0,670 0,667 0,655 0,610

с0 = 1,4
S0 4,9 14,9 14,7 14,1 13,3 11,7 9,3
R 0,218 0,589 0,599 0,599 0,598 0,593

с0 = 1,3
S0 4,9 14,9 18,3 17,9 17,1 15,7
R -0,018 0,399 0,441 0,441 0,441 0,441

с0 = 1,2
S0 4,9 14,9 24,9 26,1 25,7 24,7
R -0,181 0,226 0,275 0,276 0,276 0,276

с0 = 1,15
S0 4,9 14,9 24,9 34,7 34,3 33,7

Таким образом, из таблицы видно, что максимальное значение при-
были достигается при увеличении темпа производства 0c . При этом оп-
тимальное значение порога, при котором происходит переключение
темпа производства, имеет вполне определенное значение. Другими
словами, если нет запаса, то его нужно образовывать, в соответствии с
производственными возможностями. При этом темп производства 1c
нужно поддерживать на минимальном уровне.
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4. Асимптотические выражения для плотности распределения
количества продукции и прибыли при c1 = 0

Построим приближенное решение для плотности распределения ко-
личества продукции, когда ( )xϕ  – произвольная функция.

Введем параметр 1θ�  и сделаем следующие предположения:
( ) 2

0 01 , .с a k k= λ + θ = θ (8)

Первое соотношение означает, что количество продукции, произво-
димой в единицу времени, почти совпадает со средним сбытом в еди-
ницу времени. Второе – продукция портится достаточно медленно.
Далее, будем считать, что при 0θ →  0 0 ( )S S= θ → ∞ , но существует
конечный предел 0 0lim S ( ) zθ θ =  при 0θ → .

Можно показать аналогично [4], что при сделанных предположениях
22
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2 0 2 0 2

2 2
0 00

2 0 2 0
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2

0
( ) ( )

0

( ), 0;
( )

( ), 0 ,

a k xa az S
a k a k a

a k x a k Sz
a k a k

S

D e e dx e o S
P S

D e dx e o S S

λ −λ
− θ

λ

λ − λ − θ
−

λ λ

θ

⎧
⎪ θ ⋅ + θ ≤
⎪⎪= ⎨
⎪

θ ⋅ + θ < ≤⎪
⎪⎩

∫

∫

(9)

где постоянная D  определяется из условия нормировки
2 2 22

0 0 00 0
2 0 2 0 2 0 2 0

1( ) ( ) ( )
2

0 0 0

.
2

a k x a k x a k ya z z x
a k a k a k a ka

D e e dx e e dydx
a

−
λ − λ − λ −λ

− −
λ λ λ

⎛ ⎞
⎜ ⎟= +
⎜ ⎟
⎝ ⎠

∫ ∫ ∫ (10)

Средняя прибыль в единицу времени в данном случае определится
выражением

0

0 0
0

( , ) (z , ) ( ) (1 ).
S

R R S R ab P S dS a= θ θ = θ = λ − λ + θ∫ (11)

Можно показать, что функция 0 0( , ) (z , )R S Rθ θ = θ  монотонно воз-
растает с ростом 0 0z S= θ  при любом 0θ ≠ . Поэтому оптимальные па-
раметры нужно выбирать следующим образом. Задать предельный раз-
мер запаса 0S , который, очевидно, всегда ограничен. Затем выбрать ве-
личину θ  из условия максимума величины 0( , ).R Sθ θ  Зависимость зна-



94 К.И. Лившиц, Е.С. Ульянова

чения прибыли от параметра θ  представлена на рис. 2. Значения пара-
метров: 2 02, 1, 2, / 10.b a a k= = = λ =

0 0,02 0,04 0,06 0,08 θ

R
aλ

0 5,

0

–0,5

–1 0,

S0=1000 S0=500

Рис. 2. Зависимость прибыли от параметра θ

Заключение

Получены уравнения, определяющие плотность распределения ко-
личества скоропортящейся продукции при релейном управлении скоро-
стью производства и интенсивностью продаж. Найдены условия, опре-
деляющие максимальную среднюю прибыль при экспоненциальном
распределении величин покупок и в общем случае, когда темп произ-
водства «почти совпадает» со средним сбытом продукции.
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К АНАЛИЗУ ВЕРОЯТНОСТИ
УСПЕШНОГО УСТАНОВЛЕНИЯ СОЕДИНЕНИЯ
ПО РАДИОКАНАЛУ СЛУЧАЙНОГО ДОСТУПА

Е.Г. Медведева
Российский университет дружбы народов, г. Москва, Россия

Изучается передача малых данных по сетям LTE (Long-Term
Evolution). Актуальной является задача уменьшения нагрузки, созда-
ваемой пользователями, а также обслуживающей сигнальной нагрузки.
Для этого разрабатывают и внедряют алгоритмы упрощенного взаимо-
действия между пользовательскими устройствами и сетью с целью ми-
нимизации затраченных ресурсов сети. Данная работа является продол-
жением исследований процедуры установления соединения между уст-
ройством и базовой станцией LTE с помощью использования радиока-
нала случайного доступа RACH (Random Access Channel). Для этого
строится математическая модель в виде цепи Маркова, получены фор-
мулы для расчета вероятности успешного установления соединения с
учетом повторной передачи сигнальных сообщений. Численные резуль-
таты показывают точность предложенной аналитической модели.

Процедура установления соединения
Ввиду роста числа устройств, подключенных к Интернет и непре-

рывно передающих данные (как правило, это различные датчики и
счетчики, которые помогают обеспечивать безопасность жизнедеятель-
ности человека), анализ своевременной доставки данных и гарантии
низких задержек интересен разработчикам [1].

Процедура установления соединения между пользователем и базо-
вой станцией состоит из последовательной передачи четырех сообще-
ний по радиоканалу случайного доступа [1−3] и начинается с передачи
преамбулы от оборудования пользователя к базовой станции – Msg1.
После этого оборудование пользователя ожидает от базовой станции
ответ в виде Msg2 (RAR, Random-Access Response). Если время ожида-
ния Msg2 истекло и сообщение не получено, значит, произошла колли-
зия по причине отправки несколькими устройства одной и той же пре-
амбулы в один момент времени. В случае коллизии оборудование поль-
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зователя повторяет попытку передачи преамбулы после заранее задан-
ного интервала ожидания. При превышении порога попыток передачи
преамбулы процедура установления соединения по радиоканалу RACH
признается неудачной. При успешной передачи преамбулы в виде Msg1
и получения ответа Msg2 следует сообщение HARQ (Hybrid Automatic
Repeat request), или Msg3. Ответное сообщение Msg4 является послед-
ним в процедуре установления соединения. Считается, что ответной со-
общение Msg2 всегда гарантированно передается. В предыдущих ис-
следованиях предполагалось, что Msg4 также гарантированно передает-
ся, однако в данной работе на повторную передачу Msg4 устанавлива-
ется порог, при превышении которого необходимо заново передавать
преамбулу Msg1 и последующие сообщения. Данная работа продолжает
исследования [4−8]. В отличие от предыдущих работ сообщение Msg4
может быть повторно передано 4N  раза. Эти характеристики являются
важными вероятностно-временными характеристиками и рекомендова-
ны к исследованию в стандарте [1, разд. 6.3.1].

Введем вероятностные события 1A = {Msg1 передан успешно},

1A = {коллизия Msg1},
А3 = {Msg3 передан успешно},

3A = {коллизия Msg3},
А4 = {Msg4 передан успешно},

4A = {коллизия Msg4}.

Обозначим вероятность события ( )1 11P A p= − , тогда 1 1( )P A p= .

Аналогично ( )3 31P A p= − , 3 3( )P A p= , ( )4 41P A p= − , 4 4( )P A p= .
Опишем процедуру установления соединения в виде цепи Маркова с

дискретным временем { }1 3 4, 0, , 1i i N N Nξ = ⋅ ⋅ +… , где iN  − число воз-
можных повторных передач Msg(i), { }1,3,4i = . Построим пространство
состояний:

{ }
{ }

( ){ }

1 11 2 3 4 5 2 1 2

1 2 3 1 3 2 4 3 4 3

3 4 5 2 2 51 2 1 4

0, ,, , , , 0 , 0 1,
, , , 0, ,  0 ,   3,4 ,  

, 0 1,  0,1, 0, ,
,

i

x Nx x x x x x x y
y y y y N x x i x y x N

x x x x z xz z z N

⎧ ⎫= ≤ ≤ ≤ ≤⎛ ⎞
⎪ ⎪⎜ ⎟ = ≤ ≤ ∈ ≤ ≤ ⋅ =⎨ ⎬⎜ ⎟⎪ ⎪+ + = ≤ ≤ ∈=⎝ ⎠⎩ ⎭

= x,y,z

X =
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где x1 − общее число переданных Msg1; x2 − число успешно переданных
Msg1; x3 − число успешно переданных Msg1, после которых соединение
не установилось по причине N3 неуспешных передач Msg3; x4 − число
успешно переданных Msg1, после которых соединение не установилось
по причине N4 неуспешных передач Msg4; x5 − индикатор, равный «1»
при успешной последней передаче Msg1, «0» – при коллизии Msg1; 1y −
общее число переданных Msg3 при последней успешной передаче
Msg1; 2y  − число успешно переданных Msg3 при последней успешной
передаче Msg1; 3y  − число переданных Msg3 (успешных и неуспеш-
ных) после которых 4N  раза произошли коллизии при передачи Msg4;

1z  − общее число переданных Msg4 при последней успешной передаче
Msg1 и Msg3; 2z  − число успешных Msg4 при последнем успешном
Msg1 и Msg3.

Цепь Маркова { }ξi  попадет в состояние ( )x,y,z  из состояния
( )0,0,0  с вероятностью

( ) ( ) ( )

( ) ( )

2 4 23 4 3 3 3 4 1 2 31 2
1 3 4

24 4 1 2

1 1 3 3, , 1

4 4

1 1

                       1 ,   

x x yx x x N x x y y yx x
x x x

zN x z z

P C C p p p p

p p

++ − + − +−
− +

+ −

= − − ×

× − ∈ X.
x y z

x,y,z
(1)

Вероятность успешного установления соединения успP  находится по
формуле (2).

( )( ) ( ) ( )( )( )
( ) ( )( )

( ) ( )( )( )
( ) ( )( )( )

133 44

3 4

13 4

3 4

1 1 3 4 34 3
усп

3 1 3 4 3

1 3 1 3 4 3
3

1 3 3 4 3

1 1 11 1

1 1 1 1

1 1 1
          .

1 1 1

NNN NN

N N

NN N

N N

p p p p pp p
P

p p p p p

p p p p p p
p

p p p p p

⎡ − + − + −− − ⎢= −
⎢− − − − −⎣

⎤− + − + − ⎥−
⎥− − + − ⎦

(2)

Численный эксперимент

На рис. 1 показаны вероятности успешного установления соедине-
ния успP  для двух наборов значений повторных передач сообщений, а

именно 1 3 44, 2N N N= = =  и 1 3 410, 5N N N= = = .
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Рис. 1. Вероятность успешного установления соединения

При увеличении вероятности коллизии ip , { }1,3,4i = , уменьшается
вероятность успешного установления соединения. При меньшем числе
возможных повторных передач поведение графика вероятности успеш-
ного соединения имеет более пологий характер.

Дальнейшие исследования вероятностно-временных характеристик
для процедуры установления соединения по каналу радиодоступа пла-
нируется расширить для нахождения аналитической формулы среднего
времени установления соединения.
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ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ ЦИКЛИЧЕСКИХ
СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ

А.Н. Моисеев, Д.А. Буртовая
Томский государственный университет, г. Томск, Россия

Циклические СМО – это класс систем массового обслуживания, в
которых обслуживающие приборы в определенном (циклическом) по-
рядке подключаются к различным накопителям для обслуживания зая-
вок, находящихся в этих накопителях. Заявки попадают в накопители из
нескольких входящих в систему потоков заявок. Аналитическим иссле-
дованиям циклических систем обслуживания посвящено достаточно
много научных трудов (см., например, обзор [1]), но во многих случаях
не удается получить аналитические результаты. В этом случае приме-
няют другие методы исследования, в том числе и имитационное моде-
лирование [2]. Имитационный подход позволяет воспроизвести поведе-
ние системы и таким образом достичь требуемых результатов практи-
чески для любой конфигурации исследуемой системы. В настоящей ра-
боте представлено достаточно общее описание модели циклических
систем и предложены механизмы для построения объектно-ориентиро-
ванного приложения имитационного моделирования таких систем.

Описание модели циклической системы массового обслуживания

Рассматривается класс циклических систем массового обслуживания
следующего вида (рис. 1). На вход системы поступает K ≥ 1 входящих
потоков A1, …, AK, каждый из которых описывается заданной для него
моделью случайного потока событий с определенными параметрами.
Все заявки k-го входящего потока (k = 1, …, K) поступают в k-й накопи-
тель (буфер), который может иметь заданный максимальный размер или
может быть неограничен. Имеется некоторое число N ≥ 1 обслуживаю-
щих приборов (серверов) B1, …, BN, которые подключаются к накопите-
лям, забирают из них заявки в порядке, соответствующем некоторой
дисциплине, и обслуживают эти заявки в соответствии с некоторым за-
данным для каждого прибора законом. После этого заявки покидают
систему. Функция распределения времени обслуживания может опре-
деляться для каждого прибора независимо от накопителя, из которого
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взята заявка, но также для каждого прибора может быть задан индиви-
дуальный набор из K функций распределения, определяющих продол-
жительность обслуживания заявок, поступивших из разных входящих
потоков. Таким образом, при K входящих потоках (накопителях) и N
обслуживающих приборах можно задать N K×  функций распределе-
ния ( ), 1, , 1,nkB x n N k K= = , определяющих продолжительность обслу-
живания разными приборами заявок из разных входящих потоков.

… … …

Входящие потоки Накопители Узел подключения Приборы

A1

AK

B1

BN

Рис. 1. Модель циклической системы

Порядок, способ и длительность подключения приборов к накопите-
лям определяется заданными параметрами, которые в дальнейшем бу-
дем называть параметрами подключения. Переключение приборов в
циклических СМО всегда производится циклически – от предыдущего
k-го накопителя к следующему (k + 1)-му и от последнего K-го к перво-
му. В случае, когда количество серверов N > 1, возможны различные
варианты их «группового» поведения. В качестве основных групповых
дисциплин выделим три:

1. Жесткая группа. Все обслуживающие приборы системы образуют
одну группу обслуживания: все приборы в один момент времени рабо-
тают только с одним накопителем, переключение между накопителями
и пребывание в состоянии переключения (см. далее) для всех приборов
производится синхронно.

2. Одиночные приборы. Обслуживающие приборы подключаются к
накопителям независимо друг от друга, причем с одним накопителем в
один момент времени может работать только один прибор. В случае,
если по окончании сеанса подключения прибора к накопителю сле-
дующий накопитель уже обслуживается другим сервером, то прибор
ищет следующий по циклическому порядку свободный (не находящий-
ся в сеансе подключения с другим сервером) накопитель и подключает-
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ся к нему. Эта дисциплина подключения доступна только при условии,
что количество серверов не превышает количество накопителей (N ≤ K).

3. Гибкие группы. Обслуживающие приборы подключаются к нако-
пителям независимо друг от друга, в один момент времени к накопите-
лю может быть подключено любое число приборов. По окончании се-
анса подключения прибор подключается к следующему накопителю не-
зависимо от того, обслуживается ли он другими серверами или нет.

Кроме групповых дисциплин также важна дисциплина подключения,
определяющая продолжительность одного сеанса подключения сервера
или группы серверов к накопителю. В данной работе рассматривается 2
типа дисциплин подключения:

1. С разделением времени. Продолжительность каждого подключе-
ния определяется заданной функцией распределения длительности се-
анса. По окончании этого периода обслуживание всех заявок, произво-
дившееся в рамках данного подключения, прерывается, а сами заявки
возвращаются в накопитель. Продолжительность сеанса подключения
может определяться одной функцией распределения для всех накопите-
лей либо задаваться индивидуально для каждого накопителя.

2. До полного исчерпания. Подключение сохраняется до тех пор, по-
ка не будет закончено обслуживание последней заявки в накопителе.
При этом в случае жесткой группы все незадействованные приборы
простаивают, пока последний из них не закончит обслуживание.

Когда прибор или группа приборов завершают обслуживание одного
накопителя и должны переключиться к следующему, то параметрами
задачи может быть задано, что это переключение требует некоторого
времени. В случае применения дисциплины подключения «до полного
исчерпания» это время должно быть обязательно больше нуля, так как в
противном случае, если все накопители оказались временно пусты, мо-
дель перейдет в состояние «зацикливания», когда приборы мгновенно
переключаются от очереди к очереди, а модельное время не изменяется.
Если параметрами задачи указано, что переключение требует времени,
то задается функция распределения, определяющая длительность со-
стояния переключения, в которое прибор или группа приборов перехо-
дят по окончании сеанса подключения к одному накопителю. В этом
состоянии приборы не выполняют никаких действий. Функция распре-
деления длительности времени переключения может определяться од-
ной функцией распределения для всех накопителей либо задаваться ин-
дивидуально для каждого накопителя.
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Основные объекты имитационного моделирования
циклической системы обслуживания

В настоящей работе в качестве платформы для реализации приложе-
ния имитационного моделирования циклических систем будет исполь-
зована платформа программного комплекса ODIS [3, 4], предназначен-
ного для имитационного моделирования сетей массового обслужива-
ния. Данная платформа использует дискретно-событийный подход мо-
делирования. В ней имеется базовый класс SimulationModel, который
реализует основной цикл дискретно-событийного моделирования сис-
тем массового обслуживания. Исполнение цикла моделирования бази-
руется на взаимодействии объектов событий, заявок и элементов систе-
мы.

Для нужд разрабатываемой системы моделирования дополним объ-
ектную модель следующими классами (рис. 2). Классы Element, Source,
PassiveBuffer реализованы каркасом ODIS и предназначены для моде-
лирования элементов СМО общего вида. Классы InputSource, Server и
ConnectionManager реализуют объекты, специфичные для циклических
СМО.

Рис. 2. Объектная модель циклической системы обслуживания

Класс Element представляет собой абстрактный класс, потомками
которого будут любые элементы системы (например, входящий поток,
накопитель, прибор обслуживания), которые могут принимать заявки с
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помощью операции accept(…), а также генерировать и/или обрабаты-
вать события. Обработка событий производится с помощью операции
processEvent(…).

Класс Source представляет входящий поток заявок. В методе
accept(…) генерируется исключение, так как этот элемент не может
принимать заявки. А в методе processEvent(…) генерируются новые за-
явки.

Класс InputSource, в отличие от Source, включает в себя накопитель
заявок (объект стандартного класса PassiveBuffer). Метод
processEvent(…) вызывается автоматически каркасом платформы, если
обрабатываемое системой событие сгенерировано данным объектом
InputSource. В дальнейшем объекты класса InputSource будем называть
источниками.

Класс PassiveBuffer представляет собой реализацию объекта-
накопителя заявок. Он имеет атрибут maxLength, который определяет
максимальный объем накопителя (максимальное число заявок, которые
можно в нем разместить). Значение maxLength = –1 означает, что нако-
питель не ограничен в размерах. Методы accept(…) и acceptReturned(…)
используются для помещения заявки в накопитель. Если при вызове ме-
тода accept(…) оказалось, что накопитель заполнен до предела, то заяв-
ка получает отказ и немедленно покидает систему. В случае неограни-
ченного объема накопителя или при вызове метода acceptReturned(…)
заявка будет помещена в накопитель в обязательном порядке. В этом
случае считается, что накопитель всегда имеет небольшой резерв для
размещения заявок, возвращенных в него в экстренных ситуациях (пре-
рывание обслуживания). Операция getCall(…) извлекает очередную за-
явку из накопителя и возвращает ее в качестве результата.

Объект Server реализует обслуживающий прибор и имеет два суще-
ственных отличия по сравнению с соответствующим объектом плат-
формы, а именно:

1) может пребывать в трех состояниях (поле state) – «Свободен»,
«Занят обслуживанием», «В режиме переключения»;

2) реализует возможность задания отдельных функций распределе-
ния для длительности обслуживания заявок из разных накопителей
(входящих потоков). Для этого используется опция distributionsType со
значениями Single (одна функция распределения для всех накопителей)
и ForEachBuffer (функции распределения вероятностей заданы для каж-
дого накопителя в отдельности), а также массив distributions.
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Методы accept(…) и processEvent(…) используются соответственно
для помещения заявки на обслуживание в данном приборе и для обработ-
ки события окончания обслуживания. Метод breakService(…) немедленно
прерывает обслуживание заявки и возвращает ее в соответствующий на-
копитель с помощью метода PassiveBuffer.acceptReturned(…).

Класс ConnectionManager (диспетчер подключений) – искусственно
введенный объект, который хранит информацию и реализует логику
подключения приборов к очередям. Диспетчер подключений содержит
такие атрибуты, как тип соединения connectionType, дисциплина об-
служивания очередей sessionType, способ задания функций распреде-
ления длительности подключения sessionDistributionsType, функции
распределения длительности подключения приборов к накопителям
sessionDistributions, флаг требуемого времени на переключение при-
боров isPreconnectionRequired, способ задания функций распределения
длительности времени переключения preconnectionDistributionsType,
функции распределения длительности переключения приборов precon-
nectionDistributions. Метод processEvent(…) класса ConnectionManager
обрабатывает событие окончания времени переключения прибора.
Другие методы данного класса будут описаны ниже.

Механизм сеансов подключения

Для организации моделирования подключений приборов к накопи-
телям предлагается использовать механизм сеансов подключения. Се-
анс подключения (объект Session) – это объект, создаваемый на время
подключения пула приборов к одному накопителю (рис. 3). Данный
объект отвечает за продолжительность подключения, управляет движе-
нием поступающих заявок, а также заявок, находящихся в накопителе и
на обслуживании.

Объект Session реализует операцию processEvent(…) интерфейса
Element, в ней обрабатывается событие окончания сеанса. Операции
start(…) и finish() используются соответственно для старта и окончания
сеанса. Метод serviceEnded(…) вызывается, когда обслуживающий
прибор, находящийся в сеансе, закончил обслуживание и готов принять
на обслуживание новую заявку. Операция acceptCall(…) используется
объектами-источниками InputSource во время поступления заявки в сис-
тему для поиска сеанса со свободным прибором и передачи ему этой за-
явки. Атрибут buffer ссылается на объект-накопитель источника source.
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Рис. 3. Структурная схема механизма сеансов подключения

В объектной модели все серверы системы собраны в одну коллек-
цию – пул серверов (объект класса ServersPool). Все входящие потоки с
накопителями также образуют коллекцию. У модели имеется единст-
венный объект класса ConnectionManager, которому предоставлен пол-
ный доступ к обеим коллекциям. Управление сеансами полностью осу-
ществляет объект ConnectionManager.

Основные сценарии дискретно-событийного моделирования

Так как вся система построена на дискретно-событийной модели
управления, то для выполнения полного цикла имитационного модели-
рования достаточно выделить типы событий системы, реализовать ме-
ханизмы их генерации, записи в журнал событий, извлечения из него и
процедуры обработки этих событий. Ниже перечислены основные типы
выделенных событий:

1. Начало моделирования. Происходит однократно на старте всего
процесса моделирования. Не требует записи в журнал.

2. Поступление заявки в систему в определенном входящем потоке.
3. Окончание времени переключения прибора или группы приборов

(если задано, что переключение требует времени).
4. Окончание обслуживания заявки на приборе.
5. Завершение сеанса (для дисциплины подключения «С разделени-

ем времени»).
Подробные сценарии и реализация обработчиков указанных событий

будут выполнены в дальнейших работах.
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Заключение

Представлено достаточно общее описание модели циклических сис-
тем обслуживания. Разработаны основные классы программного при-
ложения для имитационного моделирования циклических систем. Про-
ектируемое приложение будет иметь возможность моделировать широ-
кий класс циклических систем обслуживания за счет вариативности за-
даваемых параметров конфигурации: различные типы входящих пото-
ков и их параметры для каждого источника, индивидуальные парамет-
ры соответствующих им накопителей, индивидуальные параметры для
каждого обслуживающего прибора, в том числе и в зависимости от об-
служиваемого источника, учет возможных затрат времени на переклю-
чение приборов от одного источника к другому и так далее. В ближай-
шее время планируется разработка подробных сценариев основных со-
бытий моделирования и реализация их обработчиков.
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ИССЛЕДОВАНИЕ ПОТОКОВ
В ДВУХФАЗНОЙ БЕСКОНЕЧНОЛИНЕЙНОЙ СМО

С ПОВТОРНЫМИ ОБРАЩЕНИЯМИ
МЕТОДОМ ПРЕДЕЛЬНОЙ ДЕКОМПОЗИЦИИ

С.П. Моисеева, М.А. Шкленник, О.О. Набокова
Томский государственный университет, г. Томск, Россия

Задачи исследования потоков в системах массового обслуживания
(СМО) с неограниченным числом обслуживающих приборов и произ-
вольным временем обслуживания рассматривались в работах [1, 2], в
которых предложен метод предельной декомпозиции. Данный метод
работает только для систем с простейшим входящим потоком, но, как
показывает статистический анализ реальных экономических систем [3],
такие потоки встречаются довольно часто. В настоящей работе предла-
гается метод предельной декомпозиции для анализа двухфазной СМО с
неограниченным числом обслуживающих приборов и возможностью
повторного обращения заявки на каждой фазе.

Математическая модель

Рассмотрим двухфазную систему M|GI(2)|∞ (рис. 1), на вход которой
поступает простейший поток с параметром λ.

1–r1

r2

r1
λ

B x2( )

B x2( )

B x1( )

B x1( )

1–r2

Рис. 1. Неоднородная двухфазная СМО M|GI(2)|∞
с повторными обращениями на второй фазе
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Время обслуживания заявок на первой фазе задано произвольной
функцией распределения B1(x), одинаковой для каждого прибора фазы.
По истечении этого времени заявка переходит на вторую фазу с вероят-
ностью r1 или покидает систему с вероятностью (1 – r1). Время обслу-
живания заявки на каждом из приборов второй фазы имеет также про-
извольную функцию распределения B2(x). После обслуживания на вто-
рой фазе заявка может вернуться для повторного обслуживания на вто-
рую фазу с вероятностью r2 или же может покинуть систему с вероят-
ностью (1 – r2).

Ставится задача исследования суммарного потока обращений к сис-
теме.

Метод предельной декомпозиции

Для исследования потоков в системах массового обслуживания с
входящим пуассоновским потоком, неограниченным числом обслужи-
вающих устройств и произвольно заданным временем обслуживания
заявок воспользуемся методом предельной декомпозиции [1].

Входящий поток разделим по полиномиальной схеме с равными ве-
роятностями на N независимых пуассоновских потоков с интенсивно-
стями λ/N [4]. Для заявок каждого из этих потоков определяется един-
ственная линия обслуживания. Таким образом, получаем совокупность
N независимых однолинейных двухфазных СМО с отказами (рис. 2).
Линия считается занятой, если занята одна из ее фаз обслуживания.

)x(2B

1r1–

2r

1r
λ/N

)x(1B

2r1–

Рис. 2. Однолинейная двухфазная СМО с отказами

При N → ∞ вероятностью потерь заявок можно пренебречь, и тогда
суммарные характеристики совокупности N однолинейных двухфазных
СМО сходятся к характеристикам исходной модели.
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Исследование однолинейной двухфазной СМО
с отказами и повторными обращениями

В указанной однолинейной системе будем рассматривать соответст-
вующий случайный процесс n(t, N) – суммарное число обращений, реа-
лизованных за время t. Поскольку процесс n(t, N) не является марков-
ским, введем в рассмотрение дополнительные переменные: процесс k(t)
– состояние линии обслуживания, то есть если k-я фаза линии занята, то
k(t) = k, k = 1, 2, и если линия свободна, то k(t) = 0; z(t) – длина интерва-
ла времени от момента t до момента окончания текущего обслуживания,
если линия занята. Трехмерный процесс {k(t), n(t, N), z(t)} является мар-
ковским.

Обозначим распределение вероятностей следующим образом:
P0(n, t, N) = P{k(t) = 0, n(t, N) = n} – вероятность того, что в момент

времени t линия свободна и за это время к системе обратилось n заявок;
Pk(n, t, N) = P{k(t) = k, n(t, N) = n, z(t) < z} – вероятность того, что в

момент времени t в системе суммарное число обращений равно n, заня-
та k-я фаза и до конца обслуживания остается времени меньше z.

Для распределения вероятностей трехмерного марковского процесса
{k(t), n(t, N), z(t)} составим прямую систему дифференциальных урав-
нений Колмогорова:
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Здесь 0 ( )R N , 1( , )R z N , 2 ( , )R z N  – стационарное распределение вероят-
ностей занятости фаз в однолинейной СМО.

Рассмотрим производящие функции:
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Тогда система (1) – (3) удовлетворяет системе дифференциальных
уравнений в частных производных первого порядка
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решение которой будем искать в виде
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Тогда уравнения для 0 ( , )F x t , ( )1 , ,F x z t  и 2 ( , , )F x z t  имеют вид
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где ( ) ( ), ,0,k kf x t F x t z= ∂ ∂ , k = 1,2.
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Вероятности R0, Rk(z), k = 1, 2, можно найти как решение системы
(8) – (10) при x = 1 и условии нормировки, то есть
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где b1 и b2 – математические ожидания времени обслуживания на пер-
вой и второй фазах соответственно.

Решение дифференциального уравнения (9) с учетом начальных ус-
ловий имеет вид
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Дифференцируя это тождество по z в нуле, получаем выражение для
нахождения неизвестной функции f1(x, t):

( ) ( )( ) ( )1 1 1, 1f x t B t xB t= λ − + λ . (12)

Аналогично решению уравнения (9), найдем решение уравнения (10):
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Дифференцируя полученное тождество (13) по z в нуле, получаем
интегральное уравнение для нахождения неизвестной функции f2(x, t):
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где f1(x, t) определяется выражением (12), а b2(t) – плотность распреде-
ления времени обслуживания на второй фазе.



Исследование потоков в двухфазной бесконечнолинейной СМО  113

Решение интегрального уравнения относительно f2(x, t) можно полу-
чить, используя преобразование Фурье – Стилтьеса вида

2
2 2

0 0

( , )
( , ) ( , )j t j t

t
f x t

e dt e d f x t x
t

∞ ∞
α α∂

= = ϕ α
∂∫ ∫ , 2 2

0

( ) ( )j te b t dt B
∞

α ∗= α∫
Нетрудно показать, что

( )
( )

( )1 2
2 1 1

2 2 2

1 ( )
( , ) ,

1 1 ( )
r x B

x xr x
r xr B

∗

∗

λ − α⎡ ⎤
ϕ α = + ϕ α⎢ ⎥− − α⎣ ⎦

.

Следовательно, решение уравнения (8) имеет вид

( )( )
( )

( ) ( )1 2 2 1
0 1 1 2 2

2 0 0

1
( , ) 1 ( , ) 1 ( , )

1

t trb r b
F x t t r f x s ds r f x s ds

r
λ + −

= + λ + − + −
− ∫ ∫ ,  (15)

где f1(x, t) и f2(x, t) уже известные нам функции.
При z→∞ выражения (11) и (13) приобретают вид

1 1 1
0

( , ) ( , )
t

F x t b xt f x s ds= λ + λ − ∫ , (16)

( )
( )1 2

2 1 1 2 2
2 0 0

( , ) ( , ) 1 ( , )
1

t tr b
F x t r x f x s ds r x f x s ds

r
λ

= + + −
− ∫ ∫ . (17)

Тогда, суммируя (15) − (17), получаем

( ) ( ) ( )1 1 2 2
0 0

( , ) 1 , ,
t t

F x t x t r f x s ds r f x s ds
⎧ ⎫⎪ ⎪= − λ + +⎨ ⎬
⎪ ⎪⎩ ⎭

∫ ∫ .

Исследование потока в двухфазной неоднородной СМО
с неограниченным числом обслуживающих приборов

Обозначим ni(t, N) – суммарное число обращений заявок в i-й одно-
линейной системе. Эти величины стохастически независимы и одина-
ково распределены. Их производящая функция H(x, t, N) имеет вид

( ) ( ) ( ) ( )0 1 2, , , , , , , , , ,H x t N H x t N H x t N H x t N= + ∞ + ∞ .

Следовательно, для производящей функции G(x,t) суммарного числа
n(t) обращений в исходной системе с неограниченным числом линий
можно записать
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( )
( )

( )( )1
,

, lim lim , ,
N

i
i

n t N N

N N
G x t Mx H x t N=

→∞ →∞

∑
= = .

Учитывая (6), (7), получаем

( ) ( ) { }1 1, lim 1 , exp ( , )
N

N
G x t F x t F x t

N N→∞

⎛ ⎛ ⎞⎞= + + ο =⎜ ⎜ ⎟⎟
⎝ ⎝ ⎠⎠

.

Подставляя (23), окончательно получаем выражение для нахождения
производящей функции G(x,t):

( ) ( ) ( )1 1 2 2
0 0

( , ) exp 1 , ,
t t

G x t x t r f x s ds r f x s ds
⎧ ⎧ ⎫⎫⎪ ⎪ ⎪⎪= − λ + +⎨ ⎨ ⎬⎬
⎪ ⎪ ⎪⎪⎩ ⎩ ⎭⎭

∫ ∫ .

Заключение

Таким образом, в работе построена математическая модель суммар-
ного потока обращений в неоднородной двухфазной системе массового
обслуживания с неограниченным числом обслуживающих приборов и
повторным обращением на второй фазе. Методом предельной декомпо-
зиции исследован суммарный поток обращений в рассматриваемой сис-
теме массового обслуживания. Получено выражения для производящей
функции исследуемого потока.

Полученные результаты могут быть использованы при проведении
анализа потоков различных социально-экономических систем, где на-
блюдаются повторные обращения заявок к системе, например в страхо-
вых и торговых компаниях.
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ИССЛЕДОВАНИЕ НЕОДНОРОДНОЙ
БЕСКОНЕЧНОЛИНЕЙНОЙ СМО SM|M(n)|∞

С.П. Моисеева1, Е.В. Панкратова2, М.П. Фархадов2

1Томский государственный университет, г. Томск, Россия
2Институт проблем управления им. В.А. Трапезникова РАН,

г. Москва, Россия

В условиях постоянного роста требований к эффективности уст-
ройств, применяемых в системах передачи и обработки информации, к
сокращению сроков исследования и разработки новых телекоммуника-
ционных систем и сетей актуально их исследование с помощью по-
строения математических моделей. Особенностью выбранной для ис-
следования математической модели является то, что сигналы в систему
поступают поодиночке, но они имеют абсолютно разную природу и со-
ответственно требуют совершенно разного обслуживания. Такие ситуа-
ции моделируются с помощью неоднородных СМО с ординарными
входящими потоками разнотипных заявок.

Постановка задачи

Рассмотрим СМО ( )SM | M |n ∞  с n  типами неоднородных (в смысле
скорости обслуживания) обслуживающих приборов, на вход которой
поступает SM-поток разнотипных заявок. Входящий SM-поток (Semi
Markovian Process) задан полумарковской матрицей ( )xA , состоящей из
элементов 

1 2
( )k kA x 1 2( 0, , , 0, , ),k N k N= =… …

1 2 2 2 1 2 1( ) ( , ; ) (ξ( 1) , ( 1) | ξ( ) },k kA x F k x k P k k k x k k= = + = τ + < = (1)

где ( )kξ  эргодическая цепь Маркова с дискретным временем и матри-
цей [ ]kpν=P  вероятностей перехода за один шаг, процесс ( )kτ  прини-
мает неотрицательные значения из непрерывного множества и опреде-
ляет длины интервалов в SM-потоке. Дисциплину обслуживания опре-
делим следующим образом. Заявки, поступившие в систему, с вероят-
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ностью 
1

( 1, , 1)
n

i i
i

p i n p
=

= =∑…  обслуживаются в течение случайного

времени, распределенного по экспоненциальному закону с параметром
iμ  ( 1,..., ),i n=  соответствующим типу заявки.
Поставим задачу исследования n-мерного случайного процесса

1{ ( ), ( )},nl t l t…  где ( )il t – число занятых приборов i-го типа в системе в
момент времени .t  Очевидно, что исследуемый случайный процесс не
является марковским. Воспользуемся методом «внешнего» марковизи-
рования [1, 2], который заключается во введении дополнительных пе-
ременных таким образом, чтобы исследуемый многомерный случайный
процесс стал марковским. Рассмотрим ( 2)n + -мерный марковский слу-
чайный процесс 1{ ( ), ( ), ( ), , ( )}ns t z t l t l t… , где ( )z t  – длина интервала от
момента времени t до момента наступления очередного события в SM-
потоке, а дискретный процесс ( )s t  определяется следующим образом:

( ) ( )1s t k= ξ + , если 1k kt t t +< ≤ , где моменты восстановления kt  опре-

деляются равенством ( )
1

k

k
i

t i
=

= τ∑ .

Для совместного распределения вероятностей

{ }1 1 1( , , , , , ) ( ) , ( ) , ( ) , , ( )n n nP s z l l t P s t s z t z l t l l t l= = < = =… …

можно записать систему дифференциальных уравнений Колмогорова

1 1 1( , , , , , ) ( , , , , , ) ( ,0, , , , )n n nP s z l l t P s z l l t P s l l t
t z z

∂ ∂ ∂
= − −

∂ ∂ ∂
… … …

1
1
μ ( , , , , , )

n

i i n
i

l P s z l l t
=

− +∑ … (2)

1 1
1 ν ν
ν 1 ν 1

1 1 1 1

(ν,0, 1, , , ) (ν,0, , , 1, )

μ ( 1) ( , , 1, , , ) μ ( 1) ( , , , , 1, ), 1,..., .

K K
n n

s n s

n n n n

P l l t P l l t
p A p A

z z
l P s z l l t l P s z l l t s K

= =

∂ − ∂ −
+ + + +

∂ ∂
+ + + + + + + =

∑ ∑… …
…

… … …

Решение системы (2) будем искать при стационарном режиме функ-
ционирования рассматриваемой системы. Обозначим

1 1lim ( , , , , , ) ( , , , , ), 1, , .n nt
P s z l l t s z l l s K

→∞
= Π =… … …
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Введем частичные характеристические функции вида

1 1

1

1 1
0 0

( , , , , ) ( , , , , ), 1, , ,n n

n

ju lju l
n n

l l
H s z u u e e s z l l s K

∞ ∞

= =

= × × Π =∑ ∑… " " … …

1j = −  – мнимая единица.
Для функций 1( , , , , )nH s z u u…  получим систему уравнений

( )1 1 1

1

( , , , , ) ( ,0, , , ) ( , , , , )
μ 1 i

n
jun n n

i
i i

H s z u u H s u u H s z u u
j e

z z u
−

=

∂ ∂ ∂
− + − +

∂ ∂ ∂∑… … …

1
ν

1 ν

(ν,0, , , )
( ) 0, 1, , ,i

n
ju n

i s
i

H u u
p e A z s K

z=

∂
+ = =

∂∑ ∑ …
… (3)

которую перепишем в виде векторно-матричного уравнения

( )1 1

1

( , , , ) ( , , , )
μ 1 i

n
jun n

i
i i

z u u z u u
j e

z u
−

=

∂ ∂
+ − +

∂ ∂∑H H… …

1

1

(0, , , )
( ) 0,i

n
jun

i
i

u u
p e z

z =

∂ ⎧ ⎫
+ − =⎨ ⎬

∂ ⎩ ⎭
∑H

A I
…

(4)

решение 1( , , , )nz u uH …  которого, удовлетворяющее условию
( ,0, ,0) ( )z z=H r… , определяет характеристическую функцию числа за-

нятых приборов в системе ( )SM | M |n ∞ , функционирующей в стацио-

нарном режиме, равенством 1
( )

1( , , , ) .
n

i i
i

j u l t

nMe u u=
∑

= ∞H e…

Здесь ( ) ( )1
0

( )
z

z x dx= κ −∫r r P A  – стационарное распределение веро-

ятностей значений двумерного случайного процесса ( ) ( ){ },s t z t , r  –
стационарное распределение вероятностей значений вложенной цепи

Маркова, величина 1κ  определяется равенством 1
1

κ =
rAe

, где матрица

A определяется равенством ( )( )
0

x dx
∞

= −∫A P A .

Векторно-матричное уравнение (4) является основным для дальней-
ших исследований.
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Вероятностные характеристики числа занятых
приборов в системе SM|M(n)|∞

Теорема 1. Для начальных моментов числа занятых приборов каж-
дого типа при стационарном функционировании неоднородной систе-
мы ( )SM | M |n ∞  верны следующие утверждения:

Утверждение 1. Среднее значение числа занятых приборов i-го типа
( 1, , )ifm i n= … в неоднородной системе ( )SM | M |n ∞ имеет вид

λ,
μ

i
i

i

p
fm = (5)

где (0)′λ = r e , [1, ,1]T=e …  – единичный вектор-столбец.
Утверждение 2. Начальный момент второго порядка числа заня-

тых приборов i -ого типа ( 1, , )ism i n= …  в неоднородной системе
( )SM | M |n ∞ имеет вид

( ) 1
λ (0) (μ ) (μ ) ,

μ
i

i i i i
i

p
sm p

−∗ ∗⎡ ⎤′= + −⎢ ⎥⎣ ⎦
r A I A e (6)

где 
0

( ) ( ),ze d z
∞

∗ −αα = ∫A A I  – единичная матрица.

Утверждение 3. Корреляционный момент ( 1, , , 1, , ,igcm i n g n= =… …
)i g≠  числа занятых приборов типа i и g  в неоднородной системе

( )SM | M |n ∞  имеет вид

1 1(0) (μ )( (μ )) (μ )( (μ )) .
μ μ

i g
ig i i g g

i g

p p
cm ∗ ∗ − ∗ ∗ −′ ⎡ ⎤= − + −⎣ ⎦+

r A I A A I A e (7)

Доказательство. Из свойств характеристической функции

1

1

0, , 0

( , , , )
( ),

n

n
i

i u u

z u u
j z

u = =

∂
=

∂
H

fm
…

…

1

2
21

2
0, , 0

( , , , )
( ),

n

n
i

i u u

z u u
j z

u = =

∂
=

∂

H
sm

…

…
(8)
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1

2
21

0, , 0

( , , , )
( ),

n

n
ig

i g u u

z u u
j z

u u
= =

∂
=

∂ ∂
H

cm
…

…

1, , , 1, , , .i n g n i g= = ≠… …

Н а ч а л ь н ы е  м о м е н т ы  п е р в о г о  п о р я д к а

Продифференцируем уравнение (4) по переменной , 1, , ,iu i n= …  по-
ложим 1 0, , 0nu u= =…  и получим систему дифференциальных уравне-
ний для нахождения вектор-строки ( )i zfm

( ) μ ( ) (0)( ( ) ) (0) ( ) 0, 1, , .i i i i iz z z p z i n′ ′ ′− + − + = =fm fm fm A I r A … (9)

Это уравнение будем решать методом преобразования Лапласа – Стил-
тьеса, обозначив

α α

0 0

(α) ( ), 1, , (α) ( ).z z
i ie d z i n e d z

∞ ∞
− ∗ −= = =∫ ∫Φ fm A A… (10)

Выполнив в (9) преобразование Лапласа – Стилтьеса, получим ра-
венство

( )μ α (α) (0)( (α) ) (0) (α) 0, 1, , ,i i i ip i n∗ ∗′ ′− = − + = =Φ fm A I r A … (11)

положив в котором , 1, , ,i i nα = μ = …  найдём вид вектора (0)i′fm

( ) 1
(0) (0) (μ ) (μ )i i i ip

−∗ ∗′ ′= −fm r A I A . (12)

Подставив (12) в (11), получим равенство

{ }1(α) (0)( (α) ) (0) (α) , 1, ,
μ αi i i

i
p i n∗ ∗′ ′= − + =

−
Φ fm A I r A … , (13)

определяющее преобразование Лапласа – Стилтьеса вектор-функции
( ).i zfm

Так как ( ) (0)i i′ ∞ =fm Φ  и ( ) ,∗ ∞ =A P  то для момента первого поряд-

ка числа занятых приборов разного типа в системе ( )SM | M |n ∞  можно
записать

( ) (0) , 1, , .
μ

i
i i

i

p
fm i n′= ∞ = =fm e r e … (14)
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Н а ч а л ь н ы е  м о м е н т ы  в т о р о г о  п о р я д к а

Для нахождения момента второго порядка числа занятых приборов,
продифференцируем дважды по , 1, , ,iu i n= …  равенство (4) и с учетом
(8) получим систему дифференциальных уравнений

( ) μ ( ) 2μ ( ) (0)( ( ) ) { (0) (0)} ( ) 0,i i i i i i i iz z z z p z′ ′ ′ ′− − + − + + =sm fm sm sm A I fm r A

выполнив в которой преобразование Лапласа – Стилтьеса, имеем равен-
ство

{ }1(α) μ (α) (0)( (α) ) [2 (0) (0)] (α) ,
2μ αi i i i i i

i
p∗ ∗′ ′ ′= + − + +

−
Ψ Φ sm A I fm r A

α α

0 0

(α) ( ), 1, , , (α) ( ) ,z z
i ie d z i n e d z

∞ ∞
− ∗ −= = =∫ ∫Ψ sm A A… (15)

откуда можно записать равенство, определяющее второй момент числа
занятых приборов разного типа в системе ( )SM | M |n ∞

1( ) (0) λ (0) (μ )( (μ )) , 1, , .
μ

i
i i i i i i

i

p
sm p i n∗ ∗ −′⎡ ⎤= ∞ = = + − =⎣ ⎦sm e Ψ e r A I A e …

К о р р е л я ц и о н н ы й  м о м е н т

Продифференцировав (4) по iu , и по , 1, , , 1, , , ,gu i n g n i g= = ≠… …

получим систему уравнений для вектор-функции ( )ig zcm :

( ) (μ μ ) ( ) (0)( ( ) )
{ (0) (0)} ( ) 0,

ig i g ig ig

g i i g

z z z
p p z

′ ′− + + − +
′ ′+ + =

сm сm сm A I
fm fm A

применив к полученному уравнению преобразование Лапласа – Стилть-

еса вида 
0

( )z
ig ige d z

∞
−α= ∫Θ cm  и положив α μ μ , , 1, , ,i g i g n= + = …  ,i g≠

получим выражение для корреляционного момента

1 1(0)[ (μ )( (μ )) (μ )( (μ )) ] .
μ μ

i g
ig i i g g

i g

p p
cm ∗ ∗ − ∗ ∗ −′= − + −

+
r A I A A I A e

Теорема доказана.
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Для анализа зависимости между компонентами вектора 1{ ( ), , ( )}nl t l t…
запишем выражение для коэффициента корреляции

cov
, 1, , , 1, , , ,ig ig i g

ig
i g i g

cm fm fm
r i n g n i g

VarVar VarVar

−
= = = = ≠… …

где iVar  – дисперсия числа занятых приборов типа , 1, , .i i n= …
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Современные задачи, связанные с высокотехнологичными телеком-
муникационными системами, могут быть описаны моделями, в которых
заявки описываются двумя характеристиками: случайным временем об-
служивания и случайным объемом, при этом буфер для суммарного
объема ожидающих заявок является ограниченным [1, 2]. В работе [3]
была предложена аналогия между объемом теряемой заявки и накры-
вающим интервалом соответствующего процесса восстановления, по-
зволяющая получить полезную аппроксимацию моментов теряемого
объема на основании парадокса времени восстановления. Но, в случае,
когда загрузка системы невелика или буфер для накопленного объема
достаточно велик, моделирование методом Монте-Карло требует значи-
тельного времени для получения оценок, поскольку потеря заявки явля-
ется редким событием.

Для решения этой проблемы в данной работе мы применяем метод
расщепления, позволяющий участить наблюдение редкого события.
Данный метод основан на идее создания нескольких стохастических
копий процесса, лежащего в основе динамики системы, при пересече-
нии заданных порогов. Мы моделируем динамику системы для разных
значений загрузки, различных распределений объемов заявок и величи-
ны буфера для накопленного объема.

Описание модели и связь с теорией восстановления

Рассмотрим систему типа GI/G/1, в которой каждая заявка имеет
случайное время обслуживания и случайный объем. Предполагается,
что времена обслуживания {Sn}, n ≥ 0, и объемы {vn}, n ≥ 0, являются

                                                       
* Исследование выполнено при финансовой поддержке РФФИ в рамках научных
проектов № 15-07-02341, 15-07-02354, 15-07-02360.
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независимыми одинаково распределенными (н.о.р.) случайными вели-
чинами (с.в.) с типичными элементами S и v соответственно. Будем счи-
тать, что пары {Sn, vn} являются также н.о.р., но для фиксированного n
величины Sn и vn могут быть зависимы. Обозначим через tn момент по-
ступления в систему заявки n. Интервалы между поступлениями заявок
в систему τn = tn+1 – tn являются н.о.р. с типичным элементом τ. Опреде-
лим величину загрузки системы как ρ = ES / Eτ.

Определим через V(t) величину накопленного объема в системе в
момент времени t, который равен сумме объемов всех ожидающих зая-
вок. Будем считать, что буфер для числа заявок, находящихся в очереди
в системе, является бесконечным, в то время как буфер для суммарного
объема ожидающих заявок ограничен конечной константой M. Таким
образом, заявка с номером n будет потеряна, если V(tn

−) + vn > M. Обо-
значим через R(t) множество номеров заявок, потерянных в интервале
(0, t].

Рассмотрим следующую важную характеристику системы: средний
теряемый объем заявки vloss, определяемую как предел

( )
loss lim

| ( ) |

i
i R t

t

v
v

R t
∈

→∞
=

∑
, (1)

где |R(t)| – мощность множества R(t). С другой стороны, теряемый объ-
ем может быть проинтерпретирован как интервал, накрывающий уро-
вень M, в процессе восстановления, порожденном н.о.р. величинами
{vk} [3]. Определим случайные суммы Zk = v1 + … + vk, k ≥ 1 такие, что
0 ≤ Z1 < Z2 < …. Пусть F является функцией распределения объема за-
явки, F(x) = P(v ≤ x), x ≥ 0 [4]. Обозначим через vt интервал, накрываю-
щий момент t. Тогда из формулы полной вероятности для vt верно сле-
дующее:
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где H(t) – функция восстановления, определенная для t ≥ 0 как

( ) : tH t EN= , 
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Из вышеупомянутой аналогии теряемый объем в рассматриваемой сис-
теме совпадает с vt при t = M, что влечет vloss ≡ EvM. Это дает возмож-
ность применить асимптотические результаты теории восстановления
для оценки EvM при достаточно большом (но конечном) буфере M.

Из ключевой теоремы восстановления [4] следует, что если g веще-
ственнозначная ограниченная функция, функция восстановления F не-
решетчатая и Ev < ∞, то при t → ∞ верно

0 0

1( ) ( ) ( )
t

g t u dH u g u du
Ev

∞

− →∫ ∫ . (4)

Применяя это к равенству (2), получаем

0 0

1 1lim ( ) [ ( ) ( )] ( )
x x

tt
P v x F x F u du uF du

Ev Ev→∞
≤ = − =∫ ∫ , (5)

где на последнем шаге было применено интегрирование по частям. От-
куда получаем следующую аппроксимацию для момента порядка p > 0
теряемого объема vM при достаточно большом M и ρ < 1:

1( )
( )

p
p
M

E v
E v

Ev

+

≈ . (6)

В частности, для первых двух моментов теряемого объема верно сле-
дующее:
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M
EvEv
Ev

≈ , 
3

2
M

EvEv
Ev

≈ . (7)

Метод расщепления и моделирование

В данной работе мы иллюстрируем при помощи имитационного мо-
делирования точность аппроксимации (7) в зависимости от величины
буфера M, загрузки системы ρ для различных распределений объема
заявок. Но, как уже было отмечено ранее, при большом значении буфе-
ра M потеря заявки становится редким событием, что делает сложной
задачу получения значимой выборки в рамках приемлемого времени
моделирования.

Для ускорения времени моделирования мы применяем метод расще-
пления [5, 6], в основе которого лежит идея копирования базового про-
цесса, описывающего состояние системы, по достижении некоторых за-
данных порогов, что позволяет сделать редкое событие более частым.
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В рамках постановки задачи рассмотрим равноотстоящие пороги
0 < x1 < x2 < … < xK < M. Когда процесс V(t) пересекает порог xi в пер-
вый раз, мы формируем Ri независимых копий базового процесса. Не-
обходимо отметить, что согласно методу расщепления, базовый процесс
должен быть марковским, иначе нельзя утверждать, что новая система
будет стохастической копией оригинальной. Однако в процессе моде-
лирования расщепление основывается только на величине основной
компоненты V(t).

Основным вопросом при реализации метода расщепления является
выбор порогов xi и множителей Ri оптимальным способом. Применим
следующую схему, предложенную для ускорения моделирования ред-
ких событий процесса величины очереди системы M/M/1 с ограничен-
ным буфером и дающую минимальную дисперсию величины оценки
[7, 8]:

K = –log Ploss / 2; Ri = e2, i > 0; R0 = 1, (14)
где Ploss – вероятность потери заявки в системе, K – количество порогов,
Ri – количество копий для порога xi.

Моделирование проводилось с использованием среды для статисти-
ческих вычислений “R” [9] с использованием высокопроизводительного
кластера Карельского научного центра РАН [10].

Была рассмотрена система с экспоненциально распределенными
временами обслуживания с параметром μ = 1 и экспоненциально рас-
пределенными временами между поступлениями заявок с параметрами
λ∈[0,7; 2] с шагом 0,05, что позволило рассмотреть случаи сильно и
слабо загруженной системы. В процессе моделирования построены
оценки среднего теряемого и среднего принимаемого объема, а также
оценки дисперсии теряемого объема. Эти данные позволили построить
доверительный интервал для оценки среднего теряемого объема.

Приведем полученные результаты. Рисунки 1 и 2 соответствуют
случаю объемов заявок, распределенных по закону Вейбулла с легким
хвостом с функцией распределения

2
( ) 1 , 0.xF x e x−= − >

Результаты для объемов заявок, распределенных по закону Парето с
тяжелым хвостом с функцией распределения

41( ) 1 , 1F x x
x

⎛ ⎞= − ≥⎜ ⎟
⎝ ⎠

,

(F(x) = 0 для x < 1) показаны на рис. 3 и 4.
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В частности, рис. 1 и 3 показывают оценки для среднего теряемого и
среднего принимаемого объема в зависимости от значения параметра ρ.
Теоретическое значение среднего объема Ev и значение аппроксимации
EvM также приведены на рисунках. Очевидно, что, когда ρ∈(1;2], значи-
тельная часть заявок теряется, что ведет к сближению оценки EvM со
средним объемом Ev. Факт, что величина среднего принимаемого объе-
ма меньше Ev, можно объяснить тем, что в основном заявки с малым
объемом принимаются в систему. С другой стороны, когда ρ∈[0,7;1],
оценка принимаемого объема близка к Ev, поскольку редкие потери
почти не влияют на результирующее значение. Рост оценки теряемого
объема можно объяснить тем, что теряются заявки с нетипично боль-
шим объемом. Особенно хорошо это выражено на рис. 3 в силу наличия
тежелого хвоста распределения объема [11]: если с.в. {Xi} являются
н.о.р. и субэкспоненциальными (этому классу принадлежат, например,
распределения Парето и Вейбулла с тяжелым хвостом), то

P(X1 + X2 + … + Xn > x) ~ P(max(X1, X2, … Xn) > x), x → ∞.

То есть сумма с.в. превышает сколь угодно большое фиксированное
число за счет одного нетипично большого слагаемого.

На рис. 2 и 4 изображены доверительные интервалы для оценок
среднего теряемого объема (в зависимости от значения ρ) для уровня
значимости 0,9. То, что доверительные интервалы при ρ∈[0,7;1] боль-
ше, чем при ρ∈(1;2] на рис. 4, можно объяснить ростом дисперсии по-
терянного объема при (редких) потерях заявок с тяжелохвостым рас-
пределением.

Как показывают эксперименты, аппроксимация (11) хорошо согла-
суется с результатами имитационного моделирования при значениях ρ
близких к 1. Отклонения полученных оценок от аппроксимации в ос-
тальных случаях могут быть объяснены тем, что параметры метода
расщепления не слишком подходят для рассмотренной постановки за-
дачи. Аналогию с теорией восстановления следует применять с осто-
рожностью в случае низкой загрузки (особенно в случае тяжелохвостых
распределений), поскольку в общем случае процесс накопленного объ-
ема не является классическим процессом восстановления. В случае
большой загрузки заявки с нетипично малым объемом имеют большую
вероятность быть принятыми за счет того, что значения процесса V(t)
близки к M.
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Заключение

Мы рассмотрели односерверную систему, в которой каждая заявка
описывается не только временем обслуживания, но и случайным объе-
мом. При этом суммарный объем заявок, находящихся в системе, огра-
ничен конечной константой. Предложенная ранее аппроксимация для
моментов потерянного объема была проиллюстрирована при помощи
имитационного моделирования для систем с различными параметрами.
В случае, когда потеря заявки является редким событием, для сокраще-
ния времени моделирования было использовано ускоренное моделиро-
вание, в частности метод расщепления. Численные результаты показы-
вают, что аппроксимацию величины потерянного и принятого объема
основе теории восстановления можно применять, однако это можно де-
лать с осторожностью, принимая во внимание распределение объемов
заявок и загруженность системы.
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АСИМПТОТИЧЕСКИЙ АНАЛИЗ ДВУХФАЗНОЙ
RQ-СИСТЕМЫ С ДВУМЯ ОРБИТАМИ В УСЛОВИИ
БОЛЬШОЙ ЗАДЕРЖКИ ЗАЯВОК НА ОРБИТАХ

А.А. Назаров, А.А. Анисимова
Томский государственный университет, г. Томск, Россия

С середины XX века все большую роль стали играть телекоммуни-
кационные системы: компьютерные и телефонные сети, системы пере-
дачи данных, радио, телевидение, мобильная связь и другие. В отличие
от классических систем массового обслуживания [1], для телекоммуни-
кационных систем характерна ситуация, при которой заявка, заставшая
обслуживающий прибор занятым, не встает в очередь, а уходит на ор-
биту, откуда через некоторые промежутки времени предпринимает по-
пытки вновь обратиться за обслуживанием. Такие модели описываются
в виде систем массового обслуживания с повторными вызовами или
RQ-систем (Retrial queueing system), которые были подробно изучены в
работах Дж.Р. Арталехо [2] и Г.И. Фалина [3].

В данной работе исследуется RQ-система M|M|1 с двумя фазами, ка-
ждая из которых содержит один обслуживающий прибор и орбиту.
Впервые двухфазные RQ-системы рассмотрели C.M.Krishna и Y.H.Lee
[4]. Также их анализом занимались B.T. Doshi [5], B. Krishnakumar [6],
G. Choudhury [7] и другие.

Математическая модель

Рассмотрим RQ-систему, на вход которой поступает простейший
входящий поток интенсивности λ . Каждая заявка проходит последова-
тельно 2 фазы. Продолжительность обслуживания на обеих фазах имеет
экспоненциальное распределение с параметрами 1μ  и 2μ  соответствен-
но. Если на очередной фазе заявка застает прибор занятым, она отправ-
ляется на соответствующую орбиту, откуда через случайные моменты
времени, имеющие экспоненциальное распределение с параметрами 1σ
и 2σ , делает попытки вновь обратиться за обслуживанием. После об-
служивания на второй фазе заявка покидает систему (рис. 1).
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σ1

σ1

σ1

σ2

σ2

σ2

μ2μ1
λ

Рис. 1. Модель двухфазной RQ-системы

Обозначим через { }( ), 1,2ji t j =  число заявок на орбите, соответст-

вующей j-й фазе, в момент времени t . Процессы { }( ), 1,2ji t j =  не яв-

ляются марковскими, поэтому введем дополнительную переменную:

{ } {0, прибор на -й фазе свободен,( ), 1,2
1, прибор на -й фазе занят.j

jk t j
j

= =

Пусть { }
1 2 1 2 1 1 2 2 1 1 2 2( , , ) ( ) , ( ) , ( ) , ( )k kP i i t P k t k k t k i t i i t i= = = = =  – веро-

ятность того, что в системе в момент времени t , в то время как прибо-
ры на обеих фазах находятся в состояниях 1k  и 2k  соответственно, на
орбитах на первой и второй фазе содержится 1i  и 2i заявок. Будем
рассматривать систему в стационарном режиме, при котором

1 2 1 21 2 1 2lim ( , , ) ( , )k k k kt
P i i t P i i

→∞
= .

Очевидно, что процесс { }( ), 1,2, ( ), 1,2j ji t j k t j= =  является марков-

ским. Для получения распределений вероятностей 
1 2 1 2( , )k kP i i составим

систему уравнений Колмогорова:
( )

( )
( )

( )
( )

1 1 2 2 00 1 2 2 01 1 2

10 1 2 00 1 2 1 1 00 1 2

1 2 2 10 1 2 2 11 1 2

1 10 1 2 1 11 1 2 2 2 00 1 2

1 1 2 01 1 2

11 1

λ σ σ ( , ) μ ( , ) 0,
λ ( 1, ) λ ( , ) σ 1 ( 1, )
λ μ σ ( , ) μ ( , ) 0,

μ ( , ) μ ( , 1) σ 1 ( , 1)
λ σ μ ( , ) 0,

λ ( 1,

i i P i i P i i
P i i P i i i P i i

i P i i P i i
P i i P i i i P i i

i P i i
P i i

− + + + =
− + + + + −

− + + + =
+ − + + + −

− + + =
− ( )

( ) ( )
2 01 1 2 1 1 01 1 2

2 2 10 1 2 1 2 11 1 2

) λ ( , ) σ 1 ( 1, )
σ 1 ( , 1) λ μ μ ( , ) 0.

P i i i P i i
i P i i P i i

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪ + + + + +⎪

+ + + − + + =⎪⎩

(1)
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Асимптотический анализ
в условии большой задержки заявок на орбитах

В системе (1) перейдем к частичным характеристическим функциям:
1 1 2 2

1 2 1 2
1 2

( )
1 2 1 2( , ) ( , )j u i u i

k k k k
i i

H u u e P i i+= ∑∑ ,

где 1j = − – мнимая единица.
Перепишем систему уравнений (1) для характеристических функ-

ций:

1 1

2

00 1 2 00 1 2
00 1 2 1 2 2 01 1 2

1 2

00 1 2
10 1 2 00 1 2 1

1

10 1 2
1 10 1 2 2 2 11 1 2

2

1 10 1 2 1 11 1 2 2

( , ) ( , )
λ ( , ) σ σ μ ( , ) 0,

( , )
λ ( , ) λ ( , ) σ

( , )
(λ μ ) ( , ) σ μ ( , ) 0,

μ ( , ) μ ( , ) σ

ju ju

ju

H u u H u u
H u u j j H u u

u u
H u u

e H u u H u u j e
u

H u u
H u u j H u u

u

H u u e H u u j e

−

∂ ∂
− + + + =

∂ ∂
∂

+ − −
∂

∂
− + + + =

∂

+ − 2

1 1
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00 1 2

2

01 1 2
2 01 1 2 1

1

01 1 2
11 1 2 01 1 2 1

1

10 1 2
2 1 2 11 1 2
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( , )

( , )
(λ μ ) ( , ) σ 0,

( , )
λ ( , ) λ ( , ) σ

( , )
σ (λ μ μ ) ( , ) 0.
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ju ju
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H u u
u

H u u
H u u j

u
H u u

e H u u H u u j e
u

H u u
j e H u u

u

−

−

−

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

∂⎪ −⎨ ∂⎪
⎪ ∂

− + + =⎪ ∂⎪
∂⎪

+ − −⎪ ∂⎪
∂⎪− − + + =⎪ ∂⎩

 (2)

Систему (2) будем решать методом асимптотического анализа в ус-
ловии большой задержки заявок на орбитах, характеризующимся тем,
что 1 2, 0σ σ → .

Асимптотика первого порядка

В соответствии с условием большой задержки заявок на орбитах
обозначим ,k kσ = γ σ 0σ → . В системе (2) выполним замены:

1 2 1 21 2 1 2σ ε , ε , ( , ) ( , ,ε)k k k k k ku w H u u F w w= = = .
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Теорема 1. Пусть 1( )i t  и 2 ( )i t  – число заявок на орбитах на первой и
второй фазе соответственно в момент времени t . Тогда выполняется
равенство

{ } { }1 1 2 2 1 1 2 20
lim exp σ ( ) σ ( ) expM jw i t jw i t jw a jw a
σ→

+ = + , (3)

где параметры 1a  и 2a  определяются совместным решением систем
уравнений

( ) 1
( )

T T
R vM M M

−
= ,

{ 10 11 1 1 00 1 1 01

1 11 2 2 00 2 2 10

λ λ γ γ 0,
μ γ γ 0.

R R a R a R
R a R a R

+ − − =
− − =

Здесь матрица M  и вектор v  имеют вид

( )M M E= , где

( )
( )

( )
( )

1 1 2 2 1 1 2 2

2 2 1 1 1 1

1 2 2 1 2 2

2 1 1 2

λ γ γ λ γ γ 0
μ 0 λ μ γ λ γ
0 μ γ μ γ
0 μ μ μ μ

a a a a
a aM a a

− + + +⎛ ⎞
⎜ ⎟− + + +

= ⎜ ⎟− +⎜ ⎟⎜ ⎟− +⎝ ⎠

,

( )0 1Tv E= .

Асимптотическая характеристическая функция имеет вид

{ }1 2
1 2 1 2( , ) exp

σ σ
a a

H u u ju ju= + .

Асимптотика второго порядка

Для более детального исследования характеристической функции
( )1 1 2 2j u i u iMe +  решение 

1 2 1 2( , )k kH u u  системы (2) будем искать в виде

( )1 1 2 2

1 2 1 2

(2)σ
1 2 1 2( , ) ( , ).

j u a u a
k k k kH u u e H u u

+
=

Введем обозначения:

σ γ σk k= , 2σ ε= , εk ku w= , 
1 2 1 2

(2) (2)
1 2 1 2( , ) ( , , )k k k kH u u F w w= ε .
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Теорема 2. Пусть 1( )i t  и 2 ( )i t  – число заявок на орбитах на первой и
второй фазе соответственно в момент времени t . Тогда выполняется
равенство

{ }
( ) ( )

1 2
1 1 2 2σ 0

2 2
1 2

11 1 2 12 22

lim exp σ ( ) σ ( )
σ σ

exp ,
2 2

a a
M jw i t jw i t

jw jw
K jw jw K K

→

⎛ ⎞ ⎛ ⎞− + − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎧ ⎫⎪ ⎪= + +⎨ ⎬
⎪ ⎪⎩ ⎭

(4)

где параметры 11K , 12K  и 22K  определяется решением неоднородных
систем линейных уравнений:
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Из (3) и (4) следует, что характеристическая функция имеет вид

( ) ( )2 2
21 21 2 11 12 22

1 2 1 2 1 2( , ) exp
σ σ 2 σ σ 2 σ

ju jua a K K K
H u u ju ju j u u

⎧ ⎫⎪ ⎪= + + + +⎨ ⎬
⎪ ⎪⎩ ⎭

.

Отсюда плотность нормального распределения числа заявок на
орбитах

( )

( )

2
1 1

1 1 2 22 1111 22
2

2 21 1 2 2

2211 22

1 1( , ) exp
2(1 ρ )2π (1 ρ )

2( )( )
ρ ,

i a
P i i

KK K
i ai a i a

KK K

⎧ ⎛ −⎪= − −⎜⎨ ⎜−⎪− ⎩ ⎝
⎞⎫−− − ⎪− + ⎟⎬⎟⎪⎠⎭

где 12

11 22

ρ
K

K K
= .

Результаты имитационного моделирования

В данном разделе проводится сравнение асимптотических результа-
тов с результатами имитационного моделирования. Описание имитаци-
онной модели приводится в [8, 9].

В качестве критерия точности оценивания будем использовать рас-
стояние Колмогорова между асимптотическим распределением вероят-
ностей числа заявок на орбите и распределением, полученным в резуль-
тате работы модели. Пусть ∆  – двумерное расстояние для обеих орбит,
а 1∆  и 2∆  – расстояния для первой и второй орбиты соответственно.
В качестве критерия точности оценивания было выбрано расстояние
Колмогорова меньше 0,05. В таблице представлены результаты сравне-
ния в зависимости от изменения параметра σ  и заданных значениях па-
раметров: 0,5λ = , 1 2 1μ = μ = , 1 1γ = , 2 2γ = .

Область применимости асимптотических результатов

σ ∆ 1∆ 2∆

0,1 0,172 0,038 0,069
0,05 0,045 0,031 0,039
0,03 0,051 0,028 0,029
0,01 0,077 0,015 0,021



Асимптотический анализ двухфазной RQ-системы  135

Заключение

Из таблицы видно, что при уменьшении σ  повышается точность ап-
проксимации для маргинальных распределений, но не для двумерного.
Это связано со слабой корреляцией распределений вероятностей числа
заявок на первой и второй орбитах.
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ИССЛЕДОВАНИЕ RQ-СИСТЕМЫ M/GI/1
С R-НАСТОЙЧИВЫМ ВЫТЕСНЕНИЕМ ЗАЯВОК*

А.А. Назаров, Я.Е. Измайлова
Томский государственный университет, г. Томск, Россия

В современном мире, где активно развиваются информационные,
транспортные системы, исследование RQ-систем (систем с повторными
вызовами) является актуальной научной задачей. Системы с повторами
характеризуются тем, что прибывшая в систему заявка, обнаружив при-
бор занятым, уходит в зону ожидания и через некоторое случайное вре-
мя повторяет попытку обслуживания. Между повторами заявки (клиен-
ты) находятся в «источнике повторных вызовов» (ИПВ или орбита).
Обзор работ по этой тематике приведен в работах J.R. Artalejo [1]. Сис-
темы с повторными вызовами и вытеснением заявок могут являться ма-
тематическими моделями реальных телекоммуникационных систем, а
также операционных компьютерных систем.

В последние годы акцент направлен на исследование приоритетных
систем с повторами. К таким работам можно отнести исследования
B. Kim [2], С. D’Apice [3], С. Kim, В.И. Клименок [4], А.Н. Дудина [5, 6]
Также можно встретить немало работ, касающихся изучения RQ-систем
с дискретным временем, например работы I.M. Atencia [7]. В [7] рас-
сматривается система с повторными вызовами, в которой прибывшая
заявка, обнаружившая прибор занятым, может решить: начать обслужи-
вание или присоединиться к орбите и повторить попытку позже соглас-
но дисциплине FCFS.

Но в приоритетных RQ-системах не учитывается эффект наблюдае-
мого в реальных системах вытеснения требований.

Математическая модель

Рассмотрим RQ-систему с вытеснением заявок. На вход системы по-
ступает простейший поток заявок с интенсивностью λ . Требование, за-
ставшее прибор свободным, занимает его для обслуживания в течение

                                                       
* Исследование выполнено при финансовой поддержке РФФИ в рамках научного
проекта № 16-31-00292 мол_а.
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случайного времени с функцией распределения ( )B x . Если прибор за-
нят, то с вероятностью r  поступившая заявка вытесняет обслуживае-
мую и сама встает на прибор, а заявка, которая обслуживалась, перехо-
дит на орбиту, где осуществляет случайную задержку, продолжитель-
ность которой имеет экспоненциальное распределение с параметром σ .
Иначе с вероятностью (1 )r−  пришедшая заявка уходит на орбиту сама,
не влияя на обслуживание стоящей заявки на приборе. С орбиты, после
случайной задержки, заявка вновь обращается к прибору с повторной
попыткой его захвата. Дисциплина обращений заявок с орбиты анало-
гична дисциплине обращения заявок, которые впервые прибыли в сис-
тему (рис. 1).

Орбита

λ

σσ

(1– )r
(1– )rr

r
B x( )

Рис. 1. RQ-система M/GI/1
с r-настойчивым вытеснением заявок

Обозначим ( )i t  – число заявок на орбите, ( )k t  определяет состояние
прибора следующим образом:

{         если прибор свободен,
          если прибо

0,( )
р 1 ят, зан .

k t =

Ставится задача нахождения стационарного распределения вероят-
ностей числа заявок на орбите и состояний прибора.

Так как процесс { ( ), ( )}k t i t не является марковским, то для его марко-
визации рассмотрим процесс с переменным числом компонент.

Если ( ) 0k t = , то рассматриваем процесс { }( ), ( )k t i t . Если ( ) 1k t = , то
рассматриваем процесс { }( ), ( ), ( )k t i t z t , где ( )z t  остаточное время от
момента t  до момента окончания обслуживания.
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Обозначим 0{ ( ) 0, ( ) } ( , )P k t i t i P i t= = = , 0i ≥ , вероятность того, что
прибор в момент времени t  находится в состоянии 0 и в источнике по-
вторных вызовов находится i  заявок; 1{ ( ) 1, ( ) , ( ) } ( , , )P k t i t i z t z P i z t= = < = ,

0i ≥  вероятность того, что прибор в момент времени t  находится в со-
стоянии 1, остаточное время обслуживания меньше z  и в источнике
повторных вызовов находится i  заявок.

Для этого распределения вероятностей нетрудно получить систему
уравнений Колмогорова:

1 1
0 1 1

1 1 1 0

( , ) ( ,0)
( ) ( ) ( ) ( , ) (1 ) ( 1, )

(1 ) ( , ) ( ) ( , ) ( ) ( 1, ) ( 1) ( ) ( 1),
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B z P i i P i z r P i z

z z
r i P i z i rB z P i rB z P i i B z P i

∂ ∂
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∂ ∂
+ − σ + σ ∞ + λ − ∞ + + σ +

1
0

( ,0)
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P i
i P i

z
∂

− = − λ + σ
∂

в которой применяется обозначение
1 1

0

( ,0) ( , )

z

P i P i z
z z =

∂ ∂
=

∂ ∂
.

От системы для распределения вероятностей перейдем к системе
уравнений для частичных характеристических функций вида

0 0
0

( ) ( ),jui

i
H u e P i

∞

=

= ∑  1 1
0

( , ) ( , ),jui

i
H u z e P i z

∞

=

= ∑

где 1j = −  – мнимая единица. Обозначим

1 1( , ) ),(H u H u∞ =  1 1

0

( ,0) ( , )
.

z

H u H u z
z z =

∂ ∂
=

∂ ∂

Запишем систему уравнений для частичных характеристических
функций:

1 1 1 1

01
0

1 1 1

01
0

( , ) ( ,0) ( , ) ( )
( )

( )( , )
(1 ) ( ) ( ) ( ) ( )

( , ) ( ) ( ) (1 ) ( , ) 0,
( )( ,0)

( ) 0.

ju

ju ju

H u z H u H u z H u
j j rB z

z z u u
H uH u z

j r B z j B z e B z H u
u u

H u z rB z e H u r e H u z
H uH u

H u j
z u

−

∂ ∂ ∂ ∂
+ + σ − σ −

∂ ∂ ∂ ∂
∂∂

− σ − − σ + λ −
∂ ∂

−λ + λ + λ − =
∂∂

− λ + σ =
∂ ∂
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Аналитически данную систему решить затруднительно. Будем ре-
шать ее методом асимптотического анализа [8, 9] в условии большой
задержки ( 0σ → ).

Асимптотический анализ

Обозначим 1κ  – асимптотическое среднее значение числа заявок на
орбите, а kR , 0,1k =  – распределение вероятностей состояний прибора.
Сформулируем следующее утверждение.

Теорема 1. Пусть ( )i t  число заявок на орбите RQ-системы с r-
настойчивым вытеснением заявок. Тогда выполняется равенство

{ } { }10
lim exp ( ) exp ,M ju i t ju
σ→

σ = κ

где 1κ  является решением уравнения

1 0( )Rλ = λ + κ , (1)

а 0R , 1R  определяются равенствами

( )
( )

*
1

0 *
1

( )
,

1 (1 ) ( )
rB r

R
r B r

λ + κ
=

− − λ + κ
 ( )

( )

*
1

1 *
1

1 ( )
.

1 (1 ) ( )
B r

R
r B r

− λ + κ
=

− − λ + κ
(2)

Из-за трудоемких вычислений доказательство теоремы не приводит-
ся. Из полученных в теореме 1 уравнения (1) и равенств (2) определя-
ются: распределение вероятностей состояний прибора и среднее число
заявок в источнике повторных вызовов на фазах.

Для более детального исследования RQ-системы построим гауссов-
скую аппроксимацию числа заявок на орбите.

Теорема 2. Пусть ( )i t  число заявок на орбите RQ-системы с r-
настойчивым вытеснением заявок. Тогда выполняется равенство

{ } 2
1

20

( ) ( )lim exp exp ,
2

i t juM ju
σ→

⎧ ⎫σ − κ
= κ⎨ ⎬

σ ⎩ ⎭

где ( )
( ) ( )

*
1 1 1

2 * *
1 1 1

(1 ) ( )
,

( ) ( )
R r R r

r B r R r
λ + − λ λ + κ

κ =
⎡ ⎤λ + κ − λ + κ⎣ ⎦

1κ  является решением уравнения (1), величины 0 1,  R R  удовлетворяют
равенствам (2),
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( )1 1( ) ( )
1 1 0 0 1

0

( ) ( ) ( ) ( )
z

r z r xR z e e R R B x rR B x dxλ+κ − λ+κ= λ + κ − −∫ ,

( )*
1 1( )R r λ + κ  – преобразование Лапласа – Стилтьесса от функции

1( )R z  в точке 1( )r λ + κ .
Таким образом, стационарное распределение вероятностей числа

заявок на орбите RQ-системы с простейшим входящим потоком, произ-
вольной функцией распределения времени обслуживания и r-
настойчивым вытеснением заявок можно аппроксимировать гауссов-

ским распределением с параметрами 1κ
σ

, 2κ
σ

.

Заключение

Предложенная новая математическая модель RQ-системы с r-
настойчивым вытеснением заявок расширяет класс RQ-систем с вытес-
нением заявок [10, 11], что позволит решить ряд практических задач в
области телекоммуникаций и транспортных системах.
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СРАВНЕНИЕ МЕТОДОВ ОСТАТОЧНОГО
И ИСТЕКШЕГО ВРЕМЕНИ ОБСЛУЖИВАНИЯ

ДЛЯ ИССЛЕДОВАНИЯ ЗАМКНУТОЙ RQ-СИСТЕМЫ
M/GI/1/N С КОНФЛИКТАМИ ЗАЯВОК

И НЕНАДЕЖНЫМ ПРИБОРОМ

А.А. Назаров, А.С. Квач
Томский государственный университет, г. Томск, Россия

RQ-системы [1−3] широко используются для исследования телеком-
муникационных и компьютерных систем, при проектировании мобиль-
ных сотовых радиосетей, телефонных сетей и во многих других облас-
тях. На практике часто необходимо учитывать тот факт, что с увеличе-
нием числа заявок в системе интенсивность генерирования новой заяв-
ки уменьшается. В данной ситуации используются модели с конечным
числом источников или замкнутые RQ-системы.

Очень часто при исследовании различных систем массового обслу-
живания обслуживающие приборы предполагаются абсолютно надеж-
ными. Но на практике необходимо учитывать возможность выхода при-
бора из строя и его восстановления. Например, системы с конечным
числом источников и ненадежным прибором ранее были исследованы в
работах [4−7].

Во многих практических ситуациях, при передаче данных из разно-
образных источников возможно возникновение конфликтной ситуации.
Нескоординированные попытки захвата единственного сервера не-
сколькими источниками могут привести к столкновениям, приводящим
к потере передаваемых данных и, следовательно, необходимости в их
повторной передаче. В работах [8−11] были рассмотрены различные
RQ-системы с конфликтами заявок.

Целью данной работы является исследование RQ- системы, которая
содержит все вышеперечисленные свойства, а именно: конечное число
источников, ненадежный прибор и возможность возникновения кон-
фликтных ситуаций.
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Математическая модель

Рассматривается немарковская замкнутая RQ-система с конфликта-
ми заявок и ненадежным прибором (рис. 1). Каждый из N источников
генерирует заявку и отправляет ее на прибор с интенсивностью / Nλ .
Источник, который отправил заявку на обслуживание, находится в ре-
жиме ожидания и не генерирует новую до тех пор, пока заявка не за-
вершит свое успешное обслуживание. Заявка, заставшая прибор сво-
бодным, занимает его для обслуживания. Время обслуживания каждой
заявки является случайной величиной с произвольной функцией рас-
пределения ( )B x . Если прибор занят, то поступившая заявка вступает
в конфликт с обслуживаемой заявкой и они обе переходят на орбиту.
С орбиты после случайной задержки, продолжительность которой име-
ет экспоненциальное распределение с параметром / Nσ , заявка вновь
обращается к прибору с повторной попыткой его захвата.

N

γ2

γ1

γ0

B x( )

σ N

σ N

λ N

λ N

λ N . . .

σ N

 . 
. .

Рис. 1. Замкнутая RQ-система с конфликтами заявок
и ненадежным прибором

В рассматриваемой системе прибор является ненадежным. Если при-
бор свободен, то он выходит из строя с интенсивностью 0γ , если прибор
занят – с интенсивностью 1γ . В случае поломки прибор немедленно пе-
реходит в состояние восстановления, продолжительность которого имеет
экспоненциальное распределение с параметром 2γ . Если в момент выхо-
да из строя прибор был занят, то обслуживаемая заявка покидает прибор
и переходит на орбиту. Отметим, что во время периода восстановления
(ремонта) генерация заявок продолжается и заявки, обратившиеся к при-
бору во время ремонта, мгновенно переходят на орбиту.
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Пусть ( )i t – число заявок в системе, то есть общее число заявок на
приборе и на орбите, а ( )k t  определяет состояние прибора следующим
образом:

0, прибор свободен,
( ) 1 прибор занят,

2 прибор на ремонте.
k t ,

,

⎧⎪= ⎨
⎪⎩

Для рассматриваемой системы процесс { }( ), ( )k t i t  не является мар-
ковским. Для его марковизации воспользуемся методом дополнитель-
ной переменной, а именно, рассмотрим два варианта: метод остаточно-
го времени и метод истекшего времени, и впоследствии сравним их.

Метод остаточного времени для замкнутой RQ-системы
с конфликтами заявок и ненадежным прибором

Введем случайный процесс ( )z t , имеющий смысл длины интервала от
момента t до момента окончания успешного обслуживания заявки. Таким
образом, исследуется марковский процесс { }( ), ( ), ( )k t z t i t , который имеет
переменное число компонент в зависимости от состояния прибора, так
как компонента ( )z t  определена только в те моменты, когда ( ) 1k t = .

Определим следующие вероятности:

0 ( , ) { ( ) 0, ( ) }P i t P k t i t i= = = , 1( , , ) { ( ) 1, ( ) , ( ) },P i z t P k t i t i z t z= = = <

2 ( , ) { ( ) 2, ( ) }.P i t P k t i t i= = =

Для распределения вероятностей 0 ( , )P i t , 1( , , )P i z t , 2 ( , )P i t  состояний
системы составим систему дифференциальных уравнений Колмогорова
и запишем ее для стационарного распределения

1
0 0 1

1 2 2

( 1,0)σ 1λ γ ( ) λ ( 1)

1σ ( ) γ ( ) 0,

P iN i N ii P i P i
N N z N

i P i P i
N

∂ +− − +⎡ ⎤− + + + + − +⎢ ⎥ ∂⎣ ⎦
−

+ + =

1 1
1 1

0 0

( , ) ( ,0) 1λ σ γ ( , )

1λ ( 1) ( ) σ ( ) ( ) 0,

P i z P i N i i P i z
z z N N

N i iP i B z P i B z
N N

∂ ∂ − −⎛ ⎞− − + + +⎜ ⎟∂ ∂ ⎝ ⎠
− +

+ − + = (1)
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2 2 0 0 1 1 2
1λ γ ( ) γ ( ) γ ( ) λ ( 1) 0 .N i N iP i P i P i P i

N N
− − +⎡ ⎤− + + + + − =⎢ ⎥⎣ ⎦

Введем частичные характеристические функции вида

1 1
0 1

( ) ( ), 0,2; ( , ) ( , ),
N N

jui jui
k k

i i
H u e P i k H u z e P i z

= =

= = =∑ ∑
тогда систему (1) перепишем в виде

( ) ( ) ( )0 1
0 0

( ) ( )
σ λ λ σ λ γ ( )juH u H uj j e H u

N u N u
∂ ∂

− + − − + +
∂ ∂

1
1 2 2

( ,0)σλ ( ) γ ( ) 0,ju ju H u
e H u H u e

N z
− ∂⎛ ⎞+ − + + =⎜ ⎟ ∂⎝ ⎠

( ) ( )01 1 1( )( , ) ( ,0) ( , )
λ σ ( ) σ λju H uH u z H u H u zj je B z

z z N u N u
∂∂ ∂ ∂

− + − + − +
∂ ∂ ∂ ∂

(2)

0 1 1
σλ ( ) ( ) λ γ ( , ) 0,jue B z H u H u z
N

⎛ ⎞+ + − − =⎜ ⎟
⎝ ⎠

( ) ( )2
2 2 0 0 1 1

( )
λ 1 λ 1 γ ( ) γ ( ) γ ( ) 0.ju juH uj e e H u H u H u

N u
∂ ⎡ ⎤− + − − + + =⎣ ⎦∂

Систему (2) будем решать методом асимптотического анализа [12] в
предельном условии неограниченно растущего числа источников, то
есть при N → ∞ .

Теорема 1. Пусть ( )i t – число заявок в замкнутой RQ-системе
M/GI/1//N с конфликтами заявок и ненадежным прибором, тогда вы-
полняется равенство

( )lim exp exp( κ)
N

i tM jw jw
N→∞

⎛ ⎞ =⎜ ⎟
⎝ ⎠

,

где значением параметра κ  является положительное решение урав-
нения

[ ]0 1 1 1λ(1 κ) δ(κ) (κ) (κ) γ ( ) 0,R R R− − − + κ =

а стационарное распределение вероятностей ( )kR κ  состояний k при-
бора определяются равенствами
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( )
1

0 2 0 2 1 2 1
1

( )( ) 1 ( ( ) ) ,
( )

R B
−

∗⎧ ⎫δ κ ⎡ ⎤κ = γ γ + γ + γ + γ ⋅ − δ κ + γ⎨ ⎬⎣ ⎦δ κ + γ⎩ ⎭

1 1 0
1

( )( ) 1 ( ( ) ) ( ),
( )

R B R∗δ κ ⎡ ⎤κ = − δ κ + γ κ⎣ ⎦δ κ + γ

[ ]2 0 0 1 1
2

1( ) ( ) ( )R R Rκ = γ κ + γ κ
γ

.

Здесь δ(κ) λ(1 κ) σκ.= − +

Метод истекшего времени для замкнутой RQ-системы
с конфликтами заявок и ненадежным прибором

Введем дополнительную переменную ( )y t  и рассмотрим трехмер-
ный процесс { ( ), ( ), ( )}k t y t i t , где ( )y t  – длина интервала от момента
начала обслуживания до момента t , то есть компонента ( )y t  определя-
ется только в те моменты, когда ( ) 1k t = . Пусть

( , ) { ( ) , ( ) }, 0,2;kp i t P k t k i t i k= = = =

1
{ ( ) 1, ( ) , ( ) }( , , ) P k t i t i y t yp i y t

y
= = <

=
∂

,

тогда для распределения вероятностей 0 ( , )p i t , 1( , , )p i y t , 2 ( , )p i t  со-
стояний системы составим систему дифференциальных уравнений
Колмогорова и запишем ее для стационарного распределения

0 0 1 1
0

σ 1λ γ ( ) ( 1, )μ( ) λ ( 1)N i N ii p i p i y y dy p i
N N N

∞− − +⎡ ⎤− + + + + + − +⎢ ⎥⎣ ⎦ ∫

1 2 2
1 ( ) ( ) 0 ,i p i p i

N
−

+σ + γ = (3)

1
1 1

( , ) 1 ( ) ( , ) ,
p i y N i i y p i y

y N N
∂ − −⎡ ⎤= − λ + σ + μ + γ⎢ ⎥∂ ⎣ ⎦

2 2 0 0 1 1 2
1( ) ( ) ( ) ( 1) 0 ,N i N ip i p i p i p i

N N
− − +⎡ ⎤− λ + γ + γ + γ + λ − =⎢ ⎥⎣ ⎦
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с краевым условием

1 0 0
1( ,0) ( 1) ( ) .N ip i p i i p i

N N
− + σ

= λ − + (4)

Введем частичные характеристические функции вида

1 1
0 1

( ) ( ), 0,2; ( , ) ( , ),
N N

jui jui
k k

i i
H u e p i k H u y e p i y

= =

= = =∑ ∑
тогда систему (3) и равенство (4) перепишем в виде

( ) ( ) ( )0 1
0 0

( ) ( )
σ λ λ σ λ γ ( )juH u H uj j e H u

N u N u
∂ ∂

− + − − + +
∂ ∂

1 2 2 1
0

( ) ( ) ( , ) ( ) 0,ju jue H u H u e H u y y dy
N

∞
−σ⎛ ⎞+ λ − + γ + μ =⎜ ⎟

⎝ ⎠ ∫

( )1 1
1 1

( , ) ( , )
( ) ( , ),

H u y H u yj y H u y
y N u N

∂ ∂ σ⎡ ⎤= σ − λ + − λ − μ − γ⎢ ⎥∂ ∂ ⎣ ⎦
(5)

( ) ( )2
2 2 0 0 1 1

( )
λ 1 λ 1 γ ( ) γ ( ) γ ( ) 0,ju juH uj e e H u H u H u

N u
∂ ⎡ ⎤− + − − + + =⎣ ⎦∂

( ) 0
1 0

( )
( ,0) λ σ λ ( ).ju juH ujH u e e H u

N u
∂

= − +
∂

Полученную систему (5) будем решать методом асимптотического ана-
лиза в том же предельном условии неограниченно растущего числа ис-
точников.

Теорема 2. Пусть ( )i t – число заявок в замкнутой RQ-системе
M/GI/1//N с конфликтами заявок и ненадежным прибором, тогда вы-
полняется равенство

( )lim exp exp( κ)
N

i tM jw jw
N→∞

⎛ ⎞ =⎜ ⎟
⎝ ⎠

,

где значением параметра κ  является положительное решение урав-
нения

[ ]0 1 1 1λ(1 κ) δ(κ) (κ) (κ) γ (κ) 0,R R R− − − + =

а стационарное распределение вероятностей ( )kR κ  состояний k при-
бора определяются равенствами
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( )
1

0 2 0 2 1 2 1
1

δ(κ)(κ) γ γ γ γ γ 1 (δ(κ) γ ) ,
δ(κ) γ

R B
−

∗⎧ ⎫⎡ ⎤= + + + ⋅ − +⎨ ⎬⎣ ⎦+⎩ ⎭

1 1 0
1

( )( ) 1 ( ( ) ) ( ),
( )

R B R∗δ κ ⎡ ⎤κ = − δ κ + γ κ⎣ ⎦δ κ + γ
 [ ]2 0 0 1 1

2

1( ) ( ) ( )R R Rκ = γ κ + γ κ
γ

.

Здесь δ(κ) λ(1 κ) σκ.= − +

Сравнение методов остаточного и истекшего времени

При исследовании замкнутой RQ-системы M/GI/1//N с конфликтами
заявок и ненадежным прибором методом асимптотического анализа для
марковизации процесса { ( ), ( )}k t i t  в работе были рассмотрены два ме-
тода: метод истекшего времени и метод остаточного времени. В резуль-
тате были сформулированы теоремы 1 и 2, из которых следует, что ос-
новные характеристики системы, такие, как стационарное распределе-
ние вероятностей kR  состояний k прибора и асимптотическое среднее
нормированного числа заявок в системе κ  имеют одинаковый вид и не
зависят от метода исследования.

Использование метода истекшего времени необходимо для исследо-
вания числа переходов заявки на орбиту, а также для дальнейшего ис-
следования времени пребывания заявки на орбите.

Метод остаточного времени используется для нахождения распреде-
ления вероятностей числа заявок в системе. Также метод остаточного
времени необходим при исследовании времени пребывания заявки на
приборе.

Заключение

Рассмотрена замкнутая RQ-система M/GI/1//N с конфликтами заявок
и ненадежным прибором. Исследование системы выполнено методом
асимптотического анализа в предельном условии неограниченно рас-
тущего числа источников. При исследовании системы были использо-
ваны методы истекшего и остаточного времени. В результате было
показано, что стационарное распределение вероятностей kR  состояний
k прибора и асимптотическое среднее нормированного числа заявок
в системе κ  имеют одинаковый вид и не зависят от применяемого ме-
тода.
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ИССЛЕДОВАНИЕ ВЫХОДЯЩЕГО ПОТОКА
В RQ-СИСТЕМЕ М/M/1/1 С ВЫЗЫВАЕМЫМИ ЗАЯВКАМИ

А.А. Назаров, И.Л. Лапатин, С.В. Пауль
Томский государственный университет, г. Томск, Россия

В системах обслуживания, таких, как call-центры, время простоя
операторов должно быть минимизировано для увеличения продуктив-
ности систем. С этой целью операторы могут не только принимать вхо-
дящие вызовы, но и делать исходящие, например для продвижения ус-
луг центра. Эти ситуации моделируются RQ-системами с вызываемыми
заявками, где сервер имеет возможность принимать вызовы и совер-
шать исходящие.[1]

В работе проведено исследование потока обслуженных заявок в та-
кой RQ-системе [2, 3]. Хотя информация о их характеристиках пред-
ставляет большой практический интерес, исследованию выходящих по-
токов в настоящее время уделяется недостаточно внимания, так как не
существует общих подходов к их исследованию. Основные результаты
по аналитическому исследованию выходящих потоков в рамках класси-
ческой теории были сделаны во второй половине ХХ в. такими учены-
ми, как П. Берк [4], Е. Рейч [5], П. Финч [6]. Поэтому достаточно акту-
альной является проблема разработки новых и модификация имеющих-
ся методов исследования выходящих потоков.

В предложенной работе основным методом исследования является
метод асимптотического анализа, который позволяет в RQ-системе
M/M/1/1 c двумя классами заявок [7] найти вид предельного распреде-
ления числа событий в выходящем потоке, наступивших за время t в
асимптотическом условии большой задержки на орбите. На основе най-
денного распределения построено дискретное распределение (будем на-
зывать его гауссовской аппроксимацией), которое аппроксимирует дис-
кретное распределение числа событий в выходящем потоке, наступив-
ших за время t.
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Математическая модель RQ-системы M/M/1/1
с вызываемыми заявками и постановка задачи

Рассмотрим RQ-систему, на вход которой поступает простейший по-
ток заявок с интенсивностью λ. Заявка входящего потока, поступая в
систему и обнаруживая прибор свободным, занимает его, а прибор на-
чинает обслуживание в течение экспоненциально-распределенного
времени с параметром μ1. Если же заявка, поступая в систему, обнару-
живает прибор занятым, она мгновенно уходит на орбиту и осуществ-
ляет там случайную задержку в течение экспоненциально-распре-
деленного времени с параметром σ.

Когда прибор свободен, он вызывает для обслуживания дополни-
тельные заявки из внешней среды с интенсивностью α. Вызываемая за-
явка занимает прибор, на котором обслуживается в течение случайного
времени, распределенного по экспоненциальному закону с параметром
μ2. Обозначим:

i(t) – число заявок в системе в момент времени t;
k(t) – состояние прибора: 0 – прибор свободен, 1 – прибор занят об-

служиванием заявки входящего потока, 2 – прибор обслуживает вызы-
ваемую заявку;

m(t) – число событий в выходящем потоке, наступивших за время t.
Рассмотрим трехмерный марковский процесс {k(t), i(t), m(t)}. Для

распределения вероятностей
P{k(t) = k, i(t) = i, m(t) = m} = Pk(i, m, t)

составим прямую систему Колмогорова

0
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Введем частичные характеристические функции, обозначив 1j = − ,
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Тогда систему (1) перепишем в виде
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Просуммируем уравнения системы (2), получим
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Таким образом, получим систему из четырех уравнений
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Асимптотика первого порядка

Основным содержанием работы является решение системы (3) мето-
дом асимптотического анализа в предельном условии большой задерж-
ки на орбите (σ→0) и растущего времени наблюдения за потоком
(t→∞).

Теорема 1. Пусть m(t) – число событий в выходящем потоке, на-
ступивших за время t в RQ-системе М/M/1/1 с вызываемыми заявками,
тогда

( ) { }1 2 1 1 20
lim exp ( ) ( ) expE ju i t ju m t ju ju at
σ→

+ = κ + ,  (4)

где среднее число заявок в системе κ определяется равенством
( )

( )
2 1

1
2 1

λ λμ + αμ
κ =

μ μ − λ
, (5)

среднее число событий в выходящем потоке
( )
( )

1
2

1 2
.a

μ − λα
= λ + μ

μ μ + α
 (6)

Для более детального исследования процесса m(t) рассмотрим асим-
птотику второго порядка.

Асимптотика второго порядка

Теорема 2. В условиях теоремы 1 выполняется равенство

1
1 20

( ) ( )lim exp
i t m t atE ju ju

σ→

σ − κ σ −⎛ ⎞+ =⎜ ⎟
⎝ ⎠σ σ

( ) ( )2 2
1 2

2 2 1 2 12exp
2 2

ju ju
a t ju ju a

⎧ ⎫⎪ ⎪= κ + +⎨ ⎬
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, (7)

где параметры κ2, a12 и a2 определяются решением уравнений

0 1 1 2 22 2 2 2 2f f f f aλ + α − μ − μ +

( ) ( )0 1 2 0 1 2 0 1 1 2 2 1 1 2 2 0,g g g a f f f g f f g g aλ + + − + + + α + μ + μ − μ − μ − =

( )0 1 2 1 1 2 2 22 2 2a g g g a g g a− + + + + μ + μ = . (8)

Здесь f0, f1, f2, g0, g1, g2 определяются системами уравнений
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1 0 1 1 2 2 2 0( ) f f f r a− λ + α + κ + μ + μ = κ + ,

( )1 0 1 1 1 0 2 0( )f f r r rλ + κ − μ = −λ − − κ ,

0 2 2 0 2f f r rα − μ = −α − λ .  (9)

1 0 1 1 2 2 0 12 0( )g g g ar a r a− λ + α + κ + μ + μ = + − ,

( )1 0 1 1 12 0 1g g a r arλ + κ − μ = − +

0 2 2 2g g arα − μ = .  (10)

Заключение

Исследование выходящего потока рассматриваемой RQ-системы
проводится методом асимптотического анализа в условии большой за-
держки на орбите. В результате проведенных исследований было полу-
чено, что распределение вероятностей числа заявок, закончивших об-
служивание в системе за некоторое время t, в этом асимптотическом ус-
ловии является асимптотически нормальным.
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МОДАЛЬНЫЙ СИНТЕЗ СИСТЕМЫ УПРАВЛЕНИЯ
ДЛИНОЙ ОЧЕРЕДИ ПАКЕТОВ
В БУФЕРЕ МАРШРУТИЗАТОРА

Е.А. Перепелкин
Алтайский государственный технический университет

им. И.И. Ползунова, г. Барнаул, Россия

Состояние маршрутизатора сети передачи данных, работающего по
протоколу TCP и алгоритму управления перегрузкой TCP NewReno, оп-
ределяется размером TCP-окна ( )W t  и длиной очереди пакетов ( )q t  в
буфере маршрутизатора [1]. Управление потоком пакетов осуществля-
ется отбрасыванием пакетов с вероятностью ( )p t . Задача управления
потоком пакетов заключается в поддержании заданной длины очереди
пакетов в буфере маршрутизатора.

Нелинейная модель маршрутизатора с учетом запаздываний по со-
стоянию и управлению имеет следующий вид [1]:

1 ( ) ( ( ))( ) ( ( ))
( ) 2 ( ( ))

W t W t R tW t p t R t
R t R t R t

−
= − −

−
� ; (1)

( )( )
( )

W tq t N C
R t

= −� , ( )( ) p
q tR t T
C

= + , (2)

где ( )R t  – время между отправкой пакета и подтверждением о получении
пакета; pT  – время прохождения сигнала по линии связи; N  – количест-
во потоков пакетов; C  – пропускная способность маршрутизатора.

В положении равновесия должны выполняться соотношения
21 0

2
W p

R R
− = , 0W N C

R
− = , p

qR T
C

= + .

Здесь q  – заданное значение длины очереди пакетов, W  и p  – соот-
ветствующие значения TCP-окна и сигнала управления. Следовательно,
номинальное значение сигнала управления, обеспечивающего заданную
длину очереди пакетов, равно
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2

2 2
2Np
R C

= .

Рассмотрим возможность применения классического ПИД-
регулятора для решения задачи управления длиной очереди пакетов.
Линеаризованная модель объекта управления описывается передаточ-
ной функцией [1]

1( )
( )

sdbg s e
a s

−= ,

где
2

2
Cb

N
= − ; 2

1 2( )a s s a s a= + + , 1 2
1 2Na
R CR

= + , 2 3
2Na
CR

= .

Передаточная функция ПИД-регулятора

2
( )( ) k sg s
s

= , 2( ) i p dk s k k s k s= + +

содержит три коэффициента pk , ik , dk  соответственно при пропорцио-
нальной, интегральной и дифференцирующей составляющей управле-
ния. Значения этих коэффициентов должны быть найдены из условия
асимптотической устойчивости замкнутой системы, передаточная
функция которой имеет следующий вид:

3 ( )
( ) ( )

sR
sR

bg s e
a s s bk s e

−
−

=
+

.

Для асимптотической устойчивости замкнутой системы необходимо
и достаточно, чтобы все полюсы замкнутой системы имели отрицатель-
ные действительные части [2]. Рассмотрим задачу о размещении полю-
сов замкнутой системы в левой части комплексной плоскости.

Полюсы замкнутой системы есть корни характеристического квази-
полинома

( ) ( ) ( ) Rsc s a s s bk s e−= + . (3)

В общем случае у квазиполинома бесконечно много корней. Выбирая
коэффициенты регулятора можно назначить только три полюса. При
этом коэффициенты регулятора будут зависеть от величины запаздыва-
ния R .
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Заметим, что коэффициенты квазиполинома (3) также зависят от R ,
что усложняет решение рассматриваемой задачи.

Предлагаемый метод модального синтеза заключается в следующем.
Сначала решим задачу расчета коэффициентов регулятора для системы
с характеристическим полиномом

( ) ( ) ( )d s a s s bk s= + . (4)

Затем рассмотрим квазиполином

( ) ( ) ( ) sLh s a s s bk s e−= + , 0L > . (5)

Найдем критическое значение maxL L= , при котором корни квазиполи-
нома (5) пересекают мнимую ось [2]. Если maxR L< , то это означает,
что корни квазиполинома (3) находятся в левой части комплексной
плоскости и система является асимптотически устойчивой.

Решим первую задачу для полинома (4). Зададим параметр 0r >  и
рассмотрим равенство полиномов

3( ) ( ) ( )a s s bk s s r+ = + .

Приравнивая коэффициенты при одинаковых степенях s , получим
2

23
p

r a
k

b
−

= , 
3

i
rk
b

= , 13
d

r a
k

b
−

= .

Зафиксируем 0r >  и рассмотрим квазиполином (5) при 0L > .
Предположим, что при некотором значении 0L >  корни ( )h s  пересе-
кают мнимую ось. Это означает, что существует действительное число

0w > , такое, что
( ) 0h jw = , ( ) 0h jw− = . (6)

Из равенств (6) следует, что
2 2( ) ( ) ( ) ( ) 0a jw a jw w b k jw k jw− − − =

или
3 2 2 2 2 3 2 2 6

1 2 1 2 1 2( 2 (3 ) ) ( 2 (3 ) (3 ) ) 0v a a r a v a r r a r a v r+ − − − + + − − − − = , (7)

2v w= .
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Предположим, что уравнение (7) имеет одно положительное дейст-
вительное решение и два отрицательных действительных решения, или
одно положительное действительное решение и два комплексно сопря-
женных. Тогда значение 0w > , при котором справедливы равенства (6),
равно w v= , где v  – положительное решение уравнения (7).

Из равенства
( )

( )
jwL a jw jwe

bk jw
− = −

получим критическое значение L , при котором корни полинома (5) пе-
ресекают мнимую ось,

max
1 ( )arccos Re

( )
a jw jwL

w bk jw
⎛ ⎞= −⎜ ⎟
⎝ ⎠

.

Сравниваем R  и maxL . Замкнутая система будет асимптотически ус-
тойчивой, если maxR L< .

Рассмотрим пример. Пусть параметры маршрутизатора равны:
3750C = ; 100N = ; 0,24pT = . Заданное значение длины очереди паке-

тов 200q = . При этом 11W = , 0,29R = .
Расчеты и моделирование выполнялись в системе компьютерной ма-

тематики Scilab с использованием подсистемы компьютерного модели-
рования Xcos. На рис. 1 показана зависимость maxL  от r . При всех ука-
занных значениях 1 5r≤ ≤  уравнение (7) имеет только одно действи-
тельное положительное решение. Прямая линия на графике обозначает
значение R . Таким образом, при 1 2,8r≤ ≤  система с регулятором
асимптотически устойчива.

На рис. 2 показаны результаты моделирования нелинейной системы
(1), (2) с регулятором в контуре управления. Коэффициенты регулятора,
равные

56,59 10pk −= − ⋅ ,
54,8 10ik −= − ⋅ ,

66,7 10dk −= ⋅ ,

были получены при 1,5r = .
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Рис. 1. Зависимость Lmax от r
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Рис. 2. Переходный процесс в системе с регулятором
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ИССЛЕДОВАНИЕ НЕМАРКОВСКОЙ
НЕОДНОРОДНОЙ БЕСКОНЕЧНОЛИНЕЙНОЙ
СИСТЕМЫ МАССОВОГО ОБСЛУЖИВАНИЯ

В СЛУЧАЙНОЙ СРЕДЕ

Е.П. Полин, Е.А. Павлова
Томский государственный университет, г. Томск, Россия

Большинство современных технических систем, в том числе систем
передачи информации и телекоммуникационных систем, функциони-
руют в условиях изменяющейся внешней среды, которые носят как ре-
гулярный (смены времен года), так и случайный характер.

Возникновение в последние несколько десятилетий новых практиче-
ских задач, связанных с появлением систем гибкого автоматического
производства, в которых возможно отключение, переподключение и пе-
реналадка оборудования, систем управления запасами и экономических
систем, информационно-вычислительных сетей и сетей связи, дало су-
щественный толчок к развитию исследований систем с изменяемыми
параметрами. Особенно актуальным представляется исследование таких
систем при оценке ситуации в современных и перспективных инфо-
коммуникационных систем и сетях связи.

Такие задачи в теории массового обслуживания называются систе-
мами массового обслуживания (СМО) в случайной среде. Такие СМО
более адекватно по сравнению с классическими марковскими система-
ми отображают реальные процессы, связанные с изменяющейся во вре-
мени внешней случайной средой и реакцией самой системы на эти из-
менения.

Постановка задачи

Рассматривается бесконечнолинейная система массового обслужи-
вания, функционирующая в случайной среде. Входящий MMMP-поток
задается матрицей инфинитезимальных характеристик Q  для цепи
Маркова l(t) и матрицей интенсивностей 1[ ,... ]L= λ λΛ [1].

Вектор стационарного распределения вероятностей R  удовлетворя-
ет системе уравнений [2]:
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{ ,
1.

=
=

RQ 0
Re

Время обслуживания есть случайная величина, которая определяется
одной из функций распределения 1( ),..., ( )LA x A x . Выбор функции рас-
пределения ( )lA x  производится по значению процесса ( )l t l=  в момент
поступления сообщения и не меняется до конца обслуживания.

Уравнения Колмогорова

Обозначим ( )li t  – число сообщений l-го типа, находящихся на об-
служивании в системе в момент времени t, 1,2,...,l L= .

Обозначим [ ]1 2( ) ( ), ( ),..., ( )Lt i t i t i t=i .
Многомерный процесс { }( ), ( )t l ti  не является марковским. Поэтому

воспользуемся методом многомерного динамического просеивания [3],
который для данной задачи можно сформулировать следующим обра-
зом. Будем считать, что сообщение входящего потока, пришедшее в
момент времени t, генерирует событие в l-м просеянном потоке с веро-
ятностью ( )lS t , либо с вероятностью 1 ( )lS t−  не генерирует события.

Вероятности просеивания ( )lS t  определяются выражениями

( ) 1 ( )l lS t A T t= − − ,

где T – некоторый фиксированный момент времени.
Обозначим через [ ]1 2( ) ( ), ( ),..., ( )Lt n t n t n t=n  число событий, насту-

пивших соответственно в просеянном потоке до момента t.
Случайный процесс { }1( ), ( )t n tl  является марковским, и для его рас-

пределения вероятностей ( ) ( ) ( ){ }1 1 1, , ,P l n t P l t l n t n= = =  можно запи-
сать следующую систему дифференциальных уравнений Колмогорова:

( )( , , ) ( ( , , ) ( , , ) ( ) ( , , )l l l
P l t P l t P l t S t q P t

t ν
ν

∂
= λ − − + ν

∂ ∑l
n n n e n , (1)

1,2,...,l L= .
Введем характеристические функции

1 1

1 0 0
.. ( , , )L L

K

ju n ju n

n n
H( ,t) e e P l t

∞ ∞

= =

= ∑ ∑u n , 1j = − .
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Применяя векторное обозначение H(u, t) = [H(1,u,t),…,H(L,u,t)], за-
пишем уравнение в матричном виде

( ){ }( , ) ( , ) 1 ( )jt t e t
t

∂ ⎡ ⎤= + −⎣ ⎦∂
uH u H u Q Λ S  (2)

с начальным условием

0( , )t =H u R . (3)

Здесь ( )tS  – диагональные матрицы с элементами Sl(t).

Асимптотический анализ

Решение системы (2) будем искать в асимптотическом условии вы-
сокой интенсивности входящего потока [4]. Для достижения этого ре-
зультата MMPP зададим представлением (NQ, NΛ), где числовой пара-
метр 0N >  будет определять высокую интенсивность входящего пото-
ка. Асимптотический анализ будем проводить в условии N → ∞ .

Подставим вместо матриц Q, Λ матрицы NQ, NΛ, тогда уравнение
(3) перепишется в виде

( ){ }1 ( , ) ( ) 1 ( )jt e t
N t

∂ ⎡ ⎤= + −⎣ ⎦∂
uH u H u Q Λ S . (4)

Асимптотический анализ первого порядка

В уравнении (5) выполним замены
1
N

= ε , = εu w , 1( , ) ( , , )t t= εH u F w .   (5)

Тогда уравнение (4) перепишется в виде

( ){ }1
1

( , , )
( , , ) 1 ( )jt

t e t
t

ε∂ ε ⎡ ⎤ε = ε + −⎣ ⎦∂
wF w

F w Q Λ S ,  (6)

0( , , )t ε =F w R .  (7)

Найдем асимптотическое решение 1 10
( , ) lim ( , , )t t

ε→
= εF w F w  этой задачи.

Положим в выражении (7) 0ε → . Получим

1( , )t =F w Q 0 .



Исследование немарковской неоднородной бесконечнолинейной системы  163

Сравнивая это уравнение с (1), представим функцию 1( , )tF w  в виде

11( , ) , ( )t t= ΦR wF w , (8)

Домножим обе части матричного уравнения (6) справа на единичный
вектор e, поделим на ε, подставим (8) и выполним предельный переход

0ε → . В результате получим следующее дифференциальное уравнение:

1
1

( , )
( , ) ( )

t
t j t

t
∂Φ

= Φ
∂

w
w RΛ wS e .

Обозначив 
0

( ) ( )
t

t

s t d
⎡ ⎤

= τ τ⎢ ⎥
⎢ ⎥⎣ ⎦
∫RΛ S e , с учетом начального условия (10)

получим
( ))

1( , ) j s tt eΦ = ww .

Тогда асимптотическое решение первого порядка будет иметь вид
( )

1( , ) Re j s tt = wF w . (11)

Для получения более точных характеристик проведен асимптотиче-
ский анализ второго порядка. Показано, что асимптотическая характе-
ристическая функция числа занятых приборов различного типа имеет
вид многомерной гауссовской.
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КВАЗИОПТИМАЛЬНОЕ УПРАВЛЕНИЕ
НЕОРДИНАРНЫМИ ПУАССОНОВСКИМИ ПОТОКАМИ

М.А. Рачинская, М.А. Федоткин
Нижегородский государственный университет им. Н.И. Лобачевского,

г. Нижний Новгород, Россия

Изучается система массового обслуживания с переменной структу-
рой. Обслуживающее устройство (ОУ) может находиться в одном из
нескольких возможных состояний, каждое из которых связано с особым
режимом функционирования системы. Стратегия управления подобной
системой подразумевает выбор длительностей пребывания ОУ в каж-
дом из состояний (управляющих параметров), а также выбор алгоритма
переключения состояний. Стратегия считается оптимальной, если она
доставляет минимум среднему времени ожидания начала обслуживания
произвольной заявкой системы. Работа посвящена поиску квазиопти-
мальных значений управляющих параметров при выбранном алгоритме
управления с обратной связью путем имитационного моделирования.

Математическая модель

Рассмотрим (рис. 1) систему, на вход которой поступает два незави-
симых конфликтных потока случайных заявок П1 и П2. Поток П1 обла-
дает большим приоритетом, а поток П2 – большой интенсивностью по-
ступления заявок. Каждый из потоков Пj (здесь и далее j = 1, 2) можно
аппроксимировать неординарным пуассоновским потоком с параметра-
ми λj – интенсивность пачек, pj, qj, sj (pj + qj + sj = 1) – вероятности по-
ступления пачки из одной, двух, трех заявок [1]. Заявки потока Пj ожи-
дают начала обслуживания в бункере Oj, организованном согласно дис-
циплине очереди. Из бункера-накопителя заявки поступают на обслу-
живание, следуя экстремальной стратегии δj. Содержательно экстре-
мальная стратегия означает отсутствие немотивированных простоев
ОУ: заявки на обслуживание выбираются как можно в большем количе-
стве, но не превышающем пропускной способности. В ОУ выделены
внутренние состояния Г(1), Г(2), …, Г(5) и задан алгоритм s(Г) их смены.
В состоянии Г(1) происходит обслуживание с интенсивностью µ1 заявок
потока П1, в состояниях Г(3) и Г(4) с интенсивностью µ2 обслуживаются
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заявки потока П2. В целях безопасности при переходе от обслуживания
одного из конфликтных потоков к другому выделяются состояния для
переналадки ОУ: Г(2) и Г(5). Обслуживание новых заявок в них не со-
вершается, но допускается дообслуживание заявок, обслуживание кото-
рых было начато в предшествующем состоянии. В состоянии вида Г(k),
где k ∈ M = {1, 2, …, 5}, ОУ находится в течение промежутка времени
длительностью Tk. При равной интенсивности обслуживания в состоя-
ниях Г(3) и Г(4) длительность пребывания ОУ в них различна: T3 > T4. По
завершении такого промежутка происходит смена или продление теку-
щего состояния. Граф управляющего алгоритма s(Г) смены состояний
представлен на рис. 1. В силу неоднородности входных потоков предла-
гается организация обратной связи по числу ожидающих заявок в оче-
реди потока с большим приоритетом. В случае, если это количество
достигло пороговой величины h1 ≥ 0, то совершаются переходы типа 1
(рис. 1), которые имеют цель приблизить во времени начало обслужи-
вания потока П1. В противном случае осуществляются переходы типа 2,
направленные на увеличение суммарного времени обслуживания пото-
ка П2. Обслуженные заявки потока Пj образуют выходной поток П′j.

Рис. 1. Система управления конфликтными потоками
и обслуживания их заявок

Пусть τi при i = 0, 1, … есть случайные последовательные моменты,
в которые происходит принятие решение о смене или продлении теку-
щего состояния ОУ (0 ≤ τ0 < τ1 < …). Вводятся следующие случайные
величины: ,κ j i  – количество заявок в очереди Oj в момент τi, '

,ξ j i  – ко-
личество заявок потока Пj, покинувших систему на промежутке [τi, τi+1),

'
, 1ξ j −  – количество заявок потока Пj, покинувших систему на промежут-

ке [0, τ0). Пусть также случайный элемент Γi есть случайное состояние
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ОУ на промежутке [τi, τi+1). В работе [2] была представлена математиче-
ская модель рассматриваемой системы обслуживания.

Лемма 1. Векторная последовательность
' '

1, 2, 1, 1 2, 1{( ,κ ,κ ,ξ ,ξ ) , 0,1, }i i i i i i− −Γ = … (1)

с заданным начальным распределением вектора ' '
0 1,0 2,0 1, 1 2, 1( ,κ ,κ ,ξ ,ξ )− −Γ

является многомерной однородной цепью Маркова.
Благодаря этому результату, удается аналитически найти условия

существования в системе стационарного режима.
Введем для любых k ∈ M, xj ∈ {0, 1, …}, yj ∈{0, 1, …, [µjT2j-1]}, j = 1, 2,

и при i = 0, 1, … обозначения для одномерных распределений цепи (1):

( )( ) ( )
1 2 1 2 1, 1 2, 2 1, 1 1 2, 1 2( , , , , ) ,κ ,κ ,ξ ,ξk k

i i i i i iQ x x y y P x x y y− −′ ′Γ = Γ = Γ = = = = .

Справедливы следующие утверждения.
Лемма 2. При любом начальном распределении многомерной цепи

Маркова (1) либо для любых допустимых k, xj, yj, j = 1, 2,
( )

1 2 1 2lim ( , , , , ) 0k
ii

Q x x y y
→∞

Γ =

и стационарного распределения не существует либо существуют пределы
( ) ( )

1 2 1 2 1 2 1 2lim ( , , , , ) ( , , , , )k k
ii

Q x x y y Q x x y y
→∞

Γ = Γ ,

причем Q(Г(k), x1, x2, y1, y2) = 0 для несущественных и Q(Г(k), x1, x2, y1, y2)
> 0 для существенных состояний вида (Г(k), x1, x2, y1, y2), и стационарное
распределение существует и единственно.

Теорема 1. Для существования в системе стационарного режима по
потоку П1 необходимо и достаточно выполнение неравенства

5

1 1 1 1 3 1 1
1

λ (3 2 )( ) [μ ] 0k
k

s q p T T T
=

+ + − − <∑ .

Теорема 2. При одновременном выполнении неравенств
5

2 2 2 2 4 2 3
1

λ (3 2 )( ) [μ ] 0k
k

s q p T T T
=

+ + − − <∑ ,

5

2 2 2 2 2 3 2 4
1

λ (3 2 ) [μ ] [μ ] 0k
k

s q p T T T
=

+ + − − >∑
стационарного режима по потоку П2 в системе не существует.
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Имитационная модель системы

Имитационная модель изучаемой системы построена на основе ме-
тода дискретных событий [3]. Состоянием системы в некоторый момент
является набор следующих величин: количество заявок в очереди по
каждому потоку, состояние ОУ. События следующих типов могут про-
исходить в системе: 1) смена или решение о продлении текущего со-
стояния ОУ; 2) приход пачки заявок по некоторому потоку; 3) заверше-
ние обслуживания некоторой заявки. Для каждого из указанных собы-
тий реализован обработчик, который меняет текущее состояние систе-
мы и обновляет собираемые в процессе имитации статистические дан-
ные. После фиксации значений входных параметров функционирование
системы имитируется N ≥ 1 раз с различными независимыми реализа-
циями входных потоков. Таким образом получается N независимых
реализаций случайного процесса имитации при неизменных входных
параметрах. Будем считать, что новый цикл имитации начинается при
очередной смене состояния ОУ на Г(1). Процесс имитации заканчивает-
ся по завершении обслуживания хотя бы одного из заранее сгенериро-
ванных входных потоков с установленным максимальным количеством
пачек или по завершении установленного количества циклов имитации.
Пусть далее индекс n = 0, 1, … указывает на номер цикла имитации,
индекс j = 1, 2 – на номер потока, индекс r ∈ {1, 2, …, N} – на номер
реализации. В каждой реализации отслеживаются значения следующих
характеристик системы: 1) ,γr

j v  – время ожидания начала обслуживания

заявкой с номером v потока Πj; 2) ,αr
j n  – количество заявок потока Πj,

обслуженных за цикл с номером n; 3) ,
r
j nβ  – количество заявок в очере-

ди Oj в момент начала обслуживания потока Πj на цикле с номером n.
Применяемый алгоритм определения момента окончания переходных
процессов и достижения квазистационарного режима представлен в ра-
боте [4]. Так, пусть в реализации с номером r квазистационарный ре-
жим был достигнут на цикле с номером rn∗  по завершении обслужива-

ния заявки с номером rv∗  потока Πj*. Определяются величины
*

{1,2,..., }
max 1rr N

n n∗

∈
= +  и *

{1,2,..., }
max 1rr N

v v∗

∈
= +  – номер первого цикла в квази-

стационарном режиме и номер первой заявки, обслуженной в квазиста-
ционарном режиме. С применением статистических критериев было по-



168 М.А. Рачинская, М.А. Федоткин

казано, что гипотезу о независимости и одинаковом распределении ве-
личин 

, , 1 , 2
γ , γ , γ ,...

r r r

r r r
j v j v j v∗ ∗ ∗+ +

 при фиксированных r и j следует отверг-

нуть, в то время как для величин * * *
1 2

, , ,
γ ,γ ,...,γN

j v j v j v
 при фиксированном j

аналогичную гипотезу на уровне значимости 0,05 следует принять.
В силу случайности момента достижения системой квазистационарного
режима можно считать заявку с номером *v в каждой реализации про-
извольной заявкой потока Πj в системе. Предлагается следующая оцен-
ка M̂γ  для среднего времени ожидания начала обслуживания произ-
вольной заявкой системы:

*,
1

1M̂γ γ
N

r
j j v

rN =

= ∑ , 

2

1
2

1

ˆλ (3 2 )Mγ
M̂γ

λ (3 2 )

j j j j j
j

j j j j
j

s q p

s q p

=

=

+ +

=
+ +

∑

∑
.

Аналогичные рассуждения справедливы и для оценки M̂β среднего ко-
личества заявок в очереди в момент начала обслуживания произвольно-
го потока системы:

*,
1

1M̂β β
N

r
j j n

rN =

= ∑ , 

2

1
2

1

ˆλ (3 2 )Mβ
M̂β

λ (3 2 )

j j j j j
j

j j j j
j

s q p

s q p

=

=

+ +

=
+ +

∑

∑
.

Квазиоптимальное управление

Величины M̂γ  и M̂β  позволяют оценить качество работы системы.
Так, целью квазиоптимального управления системой является миними-
зация среднего времени ожидания M̂γ . В качестве управляемых пара-
метров могут выступать длительности пребывания ОУ в различных со-
стояниях, величина порога h1. Приведем пример исследования системы
при фиксированных длительностях T2 = 2 и T5 = 2 для состояний пере-
наладки при значениях параметров µ1 = 0,9, µ2 = 0,95, N = 10. Поиск
квазиоптимальных значений длительностей T1 и T3 происходит перебо-
ром в области, где, согласно теоремам 1 и 2, стационарный режим мо-
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жет существовать. Перед началом работы алгоритма фиксируется также
величина порога h1 и длительность T4. Процесс имитации запускается в

точках (T1, T3), для которых сумма 
5

1
k

k
T

=
∑  изменяется от Tmin = 18 до

Tmax = 100 с шагом a, при этом при фиксированной сумме 
5

1
k

k
T

=
∑  дли-

тельность T3 меняется с шагом b. Вычисляется M̂γ  для каждой из ука-
занных точек, затем определяется точка (T1

*, T3
*) с минимальным зна-

чением M̂γ  – она и назначается квазиоптимальной.
На рис. 2 и в таблице представлены результаты поиска квазиопти-

мальных значений для различных входных потоков. Отметим, что в слу-
чае, если потоки П1 и П2 становятся близки по интенсивности, переходы
типа 2 алгоритма s(Г) совершаются редко (см. рис. 1), управляющий ал-
горитм приближается к циклическому, среднее время ожидания растет
(см. рис. 2 и записи 6−8 в таблице). Если же входные потоки удовлетво-
ряют изначальному предположению о неоднородности, то минимально
достижимое значение величины M̂γ  также существенно зависит от

Рис. 2. Точки (T1, T3) подсчета для алгоритма поиска квазиоптимального управле-
ния: слева – входные потоки неоднородны по интенсивности, справа – входные по-
токи имеют равную интенсивность заявок
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Результаты поиска квазиоптимальных значений

№ j λj (3sj + 2qj + pj) h1 T4 a, b (T1
*, T3

*) M̂γ
1 0,1441 2 0,234 4 3 5, 4 (15, 6) 2,116

1 0,1442 2 0,234 4 8 5, 4 (19, 62) 3,624

1 0,1443 2 0,234 10 3 5, 4 (20, 46) 2,821

1 0,1444 2 0,234 7 3 5, 4 (27, 54) 3,86

1 0,1445 2 0,234 10 4 6, 5 (15, 37) 8,432

1 0,2166 2 0,234 10 5 6, 4 (21, 6) 8,889

1 0,2167 2 0,234 10 10 6, 4 (42, 22) 9,932

1 0,2168 2 0,234 10 10 6, 4 (44, 26) 10,398

порога h1 и длительности T4. Чем меньше интенсивность потока П1, тем
меньше следует назначать порог h1. В свою очередь, чем больше интен-
сивность потока П1, тем больше нужно назначать T4, поскольку в со-
стояние Г(3) ОУ будет попадать редко и единственным состоянием об-
служивания потока с большой интенсивностью останется Г(4).

Заключение

Представлена имитационная модель неклассической системы об-
служивания и управления независимыми конфликтными неординарны-
ми пуассоновскими потоками. Предложен алгоритм поиска квазиопти-
мальных значений управляющих параметров системы. Дальнейшее раз-
витие имитационной модели связано с поиском алгоритма, позволяю-
щего эффективно отыскивать квазиоптимальные значения в четырех-
мерном пространстве параметров h1, T1, T3 и T4. Кроме того, по резуль-
татам исследований было замечено, что оценка M̂β имеет тенденцию к
нарастанию и для некоторых точек (T1, T3) в области существования
стационарного режима по теоремам 1 и 2. Это указывает на необходи-
мость аналитического поиска дополнительных условий стационарности
и дальнейшего сужения области изменения управляемых параметров.
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МЕТОД ПРОГОНКИ
ДЛЯ МНОГОКАНАЛЬНЫХ СИСТЕМ ОБСЛУЖИВАНИЯ

Ю.И. Рыжиков
Военно-космическая академия им. А.Ф. Можайского,

г. Санкт-Петербург, Россия
Санкт-Петербургcкий Институт информатики

и автоматизации РАН, г. Санкт-Петербург, Россия

Фазовая аппроксимация многоканальных систем

Эффективные численные метода расчета актуальных для многих
применений многоканальных систем массового обслуживания (СМО)
стали возможными лишь после представления немарковских распреде-
лений в виде системы фаз с экспоненциально распределенной задерж-
кой в каждой [1, 2].

Общепринята «фольклорная» рекомендация: при коэффициенте ва-
риации > 1v  применять H2-аппроксимацию, в противном случае – эр-
лангову. Последняя при малых v  приводит к чрезвычайно быстрому
росту числа микросостояний по числу каналов. К тому же, она позволя-
ет выравнивать лишь первый и приближенно – второй момент исходно-
го распределения.

H2-распределение, выравнивающее три момента, порождает диа-
грамму переходов ширины всего 1n + . При < 1/ 2v  его параметры
становятся комплексными, но конечные результаты имеют традицион-
ный вероятностный смысл и хорошо согласуются с полученными ины-
ми методами. По этим причинам далее рассматривается модель

2/ /M H n .
Работа такой системы может быть интерпретирована как обслужи-

вание неоднородного потока заявок. «Ключ» микросостояния указывает
количество находящихся в каналах обслуживания заявок каждого типа.
Завершение обслуживания с вероятностями { }iy  в зависимости от типа
выбранной из очереди заявки приводит в одно из микросостояний вы-
шележащего яруса.
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Приведем общую для сопоставляемых методов постановку задачи.
Обозначим через jS  множество всех возможных микросостояний сис-
темы, при которых на обслуживании находится ровно j  заявок, а через
σ j  – количество элементов в jS . Далее в соответствии с диаграммой

переходов построим матрицы интенсивностей переходов: 1[σ σ ]j j jA +×

– в 1jS +  (прибытие заявки), 1[σ σ ]j j jB −×  – в 1jS −  (полное завершение

обслуживания заявки), [σ σ ]j j jD ×  – ухода из состояний яруса j  (в
квадратных скобках указан размер матриц).

Введем векторы-строки ,1 ,2 ,σγ = {γ ,γ , ,γ }j j j j j
…  нахождения СМО в

состоянии ( , )j i , = 0,1,j … . Теперь можно записать векторно-матрич-
ные уравнения баланса переходов между состояниями

0 0 1 1

1 1 1 1

γ γ ,
γ γ γ ,

= 1,2, .
j j j j j j

D B
D A B

j
− − + +

=
= +

…
(1)

Итерационный метод

Такахаси и Таками [3] предложили алгоритм итерационного расчета
подобных систем, центральной идеей которого является переход к рас-
чету условных (нормированных к единице) вероятностей микросостоя-
ний системы ( )

,{γ }m
j i  для фиксированного числа заявок в системе ( j -й

ярус диаграммы) и параллельно – вычисление отношений { }jx  суммар-

ных безусловных вероятностей на смежных ярусах, 1= /j j jx p p+ ,
= 0,1, ,j N… . В итерации номер m  вектор условных вероятностей
( )γ m
j для каждого яруса при прогонке сверху вниз выражается через
( )

1γ m
j−  и ( 1)

1γ m
j

−
+ . При обсчете N-го яруса применяется замыкающее систе-

му уравнений приближенное равенство
( 1) ( )

1 1γ γ .m m
N N

−
+ −≈ (2)

Расчетная схема [3] была усовершенствована в [4, 5].
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Матрично-геометрическая прогрессия

Применительно к расчету разомкнутых систем обслуживания при-
меняется развиваемый М. Ньютсом и его последователями [6−8] метод
матрично-геометрической прогрессии (МГП). Здесь вектора вероятно-
стей микросостояний полностью занятой системы представляются как

γ = γ , = , 1, ,j n
j nR j n n− + … (3)

где R  – матричный знаменатель прогрессии. Легко показать, что он
должен удовлетворять матричному квадратному уравнению

2 = 0.R B RD A− + (4)
Найдя этот знаменатель и имея вектор np  вероятностей микросостоя-
ний n -го яруса, можно согласно (3) вычислить вероятности микросо-
стояний для >j n .

Реализации МГП различаются методом расчета знаменателя про-
грессии (варианты простой итерации и метода Ньютона) и способом
расчета векторов вероятностей микросостояний для ярусов = 0, 1j n − .
Подробное их сопоставление проведено опять же в [5]. Для дальнейше-
го усовершенствования выбран вариант МГП с расчетом знаменателя
согласно

1= ( ) .R A D RB −− (5)

Метод прогонки

Сходимость обоих рассмотренных методов по числу каналов быстро
ухудшается. Обнаружилось, что в методе МГП необходимость решения
системы линейных уравнений относительно неизвестных, различаю-
щихся на много порядков, приводит к появлению отрицательных на-
чальных вероятностей. Соответственно размерность решаемых задач
ограничивается. Эти ограничения снимает описываемый ниже метод
прогонки.

Метод прогонки давно и успешно используется при решении систем
линейных трехдиагональных алгебраических уравнений с числовыми
коэффициентами (в [9] приведены соответствующие примеры). В зада-
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чах теории очередей для процессов с переходами между микросостоя-
ниями только соседних ярусов (QBD) глобальная матрица содержит не-
нулевые матрицы интенсивностей перехода тоже на трех диагоналях,
что дает основание для использования соответствующих аналогий.

Введем матрицы обратного пересчета векторов вероятностей γ j  со-

гласно

1γ = γ , = 0, 1.j j jF j N+ − (6)

Из первого уравнения системы (1) следует, что
1

0 1 0 1= = /λ.F B D B− (7)

Для последующих ярусов из той же системы имеем

1 1 1 1γ = γ γ .j j j j j jD A B− − + ++

Воспользовавшись (6), его можно переписать в виде

1 1 1 1γ ( ) = γ ,j j j j j jD F A B− − + +−

откуда следует рекуррентный пересчет матриц на этапе прямой про-
гонки

1
1 1 1= ( ) , = 1, .j j j j jF B D F A j n−

+ − −− (8)

C учетом правил формирования матриц интенсивностей переходов
между ярусами для последующих ярусов имеем

1
1 1= ( λ ) , = 1, 1.j n n jF B D F j n N−

+ −− + − (9)

Здесь N  – предельный индекс обсчитываемых ярусов, >N n .
Будем обозначать предельные при j → ∞  матрицы, векторы услов-

ных (нормированных к единице в пределах яруса) вероятностей и от-
ношения смежных вероятностей ярусов прежними символами, но без
индексов. Если существует γ = γ∞ , то существуют и предельные значе-
ния отношений смежных вероятностей x  и = 1/z x , причем из (1) сле-
дует

1 1 1 1γ = ( λγ γ ) = γ( λ ) = γ .x x B D x I xB D Q− − − −+ +
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Обозначим 1( )Q I−  матрицу, полученную из Q I−  заменой ее пер-

вой строки на единичную, и положим 1δ = {1,0,0, ,0}T… . Тогда заведо-
мо det( ) 0Q I− ≠  и искомый вектор получается как решение системы
линейных алгебраических уравнений

1 1γ( ) = δ .Q I− (10)

Выполняя обратную прогонку для = 1, 2,...,0j N N− −  согласно (7),
можно получить масштабированные векторы вероятностей микросо-
стояний и для каждого j  – кумулянтные вероятности ярусов. Затем вы-
полняется их перенормировка к единице.

Для предельного отношения смежных вероятностей в моделях
/ /A B n  Такахаси [10] предложил весьма сложный алгоритм. Довольно

близкие к нему результаты дает формула из [11]

( )2 22
= ρ .

v vA Bx
+

∞ (11)

Численный эксперимент

Приведем результаты расчета системы 2/ /5M H  (табл. 1). Допуск
8ε = 10−  для итерационного метода Iter определял максимальный мо-

дуль уточнения отношений смежных вероятностей { }jx , а для метода

матрично-геометрической прогрессии MGP – максимальную из сумм
модулей столбцов поправки к знаменателю прогрессии. Столбец SWP
соответствует методу прогонки. Согласие результатов следует признать
вполне удовлетворительным, что подтверждает корректность как рас-
четных зависимостей, так и их программных реализаций.

Теперь сопоставим трудоемкости тестируемых методов (табл. 2).
Здесь количество обсчитываемых ярусов назначалось как 20n + .
В этой таблице через слэш записаны число итераций и время счета в се-
кундах. Нулевое время счета указывает трудоемкость ниже порога сис-
темных часов (0,01 с). Прочерками отмечены случаи расходимости ите-
раций, а звездочками – появление в МГП отрицательных вероятностей
начальных состояний.
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Т а б л и ц а  1
Вероятности состояний системы 2/ /5M H

β = 3,0 β = 0,25j
Iter MGP SWP Iter MGP SWP

0 1,2440e-2 1,2440e-2 1,2440e-2 1,3799e-2 1,3790e-2 1,3786e-2
1 5,0313e-2 5,0312e-2 5,0312e-2 5,4703e-2 5,4670e-2 5,4643e-2
2 1,0235e-1 1,0235e-1 1,0235e-1 1,0695e-1 1,0693e-1 1,0689e-1
3 1,4049e-1 1,4049e-1 1,4049e-1 1,3527e-1 1,3533e-1 1,3529e-1
4 1,4851e-1 1,4851e-1 1,4851e-1 1,2082e-1 1,2094e-1 1,2091e-1
5 1,3374e-1 1,3375e-1 1,3375e-1 7,7329e-2 7,7447e-2 7,7424e-2
6 1,0767e-1 1,0767e-1 1,0767e-1 5,6147e-2 5,6264e-2 5,6247e-2
7 8,2209e-2 8,2201e-2 8,2201e-2 4,4571e-2 4,4689e-2 4,4676e-2
8 6,1082e-2 6,1064e-2 6,1064e-2 3,7444e-2 3,7564e-2 3,7553e-2
9 4,4732e-2 4,4705e-2 4,4705e-2 3,2543e-2 3,2665e-2 3,2655e-2
10 3,2507e-2 3,2471e-2 3,2471e-2 2,8850e-2 2,8973e-2 2,8964e-2
11 2,3525e-2 2,3485e-2 2,3485e-2 2,5874e-2 2,5997e-2 2,5989e-2
12 1,6989e-2 1,6946e-2 1,6946e-2 2,3363e-2 2,3484e-2 2,3477e-2
13 1,2255e-2 1,2213e-2 1,2213e-2 2,1179e-2 2,1299e-2 2,1293e-2
14 8,8348e-3 8,7962e-3 8,7962e-3 1,9246e-2 1,9363e-2 1,9357e-2
15 6,3675e-3 6,3330e-3 6,3330e-3 1,7515e-2 1,7628e-2 1,7623e-2
16 4,5886e-3 4,5587e-3 4,5587e-3 1,5953e-2 1,6062e-2 1,6057e-2
17 3,3065e-3 3,2812e-3 3,2812e-3 1,4539e-2 1,4643e-2 1,4638e-2
18 2,3825e-3 2,3616e-3 2,3616e-3 1,3255e-2 1,3353e-2 1,3349e-2
19 1,7167e-3 1,6997e-3 1,6997e-3 1,2087e-2 1,2179e-2 1,2175e-2
20 1,2370e-3 1,2233e-3 1,2233e-3 1,1023e-2 1,1110e-2 1,1106e-2

Т а б л и ц а  2
Трудоемкость обсчета модели 2/ /M H n

β = 3,0 β = 0,25n
Iter MGP SWP Iter MGP SWP

5 48/0 11/0 0/0 120/0 42/0 0/0
10 94/0,016 20/0 0/0 202/0,031 55/0/016 0/0
20 170/0,078 34*/0,047 0/0,031 320/0,172 70/0,062 0/0,031
30 232/0,0312 -/- 0/0,094 500/0,672 80/0,219 0/0,078
50 -/- -/- 0/0,469 778/4,859 -/- 0/0,485
70 -/- -/- 0/1,578* 782/14,532 -/- 0/1,562
100 -/- -/- 0/5,515* /78,500 -/- 0/5,500
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Заключение

Из анализа вычислительных схем и сопоставления результатов рас-
чета (в том числе не представленных в данной статье из-за ограничен-
ности места) вытекают следующие выводы:

1. Метод прогонки (SWP) применим только для QBD-процессов (с
переходами между соседними ярусами диаграммы) и неограниченной
длине очереди, но в этих условиях существенно превосходит упомяну-
тые альтернативы, особенно при больших n . В отличие от других под-
ходов, SWP не требует итерационного счета. Для 2H -обслуживания с
вещественными параметрами он применим по крайней мере для числа
каналов n = 100, с комплексными при коэффициенте вариации обслу-
живания 1/ 3 = 0,577  – до 50.

2. Итерационный метод легко модифицируется применительно к
системам с интенсивностью входящего потока, зависящей от состояния
системы, и к системам с ограниченной очередью, легко обобщается на
системы с потоком групповых заявок. Благодаря работе с векторами
относительных вероятностей и наличию этапа агрегации на каждом
слое его точность практически не зависит от числа N  обсчитываемых
ярусов.

3. Метод матрично-геометрической прогрессии (МГП) предполагает
итерационный расчет знаменателя прогрессии, сходимость которого от
количества ярусов не зависит. Он принципиально применим только для
QBD-процессов. Метод удобен при работе с бесконечными суммами
вероятностей и при числе каналов < 30n . Серьезной проблемой являет-
ся расчет вероятностей состояний для j n≤  (здесь можно воспользо-
ваться итерациями).

4. Некоторые из этих выводов могут быть пересмотрены при увели-
чении разрядности вычислений (они выполнялись в удвоенной разряд-
ной сетке).

5. Все перечисленные методы в принципе могут быть обобщены
применительно к рекуррентному потоку, распределение интервалов
между заявками которого опять же аппроксимируется гиперэкспонен-
той 2H .
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МЕТОД МОДЕЛИРОВАНИЯ
ИНФОРМАЦИОННО-ВЫЧИСЛИТЕЛЬНОЙ СЕТИ

СЕТЬЮ МАССОВОГО ОБСЛУЖИВАНИЯ
С НЕСТАЦИОНАРНОЙ СТРУКТУРОЙ

И.Е. Тананко, Н.П. Фокина
Саратовский государственный университет
им. Н.Г. Чернышевского, г. Саратов, Россия

Сети массового обслуживания с ненадежными элементами [1−3], и
поэтому имеющие нестационарную структуру, широко используются в
качестве математических моделей дискретных сетевых стохастических
систем, в которых один или несколько элементов в процессе функцио-
нирования могут выходить из строя и восстанавливаться. К таким сис-
темам относятся системы обработки и передачи информации. Интерес
представляет построение моделей таких систем, получение характери-
стик и изучение свойств этих моделей.

Например, в работе [4] представлена модель сети передачи данных с
ненадежными каналами и исследуется эффективность различных алго-
ритмов маршрутизации пакетов. Методу анализа открытой сети массо-
вого обслуживания, в которой в момент отказа прибора уничтожаются
все требования, находящиеся в системе обслуживания, посвящена рабо-
та [5]. Предлагается использовать эту сеть обслуживания в качестве ма-
тематической модели компьютерных систем и сетей, подверженных ви-
русным атакам.

В данной работе рассматривается модель информационно-вычисли-
тельной сети (ИВС) с ненадежными каналами передачи данных в виде
открытой экспоненциальной сети массового обслуживания с нестацио-
нарной структурой и управлением. Разработан метод получения ста-
ционарных характеристик и приведен пример анализа этой сети обслу-
живания.

Модель информационно-вычислительной сети

Рассмотрим информационно-вычислительную сеть, состоящую из
периферийного оборудования и сети передачи данных (СПД). Перифе-
рийное оборудование является источником и приемником передавае-
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мых данных. СПД представляет собой множество маршрутизаторов, со-
единенных каналами передачи данных (КПД).

Любой из КПД имеет по одному входу и по одному выходу, которые
соединены со входами и выходами маршрутизаторов. Каждый маршру-
тизатор имеет два или более входов и два или более выходов. Некото-
рые маршрутизаторы соединены с периферийным оборудованием.

Информационно-вычислительные сети подвержены динамическому
изменению структуры. Одной из таких причин является негативное
воздействие окружающей среды на каналы передачи данных, которое
приводит к потере передаваемых по сети пакетов и к необходимости
повторной передачи [6, 7]. Будем называть такие каналы ненадежными.

Один из методов надежной доставки пакетов от отправителя к полу-
чателю реализован на сетевом уровне эталонной модели взаимодейст-
вия открытых систем. Механизм его состоит в следующем. Маршрути-
затор передает пакет в соответствии со своей таблицей маршрутизации
следующему маршрутизатору. Если через определенный интервал вре-
мени маршрутизатор-отправитель не получает подтверждение о полу-
ченном пакете от соседнего маршрутизатора, то производится повтор-
ная передача пакета посредством протокола ICMP.

Число k  повторных передач пакетов за единицу времени ∆  от мар-
шрутизатора-отправителя к маршрутизатору-получателю по каналу свя-
зи является одним из параметров формирования таблицы маршрутиза-
ции и используется маршрутизатором-отправителем в течение следую-
щего интервала времени ∆ . Если k K≥ , где K  – заданный параметр,
то таблица маршрутизации изменяется так, что в следующий интервал
∆  пакеты не передаются по ненадежному каналу [7].

Передача пакетов по ненадежному каналу передачи данных возоб-
новляется через случайный интервал времени кратный ∆  и определяет-
ся информационно-вычислительной сетью как появление нового уст-
ройства сети [7].

Информационно-вычислительная сеть является достаточно надеж-
ной системой, поэтому полагаем, что все маршрутизаторы являются на-
дежными, а к выходу каждого маршрутизатора подключено не более
одного ненадежного КПД. Таким образом, отключение любого из КПД
сети не приводит к нарушению связности СПД.

В качестве модели ИВС будем использовать открытую экспоненци-
альную сеть массового обслуживания. Передаваемым по ИВС пакетам в
сети массового обслуживания поставим в соответствие требования. Все
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периферийное оборудование, которое является источником и приемни-
ком пакетов, отобразим в модели пуассоновским источником требова-
ний одного класса с интенсивностью потока 0λ .

Каждому маршрутизатору, а также каналу передачи данных СПД в
модельной сети обслуживания поставим в соответствие систему массо-
вого обслуживания типа / /1M M . Для каждого ненадежного канала
введем дополнительную систему массового обслуживания типа

/ /1M M  для отображения задержек, связанных с обработкой повторно
передаваемых пакетов. Эта система образует обратную связь в цепи
двух последовательно соединенных систем обслуживания, отображаю-
щих маршрутизатор и ненадежный канал передачи данных.

Пусть модельная сеть массового обслуживания состоит из источника
требований 0S  и L  систем массового обслуживания iS  с интенсивно-
стями обслуживания ,iμ  1, ...,i L= . Введем обозначения: {1, ..., }L=L ,

⊂M L  – подмножество номеров систем обслуживания, отображающих
ненадежные КПД.

Рассмотрим два произвольных маршрутизатора с номерами l  и r ,
соединенных ненадежным КПД с номером m  (рис. 1). Обозначим через

mp  – вероятность потери пакета в канале m . Ненадежному КПД с но-
мером m  и маршрутизаторам с номерами l  и r  поставим в соответст-
вие системы массового обслуживания mS , lS  и rS , , ,m l r ∈L . Допол-
нительную систему массового обслуживания, отображающую задерж-
ки, связанные с обработкой повторно передаваемых пакетов, обозначим

nS , n ∈L .
Переходы требований между системами обслуживания сети опреде-

ляются маршрутной матрицей ( )ijΘ = θ , , 0, ...,i j L= , в которой

mn mpθ = , 1mr mpθ = − , 1nlθ = .

rSlS 

mS
 

nS

mp

Рис. 1. Фрагмент модельной сети
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Пусть mk  – число требований, возвращенных за интервал времени
∆  из системы обслуживания mS  в систему обслуживания lS  для по-
вторной передачи.

Введем управление маршрутизацией в сети массового обслужива-
ния, которое заключается в выключении и включении потока требова-
ний в систему mS . Будем называть эту систему управляемой. Если

m mk K≥ , где параметр управления маршрутизацией mK  обозначает
предельное число возвращенных требований за интервал времени ∆ , то
поток требований в систему mS  перекрывается. Последующее включе-
ние потока требований в систему mS  производится через кратный ∆
интервал времени, являющийся геометрически распределенной случай-
ной величиной с параметром mβ . Будем считать, что вероятность mp
не изменяется после подключения системы mS .

Обозначим вектор состояния управляемых систем обслуживания
( )mw w= , m ∈L , где 1mw = , если в систему mS  поступает поток требо-

ваний, и 0mw = , если поток требований в систему mS  перекрыт. Мно-
жество всех векторов w  обозначим W .

Пусть ( )wΘ  – маршрутная матрица сети при условии, что состояние
управляемых систем определяется вектором w . Рассмотрим два со-
стояния структуры сети w , w′ W∈ , отличающиеся только тем, что

1mw = , 0mw′ = . В момент выключения потока из системы lS , \l ∈L M ,
в систему mS , m ∈M , вектор структуры сети w  преобразуется в w′ , а
маршрутная матрица ( )wΘ  преобразуется в матрицу ( )w′Θ  так, что
требования не поступают в систему mS  до включения потока в эту сис-
тему. Элементы матрицы ( )w′Θ  равны соответствующим элементам
матрицы ( )wΘ  за исключением элементов l -й строки, которые опреде-
ляются по формулам

θ ( )
θ ( )

1 θ ( )
li

li
lm

w
w

w
′ =

−
, 0, ...,i L= , i m≠ ,

θ ( ) 0lm w′ = .
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Требуется найти вероятностно-временные характеристики сети об-
служивания.

Относительные интенсивности потоков требований ( )wω  при усло-
вии w  определим из решения системы уравнений ( ) ( ) ( )w w wω Θ = ω  с

условием нормировки 0 ( ) 1L
ii w

=
ω =∑ , для всех w W∈ . Тогда интенсив-

ности потоков требований в системы iS

0

0
( ) ( )

( )i iw w
w

λ
λ = ω

ω
, 1, ...,i L= , w W∈ .

Вероятность того, что за интервал ∆  из системы mS  в систему lS
поступит s  требований, при условии w

( )( ( ) )
( ( ) )

!
m m

s
p wm m

m
p w

P k w s e
s

− λ ∆λ ∆
= = , 0,1, 2, ...s = .

Тогда
1

( )

0

( ( ) )
( ( ) ) 1

!

m
m m

K s
p wm m

m m
s

p w
P k w K e

s

−
− λ ∆

=

λ ∆
≥ = − ∑ .

Обозначим ( ) ( ( ) )m m mw P k w Kα = ≥ . Очевидно, что ( ) 0m wα >  при
1mw =  и ( ) 0m wα =  при 0mw = .

Будем считать, что длительность переходного режима в сети массо-
вого обслуживания, вызванного включением или выключением потока
требований в систему mS , много меньше длительности ∆ . Поэтому в
дальнейшем будем пренебрегать переходным режимом, полагая, что
стационарный режим в сети обслуживания наступает сразу после вклю-
чения или выключения потока требований в систему mS , m ∈ .

Рассмотрим два состояния w , w′ W∈ , отличающиеся только тем,
что 1mw = , 0mw′ = . Тогда стационарные вероятности состояний управ-
ления системы mS , m ∈ , при условии, что структура сети задана век-
торами w  и w′ , определяются следующим образом:

( )( ) ( )m m m mw wπ = β α + β , ( )( ) ( ) ( )m m m mw w w′π = α α + β .
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Используя известные методы анализа сетей массового обслуживания
[8], определим стационарные характеристики систем исследуемой сети
обслуживания по формуле

( ) ( )i i
w W

w w
∈

χ = χ π∑ , 1, ...,i L= , (1)

где iχ  – интегральная характеристика системы iS , ( )i wχ  – интеграль-
ная характеристика системы iS  в сети обслуживания со структурой w ,

( ) ( )m
m

w w
∈

π = π∏
M

.

Численный пример

Рассмотрим сеть массового обслуживания (рис. 2) с параметрами:
10L = , 0λ 1= , μ (4, 4, 4, 4, 4, 4, 4, 4, 4, 4)= , номера систем обслужива-

ния, отображающих маршрутизаторы, – 1, 2, 9 и 10; номера систем об-
служивания, отображающих КПД, – 4, 5, 6 и 8; номера систем обслужи-
вания, отображающих ненадежные КПД, – 4 и 8; номера дополнитель-
ных систем обслуживания – 3 и 7; параметры 4 3K =  и 8 3K = , вероят-
ности включения потока требований 4 0,2β =  и 8 0,2β = ; вероятности

4 0,3p =  и 8 0,4p = ; длительность 10∆ = , маршрутная матрица Θ  с
включенными в сеть системами 4S  и 8S  имеет вид

0 0,4 0,6 0 0 0 0 0 0 0 0
0 0 0 0 0,5 0,5 0 0 0 0 0
0 0 0 0 0 0 0,5 0 0,5 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 0 0,3 0 0 0 0 0 0,7 0

(1,1) 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0,4 0 0 0,6
1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

Θ = Θ = ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

.
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Рис. 2. Структура модельной сети обслуживания

Остальные маршрутные матрицы (0,1)Θ , (1,0)Θ , (0,0)Θ  отличают-
ся от Θ  только вероятностями перехода в соответствующие ненадеж-
ные системы, которые согласно топологии отключены:

16 (0,1) 1Θ = , 1 (0,1) 0mΘ = , для всех 6m ≠ ;

27 (1,0) 1Θ = , 2 (1,0) 0mΘ = , для всех 7m ≠ ;

16 (0,0) 1Θ = , 1 (0,0) 0mΘ = , для всех 6m ≠ ;

27 (0,0) 1Θ = , 2 (0,0) 0mΘ = , для всех 7m ≠ .

Время реакции сети обслуживания с заданными параметрами без от-
ключения систем обслуживания 4S  и 8S  равно 1,039. В сети обслужи-
вания с периодическим отключением систем обслуживания 4S  и 8 ,S
время реакции равно 0,976.

Используя выражение (1), математические ожидания (м.о.) числа
требований в системах 1S  и 2S  соответственно равны 0,130 и 0,204.
В сети обслуживания без управления потоком (с неизменной структу-
рой) м.о. числа требований в 1S  и 2S  несколько больше и равны 0,133 и
0,231.

Предложенная в работе модель сети с управлением и нестационар-
ной структурой и метод ее анализа позволяют проводить исследование
ИВС. В частности, предполагается провести исследование влияния ве-
роятностей потерь пакетов в каналах на характеристики сети.
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ДИСКРЕТНАЯ СТОХАСТИЧЕСКАЯ ОПТИМИЗАЦИЯ
СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ

НА ИМИТАЦИОННЫХ МОДЕЛЯХ*

В.М. Трегубов1, А.П. Кирпичников2,
И.М. Якимов1, Р.М. Шакирзянов1

1Казанский национальный исследовательский
технический университет им. А.Н.Туполева – КАИ, г. Казань, Россия

2Казанский национальный исследовательский
технологический университет, г. Казань, Россия

В настоящее время методы имитационного моделирования (ИМ)
стали одним из мощных инструментов исследования и проектирования
различных классов систем массового обслуживания (СМО). Методы
ИМ применяются для исследования экономических, производственных,
транспортных, вычислительных и других систем [1, 2]. Важным этапом
моделирования СМО в общей методологии проектирования является
поиск оптимальных параметров функционирования системы. Сущест-
венной особенностью возникающих задач является стохастичность
функционирования, чрезвычайно большая размерность, а также, во
многих случаях, дискретность варьируемых переменных задачи [2, 3].
В том случае, когда для описания моделируемой системы используется
имитационная модель, дополнительно возникают сложности, обуслов-
ленные отсутствием аналитических выражений для целевой функции и
ограничений, случайным характером получаемых в процессе моделиро-
вания величин, чрезвычайно высокими затратами на проведение имита-
ционных экспериментов и решение собственно оптимизационной задачи.

Методы оптимизации систем, описываемых имитационными моде-
лями, в настоящее время интенсивно развиваются, обзор соответст-
вующих результатов приведен в [2, 4]. Одним из перспективных подхо-
дов для решения таких задач является применение методов стохастиче-
ского программирования [5], а в случае оптимизации СМО на имитаци-
онной модели – методов дискретного стохастического программирова-
ния [4, 6−8, 10].

                                                       
* Исследование выполнено в рамках государственного задания № 2.1724.2017/4.6.
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В общей постановке указанная задача является чрезвычайно слож-
ной, и в настоящее время нет эффективных методов ее решения. В ра-
ботах [7, 8] предложен алгоритм, основанный на разбиении множества
X на симплексы с последующей кусочно-линейной интерполяцией оп-
тимизируемой функции на этих симплексах. Структура симплексов по-
зволяет далее легко вычислить стохастический градиент (или его ана-
лог) и применить для решения задачи методы типа обобщенного сто-
хастического градиента [9]. Метод показал достаточную эффективность
в численных экспериментах [8], однако без дополнительных предполо-
жений о структуре множества оптимизируемых параметров и свойствах
целевой функции невозможно обосновать качество получаемого реше-
ния. В [8] показано, что в случае, когда оптимизируется выпуклая сепа-
рабельная функция, предложенный алгоритм находит решение задачи
на всем пространстве En.

В данной работе рассматривается случай, когда целевая функция
имеет специальную структуру и не сепарабельна. Показывается, что
возникающий класс задач является достаточно широким и охватывает
обширную проблематику задач оптимизации СМО на имитационных
моделях. Для этого класса задач строится алгоритм, основанный на раз-
биении исходного допустимого множества на симплексы с последую-
щей кусочно-линейной интерполяцией функции на построенных сим-
плексах и применением аналогов метода обобщенного стохастического
градиента [9]. За счет учета структуры оптимизируемой функции удает-
ся доказать сходимость построенного алгоритма к решению исходной
задачи.

Постановка задачи

Пусть X0 = { ix , : 0 1,   1,ix i n≤ ≤ = } – единичный куб в En с вершиной
в нуле. Обозначим Z0 – множество целочисленных вершин куба X0.

Рассмотрим следующую задачу целочисленного стохастического
программирования: требуется найти x*:

0

*

Z 1
( )   Min , )m (

m

j jx j
F x f x

∈ =

= ω∑ A . (1)

Здесь M – символ математического ожидания, ω  – элемент вероятност-
ного пространства ( , ,FΩ Ρ ). В общем случае, ω  является вектором
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случайных параметров, влияющих на функционирования СМО. Будем
предполагать, что аналитические выражения для , )( j jf x ωA  неизвест-

ны, и для x 0Z∈  невозможно вычислить точное значение F(x), однако
существует возможность наблюдать в ходе имитационного эксперимен-
та с моделью СМО значение случайных показателей , )( j jf x ωA

 
для

0 x Z∀ ∈ . Функции , )( j jf x ωA
 
предполагаются измеримыми и ограни-

ченными для ∀ ω . Кроме того, предполагается, что ω  не зависит от
параметров x.

Будем считать, что , )( j jf x ωA , j =1,m , – выпуклые функции при

каждом ω , x = ( 1 2 ,x x , …. nx ) – вектор-столбец оптимизируемых пара-

метров, Aj – строка матрицы A = ( ,j ia ), 1,j m= , 1,i n= . Будем также
считать, что матрица A обладает следующими свойствами:

А1. , {0,1}j ia ∈  1,j m= , 1,i n= .
А2. В каждой строке матрицы A содержится не более двух единиц.
А3. Если mJ  – множество номеров строк матрицы А, в которых со-

держится ровно 2 единицы, то система уравнений

j 1,   mj J= ∈A v , (2)

имеет решение 1 2,( , nv v v…=v ), iv ∈{0,1}, 1,i n= .
В виде (1) может быть сформулировано большое число практически

важных задач оптимизации СМО на имитационных моделях.

Алгоритм решения задачи

Пусть x∈ 0X , вектор v удовлетворяет (2). Обозначим

( ) (1 ) (1 )i i i i it x x v v x+ −= − , 1,i n= . (3)

Очевидно, что 0 ( ) 1,  1,it x i n≤ ≤ = . (4)

Для координат вектора ( ), it x  1,i n= , справедливо упорядочивание
вида

1 2
0 ( ) ( ) ... ( ) 1

ni i it x t x t x≤ ≤ ≤ ≤ ≤ . (5)
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Упорядочиванию (5) соответствует перестановка π(t(x)) = 1 2, ,...,(   )ni i i )
координат вектора t(x). Как показано в [7, 8], множество (5) является
симплексом C(x) с вершинами 0 0 1 0

1 2( , ,..., )nh h h=H , …, 1 2( , ,..., )n n n n
nh h h=H .

Координаты вершин этого симплекса вычисляются следующим об-
разом [7]:

0 , 1,
j ji ih v j n== ,

1 1,
j j j

s s s
i i ih h r− −= +  1,j n= , s =1,n , (6)

где 1
0 при ,
1 2  при  .j

j

s
si
i

j n s
r v j n s−

≠ −⎧⎪
⎨ − = −=
⎪⎩

(7)

Здесь  , 1,li l n= , – элемент перестановки π(t(x)).

Далее, обозначим φ(x,ω) =
1

( , )
m

j j
j

f x
=

ω∑ A  и задачу (1) запишем в виде

( ) ( )
0

*

                           

 min ,
x Z

F x M xω
∈

ϕ= ω . (8)

Следуя [7, 8], построим кусочно-линейную интерполяцию функции
φ(x,ω) на кубе X0. Заметим, что существует n! различных симплексов Ck,
k = 1,..,n!, образующих разбиение куба X0, при этом, если x∈C(x), то су-
ществует *k , такой, что x∈ * .

k
C

Обозначим  , 0, ,  1, !s
k s n k n= =H , – s-я вершина симплекса Ck.

Построим семейство определенных на X0 линейных функций
( , )kL x ω  так, чтобы в вершинах симплекса kC  выполнялось условие

( )  ( , ) φ , ,  0,s s
k k kL s nω = ω =H H . (9)

Учитывая, что точка 0H  принадлежит каждому симплексу kC  вы-
ражение для ( , )kL x ω  запишем в виде

( ) ( )0

1
( , ) , ( ). 

n
k

k i i i
i

L x b x v
=

ω = ϕ Η ω + ω −∑
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Коэффициенты ( )ωk
ib  выберем из условия (9), тогда из (6), (7) полу-

чаем

( )1(ω) ( ) ( ) (1 2 ),  1,, ,
j

k n j n j
i jk kb v j n− − −= ϕ − ωϕ − =ωH H . (10)

Положим теперь L(x,ω) = ( , )kL x ω , если x∈ kC .
Наряду с задачей (8) рассмотрим задачу

( )*
ωФ( )   min M ,

x X
x L x

∈
= ω 0при X X= .

Из свойств функции ( ),L x ω  [7] следует, что ( ) ( )Ф  x F x=  для
x 0Z∈ .

Обозначим ( ) ( ),ω ω  ,  1,k
i ib x b i n= = , при x∈ ( )kC C x= , где ( )ωk

ib
определяются из (10). Заметим, что при 

1 2
0 ( ) ( ) ... ( ) 1

ni i it x t x t x< < < < <

( , ) / ( , )i iL x x b x∂ ω ∂ = ω , так что градиент функции L(x,ω) при

1 2
0 ( ) ( ) ... ( ) 1

ni i it x t x t x< < < < <  равен 1 2( , ) ( ( , ), ( , ),..., ( , ))nL x b x b x b x∇ ω = ω ω ω ,

где ( ,ω)ib x  определяется из (10), а переход от точки sH  к точке 1s+H
на симплексе C(x) осуществляется в соответствии с формулами (6), (7).

Обобщенный градиент g(x,ω) функции L(x,ω) [7, 9] вычисляется при

1 2
0 ( ) ( ) ... ( ) 1

ni i it x t x t x≤ < < < ≤  по формуле g(x,ω) = ∇L(x,ω). Если же

1
( ) ( )

l li it x t x
+

= , то будем считать, что 
1

( ) ( )
l li it x t x

+
< , если 1l li i +< , при

этом полностью определяется способ вычисления обобщенного гради-
ента g(x, ω).

Применим для решения данной задачи метод проекции стохастиче-
ских обобщенных градиентов [7, 9]:

0

1 P ( ))r ( ,k k k
X kx x y+ ρ= − ωg , (11)

где 
0XPr ( )u  – оператор проектирования вектора u на множество X0 [5],

g(yk,ω) – стохастический обобщенный градиент функции L(x,ω) в точке

1 2, ,..(  ), .k k k k
ny y y=y ), k

ly  – 1,l n= , независимые случайные величины,

равномерно распределенные на отрезках [ ],k k
l k l kx x β+β− .
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Если
2

1 1

1

, ,   0,

 | /  0

,

0 ,, 0,|

k
k k kk kkk k

k k k k kk

∞ ∞

→∞ →∞= =

+
→∞

ρρ ρ ∞ → ∞ β →β= ∞ <

ρ β> β ρ− → β >

∑ ∑

то последовательность kx , определенная формулой (11), сходится поч-
ти наверное (п.н.) к множеству локальных минимумов функции ( )Ф x
на множестве X0 [7, 9].

С учетом выпуклости L(x,ω) на X0 и свойств функции L(x,ω) получаем
сходимость алгоритма (11) к множеству решений задачи (1), при этом

( )
0

*

1
Ф   min M ( , )

m

j jx Z j
x f x

∈ =

= ω∑ A .

Оптимизация системы обслуживания сети коммуникаций.

Рассмотрим задачу оптимизации СМО на имитационной модели
следующего вида.

Пусть имеется транспортная сеть поставки продукции от постав-
щиков к потребителям. Пусть n – общее количество узлов сети, m – ко-
личество коммуникаций сети. Сеть задается графом G, который являет-
ся двудольным, и пусть , 1, ,  1,ija i n j m= = =A , – матрица реберной ин-

циденции графа G. Пусть граф G не имеет петель, тогда 
1

2,
n

ji
i

a
=

=∑

1,j m= , при этом система уравнений Ajv = 1, 1,j m=  разрешима для
{0,1}iv ∈  и матрица A удовлетворяет условиям A1 – A3.
Процесс перевозки продукции от поставщиков к потребителям рас-

сматривается как процесс обслуживания транспортных средств в узлах
и на коммуникациях сети. Спрос на продукцию предполагается случай-
ным, случайными являются также время перевозки продукции от по-
ставщиков к потребителям и другие параметры системы.

Важной особенностью рассматриваемой СМО является то, что в
процессе перевозок на коммуникациях сети могут возникать отказы
(например, поломки транспортных средств), которые носят случайный
характер, для ликвидации которых в узлах сети размещаются некоторые
ресурсы, причем ресурсы, размещаемые в узле, могут быть направлены
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на ликвидацию отказов в любой коммуникации сети, связанной с дан-
ным узлом. Для моделирования функционирования сети используется
имитационная модель, которая позволяет в имитационном эксперимен-
те ω  моделировать процесс перевозок и отказы на коммуникации j се-
ти, а также вычислять ресурсы Rj(ω), необходимые для восстановления
работоспособности коммуникации. Пусть

{1, если в -м узле планируется размещать ресурсы,  
0, в противном случае.i

ix =

Пусть dji >0 – планируемый объем ресурса, выделяемого в узле i на
восстановление коммуникации j, связанной с узлом i. Пусть также qj

− –
стоимость потерь (в расчете на единицу ресурса), которые возникают в
связи с тем, что выделенных ресурсов не хватает на ликвидацию отказа
на коммуникации j, а qj

+ – стоимость потерь (в расчете на единицу ресур-
са), которые возникают в связи с тем, что количество выделенных на ли-
квидацию отказа на коммуникации j ресурсов превышает необходимое.

Выражение для средних потерь, связанных с размещением ресур-
сов в узлах сети с учетом потерь как на недостаток, так и на избыток
ресурсов, запишется в виде

( )
1 1 1

( ) M max ( ) ,  ,

{0,1}, 1, .

m n n

j ji ji i j j j ji ji i
j i i

i

F x q d a x R q R d a x

x i n

+ −

= = =

⎛ ⎞⎧ ⎛ ⎞ ⎫⎛ ⎞
⎜ ⎟
⎝

= − ω ω⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟⎩ ⎝ ⎠ ⎭⎝ ⎠ ⎠
∈ =

∑ ∑ ∑
(12)

Задача заключается в нахождении такого распределения ресурсов по
узлам сети, которое минимизирует средние потери (12).

На рис. 1 приведены результаты вычислительного эксперимента для
сети, содержащей 5 поставщиков, 5 потребителей и 12 коммуникаций.

Анализ эффективности разработанного алгоритма проводился в
сравнении с эффективностью работы для данной задачи «жадного»
(greedy) алгоритма [11], в котором вычисление значения функции F(x) в
каждой точке x проводилось путем усреднения по 100 реализациям ве-
личин (ω) jR  для каждой коммуникации j. Эффективность работы алго-
ритмов оценивалась по точности найденного решения в зависимости от
количества обращений к имитационной модели ω . Такой анализ был
выбран в связи с тем, что основная трудоемкость алгоритмов в рассмат-
риваемом классе задач связана с высокой трудоемкостью имитационных
экспериментов.
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На рис. 1. показан график поиска решения разработанным алгорит-
мом в сравнении с «жадным» алгоритмом. Предложенный алгоритм
нашел приближенное решение x1 = (0; 0,0601; 1; 0,01695; 0; 0; 0,0299;
0,9980; 0; 0,0258), F(x1) = 7,2710 за 2000 обращений к имитационной
модели. Точка x1 уже может рассматриваться как окрестность опти-
мального решения xopt = (0; 0; 1; 0; 0; 0; 0; 1; 0; 0).
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Рис. 1. Сравнение алгоритмов

«Жадный» алгоритм нашел решение задачи за 200 000 обращений к
имитационной модели. Алгоритм нашел решение xopt = (0; 0; 1; 0; 0; 0;
0; 1; 0; 0) со значением F(xopt ) = 10,1748.

Заключение

Предложенный алгоритм существенно расширяет класс задач дис-
кретного стохастического программирования, для которого, за счет учета
специфики задачи, удается обосновать качество получаемого решения.

Предложенный алгоритм может быть эффективно применен для ре-
шения широкого круга практически важных задач оптимизации стохас-
тических систем на основе имитационных моделей.

Разработанный алгоритм превосходит существующие методы по вре-
мени решения задачи, в первую очередь, на начальных этапах поиска.



196 В.М. Трегубов, А.П. Кирпичников, И.М. Якимов, Р.М. Шакирзянов

ЛИТЕРАТУРА

1. Сидоренко В.Н., Красносельский А.В. Имитационное моделирование в науке и
бизнесе: подходы, инструменты, применение // Бизнес-информатика. – 2008. –
№ 2. – С. 52–57.

2. Fu M.C., Glover F.W., April J. Simulation optimization: a review, new developments,
and applications // Proceedings of the 2005 Winter Simulation Conference / Kuhl M.E.,
Steiger N.M., Armstrong F.B., Joines J.A. (eds.). – 2005. – P. 83–95.

3. Лифшиц Ф.Л., Мальц Э.М. Статистическое моделирование систем массового об-
служивания. – М.: Советское радио, 1978. – 248 с.

4. Barry L. Nelson. Optimization via simulation over discrete decision variables // Tutori-
als in Operations Research, 2010 INFORMS. – P. 193−207.

5. Ермольев Ю.М. Методы стохастического программирования. – М.: Наука, 1976. –
235 с.

6. Abspoel S.J., Etman L.F.P., Vervoort J. Simulation optimization of stochastic systems
with integer variables by sequential linearization // Proceedings of the 2000 Winter
Simulation Conference. – P. 715−723.

7. Трегубов В.М. Алгоритм целочисленной стохастической оптимизации имитаци-
онных моделей сложных систем // Имитационное моделирование. Теория и прак-
тика (ИММОД-2013): сб. докл. Шестой Всероссийской научно-практической
конференции по имитационному моделированию и его применению в науке и
промышленности. – Казань: Академия наук РТ, 2013. – С. 271−277.

8. Kagan Gokbayrak, Christos G. Cassandras. A generalized “surrogate problem” meth-
odology for on-line stochastic discrete optimization // Submitted to JOTA, January
2001. – P. 3−29.

9. Гупал А.М. Стохастические методы решения негладких экстремальных задач. –
Киев: Наукова думка, 1979. – 152 с.

10. Трегубов В.М. Применение методов стохастического программирования в зада-
чах оптимизации СМО на имитационных моделях // Исследование операций
и аналитическое проектирование в технике: межвузовский сборник. – Казань:
Казан. авиац. ин-т, 1988. – С. 39−44.

11. Глебов Н.И. Об условиях разрешимости оптимизационных задач «жадным» ал-
горитмом // Дискретный анализ и исследование операций. – Июль – декабрь
2002. – Сер. 2. – Т. 9. – № 2. – С. 3−12.



АНАЛИТИЧЕСКИЕ И ЧИСЛЕННЫЕ
МЕТОДЫ ИССЛЕДОВАНИЯ

СИСТЕМЫ АДАПТИВНОГО УПРАВЛЕНИЯ
КОНФЛИКТНЫМИ ПОТОКАМИ

М.А. Федоткин, Е.В. Кудрявцев
Нижегородский государственный университет им. Н.И. Лобачевского,

г. Нижний Новгород, Россия

Рассматривается система адаптивного управления конфликтными
потоками неоднородных требований. В качестве математического опи-
сания такой системы выбирается состояние обслуживающего устройст-
ва и длины очередей по конфликтным входным потокам. Доказано мар-
ковское свойство последовательности состояний системы и проведена
их классификация. Получены как необходимые, так и достаточные ус-
ловия существования стационарного распределения. Проведено имита-
ционное моделирование системы. Численное исследование имитацион-
ной модели позволило найти квазиоптимальные параметры адаптивного
управления.

Математическая модель

Данная работа связана с важной проблемой создания алгоритмов в
интеллектуальных транспортных системах, которые управляют кон-
фликтными потоками на пересечениях магистралей в крупных городах.
Предлагается простой класс нециклических управлений транспортными
потоками. Алгоритмы управления потоками из этого класса зависят не
только от длин очередей, но и от очередности поступления автомобилей
к стоп-линии перекрестка. Построена и изучена математическая модель
такой системы управления потоками.

Транспортный поток состоит из разнотипных автомобилей, разли-
чающихся скоростью движения. Таким образом, рассматриваются
входные потоки с неоднородными требованиями. В работе [1] предло-
жен механизм образования таких потоков. Показана возможность ап-
проксимации потоков такого вида неординарными пуассоновскими по-
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токами. Это дает возможность рассматривать в качестве входных пото-
ков два конфликтных неординарных пуассоновских потока Π1 и Π2.
В каждый вызывающий момент по потоку Πj, где j = 1, 2, приходит k
заявок с вероятностями Pj(k), k = 1, 2, … Эти вероятности имеют сле-
дующий вид:

1

1

3 1

(1) (1 α α β /(1 γ )) ,

(1) α (1 α α β /(1 γ )) ,

(1) α β γ (1 α α β /(1 γ )) , 3,

j j j j j j

j j j j j j
k

j j j j j j j j

P p

P

P k

−

−

− −

= + + − =

= + + −

= + + − ≥

где αj, βj и γj – некоторые параметры распределения, физический смысл
которых был определен в [1]. Интенсивность поступления вызывающих
моментов по потоку Πj равна λj. Свойства таких потоков с неоднород-
ными требованиями изучены в [1, 2].

Управление конфликтными потоками при их обслуживании произ-
водится с помощью адаптивного нециклического алгоритма, подробное
описание которого приведено в работах [3, 4].

В системе обслуживающим устройством является светофор, а требо-
ваниями – разнотипные автомобили, подъезжающие к светофору. Мно-
жество состояний светофора обозначим через Γ = {Γ(1), Γ(2), Γ(3), Γ(4),
Γ(5), Γ(6), Γ(7), Γ(8)}.

Приведем описание каждого из состояний.
Состояние Γ(3j − 2) (зеленый сигнал светофора для j-го потока) соот-

ветствует первому этапу периода обслуживания потока Πj. Длитель-
ность обслуживания одной заявки, поступившей из накопителя, равна
постоянной величине μj, 1

−1. Длительность пребывания в Γ(3j − 2) равна
T3j − 2.

Состояние Γ(3j − 1) (зеленый сигнал светофора для j-го потока) соот-
ветствует второму этапу периода обслуживания потока Πj. Длитель-
ность обслуживания одной заявки равна величине μj, 2

−1 < μj, 1
−1. Дли-

тельность пребывания в этом состоянии – случайная величина, прини-
мающая значения kT3j − 1, 1 ,jk = ,n  где nj – максимальное число продле-

ний и T3j − 1 – длительность одного продления. Продление происходит
в 2 случаях: 1) длина очереди по j-му потоку не меньше параметра Kj,
2) на предыдущем этапе продлений поступили требования, которые не-
обходимо обслужить.
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Состояние Γ(3j) (желтый сигнал светофора для j-го потока) соответст-
вует режиму переналадки для потока Πj. Длительность пребывания в
этом состоянии равна T3j.

Состояние Γ(6 + j) (зеленый сигнал светофора для j-го потока) соот-
ветствует первому этапу периода обслуживания потока Πj в случае, ко-
гда возможен мгновенный переход в состояние Γ(3j). Длительность пре-
бывания в Γ(6 + j) является случайной величиной. Максимальное время
пребывания в этом состоянии равно T3j − 2.

Далее систему будем рассматривать в моменты τi, i ≥ 0, и на проме-
жутках [τi, τi + 1). Здесь τ0 – начальный момент времени, а τi, i ≥ 1, – мо-
менты смены состояний обслуживающего устройства. Обозначим
y0 = (0, 0), y1 = (1, 0), y2 = (0, 1) и пусть X – целочисленная одномерная
неотрицательная решетка. Для нелокального описания системы при
i = 0, 1, … введем следующие случайные величины и элементы:

Γi ∈ Γ – состояние обслуживающего устройства на временном ин-
тервале [τi, τi + 1) (на i-м такте);

ηj, i ∈ X – число заявок j-го потока, поступивших в систему за про-
межуток [τi, τi + 1), ηi = (η1, i, η1, i);

η'j, i – случайный вектор, принимающий значение y0, если на i-м так-
те [τi, τi + 1) в систему не поступило ни одной заявки, значения yj, если
на i-м такте первой пришла заявка (или заявки) j-го потока;

κj, i ∈ X – число заявок j-го потока, которые находятся в системе в
момент τi, κi = (κ1, i, κ2, i);

ξj, i – максимально возможное число заявок j-го потока, которые сис-
тема может обслужить на интервале [τi, τi + 1), ξi = (ξ1, i, ξ2, i).

Примем следующие соотношения:
1 1

3 2 ,1 3 2 ,1
1

3 1 3 1 ,2
1

3 3 ,2

,

,

,

j j j j j

j j j j

j j j j

T l

T l

T l

− −
− −

−
− −

−

= μ + θ μ

= θ μ

= θ μ

где l3j − 2 ∈ X, l3j − 1, l3j ∈ ℕ. Параметр l3j выбирается так, чтобы выполня-
лось неравенство T3j ≥ μj, 1

−1. Величина 0 < θj ≤ 1 обозначает часть об-
служивания, которую необходимо пройти требованию, чтобы можно
было начать обслуживать следующую заявку. В случае θj < 1 одновре-
менно может обслуживаться несколько требований.

Адаптивный алгоритм смены состояний обслуживающего устройст-
ва из множества Γ задается с помощью рекуррентного соотношения:
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где j, s = 1, 2; j ≠ s.
Как видно из приведенного соотношения, состояние обслуживающего

устройства на следующем шаге зависит от состояния на предыдущем ша-
ге, длины очередей и очередности прихода заявок. При этом динамика
длины очереди задается следующими рекуррентными соотношениями:
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Теоремы существования стационарного распределения

В работе [3] приведена теорема марковости векторной последова-
тельности {(Γi, κi); i ≥ 0} и проведена классификация ее состояний.

Для любого i ≥ 0, 1,8r = ; x ∈ X2 введем обозначение:
( ) ( )( ) P( ,κ ).r r
i i iQ x x= Γ = Γ =

В работе [4] приведены рекуррентные соотношения для одномерных
распределений { }( ) 2( ) : 1, 8, ,r

iQ x r x X= ∈  i ≥ 0, марковской последова-

тельности {(Γi, κi); i ≥ 0}.
Пусть z = (z1, z2), где компоненты z1, z2 – действительные или ком-

плексные переменные, удовлетворяющие условиям |z1| ≤ 1, |z2| ≤ 1. По-
ложим 1 2

1 2
x xxz z z= , где x = (x1, x2) ∈ X2. Рассмотрим производящие
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Используя рекуррентные соотношения для одномерных распределе-
ний { }( ) 2( ) : 1, 8, ,r

iQ x r x X= ∈  i ≥ 0, векторной марковской последова-

тельности {(Γi, κi); i ≥ 0}, стандартным образом были получены рекур-
рентные соотношения для производящих функций ( ) ( ), 1,8, 0.r

iW z r i= >
Используя рекуррентные соотношения для производящих функций,

получено следующее достаточное условие существования предельного
распределения изучаемой векторной марковской последовательности.

Теорема 1. Для существования предельного распределения вектор-
ной последовательности {(Γi, κi); i ≥ 0} достаточно выполнения нера-
венств

0, 1, 2,j j jM T L jλ − < =

где

( ) ( )( )( )

1 3 4 6 1 2 2 5

3 2 3 1 3
2

,
,

1 2 2 / 1 1/ 1 .
j j j j j

j j j j j j j

T T T T T n T n T
L l n l l
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− −

= + + + + +
= + +

= + α + α β − γ + − γ

Обозначим

1 3 4 6 3 1 3 1,j j j s sT T T T T n T n T− −= + + + + +� �

где ñj – нижняя оценка числа продлений для состояния Γ(3j − 1) в случае,
когда продления происходят только при условии прихода новых заявок
на предыдущем такте продлений. Тогда получаем следующую теорему.

Теорема 2. Для существования предельного распределения последо-
вательности {(Γi, κi); i ≥ 0} необходимо выполнение неравенств

0, , 1, 2; .j j s jM T L j s j sλ − < = ≠�

Также были получены следующие необходимые условия существо-
вания предельного распределения.

Теорема 3. Если существует предельное распределение марковской
последовательности {(Γi, κi); i ≥ 0}, то

1 1 1 2 2 2

1,2 2,2
1.

M Mθ λ θ λ
+ <

μ μ

Из условия теоремы 3 легко вытекает следующее следствие.
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Следствие 1. Предельное распределение {(Γi, κi); i ≥ 0} существует
только тогда, когда выполняются условия

,2 , 1, 2.j j j jM jθ λ < μ =

Теорема 4. Для существования предельного распределения последо-
вательности {(Γi, κi); i ≥ 0} необходимо выполнение неравенства

( )1 1 5
1 1 1 2 2 2

5 2 2 5

λ
λ λ 0.

λ
M T

M T L + M T L <
l M T

− −
−

Теорема 5. Для существования предельного распределения последо-
вательности {(Γi, κi); i ≥ 0} необходимо выполнение неравенства

( )2 1 1 2
1 1 1 2 2 2

2 2 2

λ
λ λ 0.

λ
l M T

M T L + M T L <
M T

−
− −

Следствие 2. Для существования предельного распределения после-
довательности {(Γi, κi); i ≥ 0} необходимо, чтобы хотя бы для одного
j = 1, 2 выполнялось неравенство

0.j j jM T Lλ − <

Исследование системы
с помощью имитационного моделирования

Изученный выше алгоритм ориентирован, прежде всего, на умень-
шение среднего времени пребывания произвольного требования в сис-
теме (в дальнейшем мы будем называть эту характеристику просто
средним временем пребывания). Однако получить аналитическое выра-
жение для этой характеристики практически невозможно. Поэтому для
проверки эффективности данного алгоритма необходимо применять
численные методы. Основным способом численного исследования
сложных систем массового обслуживания является метод имитационно-
го моделирования. Для этого была построена имитационная модель, с
помощью которой было проведено численное исследование.

Основной задачей численного исследования является определение
квазиоптимального набора параметров ( , )T n , где 1 2 3 4 5 6( , , , , , )T T T T T T T=
и 1 2( , )n n n= , при котором среднее время пребывания минимально.
Проведенные аналитические исследования и имитационное моделиро-
вание позволяют не только дать практические рекомендации адаптив-
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ного управления потоками, но и определить квазиоптимальные пара-
метры ,T n .

Следующая задача исследования имитационной модели связана с
оценкой ( , )T nρ  для загрузки системы. Показано, что квазиоптималь-
ному набору параметров соответствует близкое к минимальному значе-
ние этой оценки. Изучено влияние параметров n1 и n2 на среднее время
пребывания.

Наконец, выявлены и рассмотрены адаптивные свойства предложен-
ного алгоритма, благодаря которым этот алгоритм позволяет значи-
тельно уменьшить среднее время пребывания. Для изучения адаптив-
ных свойств рассмотрены конкретные реализации со специально вы-
бранными начальными условиями.

Заключение

Была построена и изучена система массового обслуживания с адап-
тивным нециклическим управлением. Основным методом исследования
системы был аппарат производящих функций. Для нахождения условий
существования предельного распределения в системе использовался
итеративно-мажорантный метод. С помощью имитационного модели-
рования проведено численное исследование системы. Оказалось, что
при большой загрузке алгоритм начинает работать как циклический.
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В последнее время в сфере имитационного моделирования (ИМ)
произошли значительные изменения, связанные в первую очередь с пе-
реходом от применения специализированных языков ИМ к системам
структурного и имитационного моделирования (ССИМ). ССИМ позво-
ляют пользователям отказаться от программирования моделей и перей-
ти к процессу их «рисования». Процесс программирования остаётся
только на долю программистов, создающих подпрограммы имитации
функционирования элементов моделируемых объектов, совокупность
которых представляется специализированными библиотеками.

В монографии [1] достаточно подробно рассмотрены системы ИМ на
конец 1985 года, но за более чем 30 лет, прошедших после её выхода в
свет, появилось большое количество новых перспективных ССИМ, ко-
торые, естественно, не могли попасть в эту монографию. В статье [2]
рассмотрено более 10 перспективных ССИМ с данными по удельным
весам их применения. Авторами данной статьи проведено сравнение 13
ССИМ с их кратким описанием, приведены структурные модели систе-
мы массового обслуживания (СМО) типа М/М/5 в них и сравнение дос-
товерности результатов ИМ, полученных в этих системах, с результа-
тами аналитического моделирования (АМ) СМО М/М/5. Такой подход
является дальнейшим развитием работ [3, 4]. И, по мнению авторов, в
полной мере будет содействовать квалифицированному выбору средств
моделирования по предметной области, к которому относится объект
моделирования, по достоверности результатов моделирования и по
личным предпочтениям пользователя.

Из совокупности ССИМ, приведённых в [2], выбраны 13 систем, в
которых отсутствует процесс программирования для массовых пользо-
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вателей и имеется возможность получения бесплатной версии из интер-
нета: AnyLogic, Arena, Bizagi Мodeler, Business Studio, Enterprise
Dynamics, ExtendSim, Flexsim, GPSS W, Plant Simulation, Proccess
Simulator, Rand Model Designer, Simio и Simul8.

1. Краткое описание ССИМ

1 . 1 .  A n y L o g i с

ССИМ AnyLogic [5] разработана российской компанией «Экс Джей
Текнолоджис» (англ. XJ Technologies). Первая версия системы
AnyLogic 4.0 разработана в 2003 г. В 2014 г. разработана AnyLogic 7.0.
ССИМ AnyLogic включает в себя графический язык моделирования и
позволяет пользователю расширять создаваемые модели с помощью
языка Java.

Понятия, принятые в ССИМ AnyLogic по отношению к понятиям,
принятым в теории массового обслуживания, следующие: заявки –
сущности, очереди – очереди, ОА – задачи. Имеется русифицированная
версия ССИМ AnyLogic и литература на русском языке, в том числе [5].

1 . 2 .  A r e n a

ССИМ Arena [6] разработана компанией Systems Modeling
Corporation. Первая версия этой системы разработана в 1993 г. В 2014 г.
разработана ССИМ Arena 3.0. Основу системы Arena составляют:
транслятор языка моделирования Siman и система анимации Cinema
Animation.

Понятия, принятые в системе, по отношению к понятиям, принятым
в теории массового обслуживания следующие: заявки – сущности, оче-
реди – очереди, ОА – задачи. Имеется литература на русском языке в
том числе [6]. Несомненным достоинством ССИМ Arena является воз-
можность автоматического перехода с диаграммы IDEF3, широко рас-
спространённой системы BPwin [6], к структурной модели в ССИМ
Arena.

1 . 3 .  B i z a g i  M o d e l e r

ССИМ Bizagi Modeler [7] разработана группой компаний Object
Management Group, созданной в 1989 г. Год разработки системы ССИМ
Bizagi Modeler – 2007. В 2016 г. разработана ССИМ Bizagi BPM Suite
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11-я версия. Для обозначения элементов моделируемых сиcтем исполь-
зует нотацию моделирования бизнес-процессов (BPMN 2.0).

Понятия, принятые в ССИМ Bizagi Modeler по отношению к поняти-
ям, принятым в теории массового обслуживания следующие: заявки –
сообшения, очереди – очереди, ОА – действия. Для указания условий
выбора маршрута движения сущностей используются шлюзы.

Имеется русифицированная версия Bizagi Modeler. Литературы на
русском языке нет.

1 . 4 .  B u s i n e s s  S t u d i o

ССИМ Business Studio [8] разработана группой компаний «Совре-
менные технологии управления», основанной в 1991 г. Первая версия
системы Business Studio разработана в 2004 г., а в 2013 г. разработана
версия 4.0. Для обозначения элементов моделируемых сиcтем исполь-
зует нотацию моделирования бизнес-процессов (BPMN 2.0).

Понятия, принятые в ССИМ Business Studio, те же что и в ССИМ
Bizagi Modeler [7].

Русифицированной версии Business Studio и литературы на русском
языке по ней нет.

1 . 5 .  E n t e r p r i s e  D y n a m i c s

ССИМ Enterprise Dynamics разработана компанией InControl
Simulation, организованной в 1998 г. Год разработки системы Enterprise
Dynamics – 2004 [9].

Понятия, принятые в ССИМ Enterprise Dynamics: заявки – продукты,
очереди – очереди, ОА – серверы.

Русифицированной версии Enterprise Dynamics и литературы на рус-
ском языке по ней нет.

1 . 6 .  E 1 x t e n d S i m

Первая версия ССИМ E1xtendSim [10] разработана компанией
Imagine That Inc. в начале 1987 г. Она была одним из первых программ-
ных продуктов на рынке в области ИМ с реализацией создания имита-
ционной модели по вводимой в ССИМ структурной схеме. Последняя
версия ССИМ поступила в продажу в 2015 г. [10].
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Понятия, принятые в ССИМ E1xtendSim, по отношению к понятиям,
принятым в теории массового обслуживания, следующие: заявки – эле-
менты, очереди – очереди, ОА – задачи (activity).

Русифицированной версии E1xtendSim и литературы на русском
языке по ней нет.

1 . 7 .  F l e x i m

ССИМ Flexim [11] разработана компанией Flеxim Software Products
Inc (ESP), организованной в 1993 г. Год разработки системы Flexim –
2003.

Понятия, принятые в ССИМ Flexim по отношению к понятиям, при-
нятым в теории массового обслуживания следующие: заявки – заявки,
очереди – очереди, ОА – процессоры, памяти [11].

Недостаток – отсутствие русифицированной версии и описания на
русском языке.

1 . 8 .  G P S S  W  с  р а с ш и р е н н ы м  р е д а к т о р о м

ОАО «Элина-Компьютер» в 2014 г. для системы GPSS W создан
расширенный редактор [12], который для массового пользователя по-
зволяет отказаться от программирования и перейти к рисованию моде-
лей. Программистам в то же время предоставляется возможность созда-
ния программ моделирования новых элементов и включения их в
структурные и имитационные модели. Кроме того, расширенный редак-
тор позволяет проводить планирование имитационных экспериментов
обработки результатов моделирования.

Понятия, принятые в ССИМ GPSS W, по отношению к понятиям,
принятым в теории массового обслуживания, следующие: заявки –
транзакты, очереди – очереди, ОА – устройства, памяти.

Имеется русифицированная версия ССИМ GPSS W и документация
на русском языке.

1 . 9 .  P l a n t  S i m u l a t i o n

ССИМ Plant Simulation [13] с 2007 г. поставляется компанией Siemens
PLM Software. В 2016 году начались поставки 13 версии ССИМ Plant
Simulation.

Понятия, принятые в системе GPSS W, по отношению к понятиям,
принятым в теории массового обслуживания, следующие: заявки – де-
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тали, очереди – накопители, ОА – единичные операции, параллельные
операции. Имеется возможность моделирования производственных
процессов с продуктами в жидкообразном состоянии.

Недостаток – отсутствие русифицированной версии и описания на
русском языке.

1 . 1 0 .  P r o c c e s s S i m u l a t o r

ССИМ ProcessSimulator разработана корпорацией ProModel
Corporation и впервые поступила в продажу в 2001 г. [14]. Последней
версией ССИМ ProcessSimulator является версия 9.3.0.2701, разработан-
ная в 2016 г.

Понятия, принятые в ССИМ ProcessSimulator, по отношению к поня-
тиям, принятым в теории массового обслуживания, следующие: заявки
– заявки, очереди – очереди, ОА – действия.

Недостаток – отсутствие русифицированной версии и описания на
русском языке.

1 . 1 1 .  R a n d  M o d e l  D e s i g n e r

Известная ССИМ Model Vision Studium сменила своё название и с
2011 г. стала называться Rand Model Designer [15]. Она разработана
Компанией MVSTUDIUM Group, основанной в 1997 г. Последняя вер-
сия ССИМ Rand Model Designer (RMD) разработана в 2016 г. на базе
языка моделирования Modelica [15].

Понятия, принятые в ССИМ Rand Model Designer, по отношению к
понятиям, принятым в теории массового обслуживания, следующие: за-
явки – транзакты, очереди – очереди, ОА – сервисы.

Недостаток – отсутствие русифицированной версии и описания на
русском языке.

1 . 1 2 .  S i m i o

ССИМ Simio [16] разработана в 2007 г. компанией Simio LLC, кото-
рая была организована в 2005 г.

Понятия, принятые в ССИМ Simio, следующие: заявки – агенты
(инициаторы), очереди – очереди, ОА – серверы.

Недостаток – отсутствие русифицированной версии и описания на
русском языке.
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1 . 1 3 .  S i m u l 8

Первая версия ССИМ Simul8 [17] была разработана одноименной
корпорацией в начале 2003 г. Последняя версия ССИМ Simul8 2017
разработана в 2017 г. В ССИМ Simul8 указываются маршруты движе-
ния заявок и процессы их обслуживания [17]. Понятия, принятые в сис-
теме Bizagi Modeler, следующие: заявки – сущности, очереди – очереди,
обслуживающие аппараты – рабочие центры.

Демоверсию ССИМ Simul8 можно бесплатно скачать из Интернета и
пользоваться ей до 14 дней. Недостаток – отсутствие русифицирован-
ной версии и описания на русском языке.

2. Аналитическое моделирование CMO M/M/5
Аналитическое моделирование (АМ) СМО M/M/5 проведено по

формулам, приведённым в [18], для M/M/m и сведено к расчёту показа-
телей функционирования СМО по ним. Для расчёта принято: количест-
во обслуживающих аппаратов m = 5, среднее время между поступле-
ниием заявок post 10t =  единиц времени, среднее время обслуживания

заявок obsl 30t =  единиц времени. Результаты аналитического модели-
рования СМО М/М/5 приведены в табл. 3.

3. Структурные модели СМО М/М/5
Структурные модели СМО М/М/5 в ССИМ: AnyLogic, Arena, Bizagi

Мodeler, Business Studio, Enterprise Dynamics, ExtendSim, Flexsim, GPSS
W, Plant Simulation, Proccess Simulator, Rand Model Designer, Simio и
Simul8 приведены на рис. 1 – 12.

4. Сравнение результатов имитационного
и аналитического моделирования

Оценка достоверности результатов ИМ СМО М/М/5 в анализируе-
мых ССИМ произведена по результатам их сравнения с результатами
АМ по разнице средних значений по формуле

*

100,ij i
ij

i

y y
y
−

∆ = ⋅

где уij
* – оценка i-го параметра, определённая по результатам ИМ в j-й

ССИМ; yi – значение i-го параметра, вычисленное по результатам АМ.
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Рис. 1. Структурная модель СМО М/М/5
в ССИМ AnyLogic

Рис. 2. Структурная модель СМО М/М/5
в ССИМ Arena

Рис. 3. Структурная модель СМО М/М/5
в ССИМ Bizagi Мodeler и Business Studio

Рис. 4. Структурная модель СМО М/М/5
в ССИМ Enterprise Dynamics

Рис. 5. Структурная модель СМО M/M/5
в ССИМ ExtendSim

Рис. 6. Структурная модель СМО М/М/5
в ССИМ Flexsim
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Рис. 7. Структурная модель СМО М/М/5
в ССИМ GPSS W с расширенным редак-

тором

Рис. 8. Структурная модель СМО М/М/5
в ССИМ Plant Simulation

Рис. 9. Структурная схема СМО М/М/5 в
ССИМ ProccessSimulator

Рис. 10. Структурная модель СМО М/М/5
в ССИМ Rand Model Designer

Рис. 11. Структурная модель СМО M/M/5
в ССИМ Simio

Рис. 12. Структурная модель СМО M/M/5
в ССИМ Simul8
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Для ИМ принято: количество обслуживающих аппаратов m = 5,
среднее время между поступлениием заявок post 10t =  единиц времени,

среднее время обслуживания заявок obsl 30t =  единиц времени. Количе-
ство обслуженных заявок 25000. Результаты АМ и ИМ в системах
AnyLogic, Arena, Bizagi Мodeler и Business Studio и оценка их разности
в процентах по формуле (16) приведены в табл. 1.

Средняя разница в процентах по шести тестам остальных 9 ССИМ
приведены в табл. 2.

Заключение

В работе проведено сравнение 13 ССИМ, которые позволяют основ-
ным пользователям – не программистам – создавать структурные и
имитационные модели отказавшись от программирования и перейдя к
изображению структурных схем объектов моделирования. Профессио-
нальным программистам остаётся деятельность по программированию
функционирования элементов моделируемых объектов и новых методов
обработки результатов моделирования. Для сравнения ССИМ исполь-
зованы структурные, имитационные и аналитические модели СМО, в
частности СМО типа М/М/5. По результатам проведённой работы сде-
лаем следующие выводы:

1. Все 13 ССИМ, структурные модели СМО М/М/5 которых приве-
дены на рис. 1 – 12, с помощью стрелок достаточно наглядно отражают
маршруты движения заявок. На основании этих рисунков можно вы-
брать ССИМ, наиболее подходящую по предметной области, к которой
относится моделируемый объект, и на основании предпочтений пользо-
вателя.

2. Наиболее подробно условия изменения маршрутов движения зая-
вок без отображения процессов их обработки можно указать в ССИМ
Bizagi Мodeler и Business Studio, которые используют нотацию модели-
рования бизнес-процессов BPMN 2.0.

3. Наиболее детально моделируемые процессы отражаются в ССИМ
AnyLogic.

4. Средняя разница результатов ИМ и АМ СМО М/М/5 в процентах
по 6 тестам для всех 13 ССИМ не превышает 5 %, что является удовле-
творительным результатом.

5. По достоверности результатов по средней разнице между ИМ и АМ
в процентах ССИМ можно выбрать по проранжированному перечню,
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в котором для ССИМ в скобках приведена средняя разница в процен-
тах: Simul8 (0,633), Proccess Simulator (1,004), GPSS W (1,020),
Enterprise Dynamics (1,534), ExtendSim (1,700), Bizagi Мodeler (1,798),
Simio (1,978), Rand Model Designer (2,211), Plant Simulation (2,326),
AnyLogic (2,660), Arena (2,830), Flexsim (3,673), Business Studio (3,805).
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МОДЕЛИРОВАНИЕ
ТЕЛЕКОММУНИКАЦИОННЫХ СЕТЕЙ

И ТЕЛЕТРАФИКА

USING DOBRUSHIN MEAN-FIELD APPROACH
FOR LARGE-SCALE TRANSPORT NETWORKS ANALYSIS*

A.I. Blinov, S.A. Vasilyev, L.A. Sevastianov
Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia

In this paper large-scale transport systems was studied using Dobrushin
mean-field approach [1−3]. We assume that the transport networks faced
with the problem of proving the global convergence of the solutions of
certain infinite systems of ordinary differential equations to a time-
independent solution. In work [3] the infinite systems of differential
equations that modelling of large-scale transport systems are studied and the
sufficient conditions of global stability and global asymptotic stability are
obtained. Cauchy problems for systems of ordinary differential equations of
infinite order was investigated A.N.Tihonov [4] and other researchers. In this
paper we apply Dobrushin mean-field approach from [3] for the singular
perturbed systems of ordinary differential equations of infinite order of
Tikhonov type. It was studied the singular perturbated systems of ordinary
differential equations by A.N. Tihonov [5] and other researchers.

In the paper [6] we investigated same questions which relate to systems of
ordinary differential equations of infinite order with a small parameter and
initial conditions. It was proved same essential theorems such as the local
existence of solutions theorem.

In this paper we considered large-scale transport network systems that
consists of infinite number of network service nodes with a Poisson input
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flow of requests. Each requests arriving to the system randomly selects two
network service nodes and is instantly sent to the one with the shorter queue.
In this case a share ( )ku t  of the servers nodes that have the queues lengths
with not less than k can be described using an infinite system of differential
equations. It is possible to investigate Tikhonov type Cauchy problem for
this transport system with a small parameter μ and initial conditions using the
singular perturbation methods [5]. Using the truncation method it was studied
a finite transport system with nodes using system of differential equations
with a small parameter μ order N. The evolution analysis of ( 1,2,..., )k N=
be applied to application in nodes queueing for large-scale transport network
systems analysis.

Large-scale transport networks model

Let’s consider a large-scale transport networks that consists of nodes in
which can be services for the production, storage, sale of goods, or in nodes
can be provided certain services. Let all these servers have a Poisson input
flow of requests of intensity Nλ. Each request arriving to the system
randomly selects two server nodes and is instantly sent to the one with the
shorter queue. The service time in a node is distributed exponentially with
mean 1t = . Let ( )ku t  be a share server nodes that have the queues lengths
with not less than k. The considered system of the servers nodes is described
by ergodic Markov chain. There is a stationary probability distribution for
the states of the system and if N → ∞  the evolution of the values ( )ku t
becomes deterministic and the Markov chain asymptotically converges to a
dynamic system the evolution of which is described by infinite system of
differential-difference equations

( ) ( )
( ) ( )

0 1 0

1 2 1 0 1

1 0 1

=0

( ) = ( ) ( ),
( ) = ( ) ( ) ( ) 1 ( ) ,

( ) = ( ) ( ) ( ) ( ) ( ) ,

( ) = , > 0, (0) = 0, = 0,1,2,...,

k k k k k

k k k
k

u t u t u t
u t u t u t u t u t

u t u t u t u t u t u t

u t r r u g k

+ −
∞

λ −⎧
⎪ λ − − −
⎪ λ − − −⎨
⎪

≥⎪
⎩

∑

�
�

� (1)

where 0t ≥ , r is a positive parameter and { } 1k kg g ∞
==  is a numerical

sequence ( )0 1 21 ...g g g= ≥ ≥ ≥  [3].
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We can investigate infinite system of differential-difference equations
with a small parameter such form

( ) ( )
( ) ( )

( ) ( )

0 1 0

1 2 1 0 1

1 0 1

1 0 1

=0

( ) = ( ) ( ),
( ) = ( ) ( ) ( ) 1 ( ) ,

( ) = ( ) ( ) ( ) ( ) ( ) ,
0,1,..., ;

( ) = ( ) ( ) ( ) ( ) ( ) ,
1,

( ) = , > 0, (0) = 0, = 0,1,2,...,

k k k k k

k k k k k

k k k
k

u t u t u t
u t u t u t u t u t

u t u t u t u t u t u t
k n

u t u t u t u t u t u t
k n

u t r r u g k

+ −

+ −

∞

λ −⎧
⎪ λ − − −
⎪ λ − − −⎪
⎪ =
⎨μ λ − − −

= +

≥∑

�
�

�

�
⎪

⎪
⎪
⎪
⎪
⎪⎩

(2)

where μ is a small parameter that bring a singular perturbation to the system
(1) which allows us to describe the processes of rapid change of the systems.

Truncation large-scale transport networks model
and numerical analysis

Using (2) we can write the truncation system of differential-difference
equations

( ) ( )
( ) ( )

( ) ( )

0 1 0

1 2 1 0 1

1 0 1

1 0 1

=0

( ) = ( ) ( ),
( ) = ( ) ( ) ( ) 1 ( ) ,

( ) = ( ) ( ) ( ) ( ) ( ) ,
0,1,..., ;

( ) = ( ) ( ) ( ) ( ) ( ) ,
1, ..., ,

( ) = , > 0, (0) = 0, = 0,1,2,...,

k k k k k

k k k k k

k k k
k

u t u t u t
u t u t u t u t u t

u t u t u t u t u t u t
k n

u t u t u t u t u t u t
k n N

u t r r u g k

+ −

+ −

∞

λ −
λ − − −

λ − − −
=

μ λ − − −
= +

≥∑

�
�

�

�

.N

⎧
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪⎩

(3)

The numerical example is presented in the figure (see Fig. 1, 2) where
2n = , 4N = , 0.1l = , 0 1g = 1 0.75g =  2 0.5g = 3 0.25g = 4 0.1g =  and a

small parameter 0.1μ =  (Fig. 1) , 0.01μ =  (Fig. 2). In this numerical
example it was shown the existence of stady state conditions for evolutions

( ), 0,1, 2iu t i =  and quasi-periodic conditions with boundary layers for
evolutions ( ), 3, 4iu t i = .
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220 A.I. Blinov, S.A. Vasilyev, L.A. Sevastianov

Conclusions

We investigated the large-scale network transport model that consists of
infinite number of server nodes with a Poisson input flow of requests of
intensity Nλ. Each requests arriving to the system randomly selects two
servers and is instantly sent to the one with the shorter queue. In this case a
share ( )ku t  of the servers that have the queues lengths with not less than k
can be described using an infinite system of differential equations. For
Tikhonov problem for infinite system of differential equations with a small
parameter μ and initial conditions we applied the truncation method and
studied a finite system of differential equations with a small parameter μ
order N. The numerical analysis of ( )ku t  ( 1,2,...,5)k =  be applied for
queueing large-scale networks evolution conditions. It was shown the
existence of stady state conditions for evolutions ( ) ( = 0,1,2)iu t i  and quasi-
periodic conditions with boundary layers for evolutions ( ) ( = 3,4).iu t i
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DOBRUSHIN MEAN-FIELD APPROACH AND
LARGE-SCALE NETWORKS WITH A SMALL PARAMETER*

S.A. Vasilyev, G.O. Tsareva
Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia

The recent research of service networks with complex routing discipline
in transport networks faced with the problem of proving the global
convergence of the solutions of certain infinite systems of ordinary
differential equations to a time-independent solution. Scattered results of
these studies, however, allow a common approach to their justi funcation.
This approach will be expounded here. In work the countable systems of
differential equations with bounded Jacobi operators are studied and the
sucient conditions of global stability and global asymptotic stability are
obtained. In this paper we apply Dobrushin mean-field approachs from [1]
for the singular perturbated systems of ordinary differential equations of
infinite order of Tikhonov type. Cauchy problems for the systems of ordinary
differential equations of infinite order was investigated A.N.Tihonov [2],
R. Bellman [3], K.P.Persidsky [4], O.A.Zhautykov [5] and other researchers.
It was studied the singular perturbated systems of ordinary differential
equations by A.N. Tihonov [6], A.B.Vasil'eva [7] and other researchers.

In the papers [8] we investigated same questions which relate to systems
of ordinary differential equations of infinite order with a small parameter and
initial conditions. It was proved same essential theorems such as the local
existence of solutions theorem. In this paper we considered a system that
consists of infinite number of servers with a Poisson input flow of requests of
intensity Nλ . Each requests arriving to the system randomly selects two
servers and is instantly sent to the one with the shorter queue. In this case a
share ( )ku t  of the servers that have the queues lengths with not less than k
can be described using an infinite system of differential equations. It is
possible to investigate Tikhonov type Cauchy problem for this system with a
small parameter μ  and initial conditions using the singular perturbation
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methods [6, 7]. Using the truncation method it was studied a infinite system
of differential equations with a small parameter μ  order N . The evolution
analysis of ( ) ( 1,2, , )ku t k N= … be applied to application in queueing large-
scale networks analysis

Large-scale network model

Let's consider a system that consists of N  servers with a Poisson input
flow of requests of intensity Nλ . Each request arriving to the system
randomly selects two servers and is instantly sent to the one with the shorter
queue. The service time is distributed exponentially with mean 1t = . Let

( )ku t  be a share servers that have the queues lengths with not less than k . It
is possible to investigate the asymptotic distribution of the queue lengths as
N → ∞  and 1λ <  [1]. The considered system of the servers is described by
ergodic Markov chain. There is a stationary probability distribution for the
states of the system and if N → ∞  the evolution of the values ( )ku t becomes
deterministic and the Markov chain asymptotically converges to a dynamic
system the evolution of which is described by infinite system of differential-
difference equations

( )2 2
1 1( ) ( ) ( ) ( ( )) ( ( )) ,

(0) 0,
0,1,2, ,

k k k k k

k k

u t u t u t u t u t
u g
k

+ −= − + λ −

= ≥
⎪ = …

⎧
⎪
⎨

⎩

�
(1)

where { } 1k kg g ∞
==  is a numerical sequence 0 1 2(1 , )g g g= ≥ ≥ …  [1].

We can investigate infinite system of differential-difference equations
with a small parameter such form
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u g
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⎪

= …⎪
⎪μ = − + λ −
⎨

= + …⎪
⎪ = ≥
⎪

= …⎩

�

� (2)

where μ  is a small parameter that bring a singular perturbation to the system
(1) which allows us to describe the processes of rapid change of the systems.
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Truncation large-scale network model and numerical analysis

Using (2) we can write the truncation system of differential-difference
equations

( )
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⎪
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�

� (3)

The numerical example is presented in the figures (Fig. 1 and 2), where
2n = , 4N = , 0.2l = , 1, 0,5kg k= =  and a small parameter 0,1μ =  (Fig. 1),
0,01μ =  (Fig. 2). In this numerical example it was shown the existence of

stady state conditions for evolutions ( ) ( 0,1,2)iu t i =  and quasi-periodic
conditions with boundary layers for evolutions ( ) ( 3,4)iu t i = .
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Fig.1. Evolution analysis of ( 0.1)ku μ =
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Fig.2. Evolution analysis of ( 0.01)ku μ =

Conclusions

We investigated the large-scale network model that consists of infinite
number of servers with a Poisson input flow of requests of intensity Nλ .
Each requests arriving to the system randomly selects two servers and is
instantly sent to the one with the shorter queue. In this case a share ( )ku t  of
the servers that have the queues lengths with not less than k  can be
described using an infinite system of differential equations. For Tikhonov
problem for infinite system of differential equations with a small parameter
μ  and initial conditions we applied the truncation method and studied a
finite system of differential equations with a small parameter μ  order N .
The numerical analysis of ( ) ( 1,2, ,5)ku t k = …  be applied for queueing large-
scale networks evolution conditions. It was shown the existence of stady
state conditions for evolutions ( ), 0,1,2iu t i =  and quasi-periodic conditions
with boundary layers for evolutions ( ), 3,4iu t i = .
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STABILITY ANALYSIS OF THE INVERTED PENDULUM
UNDER STOCHASTIC DRIVING FORCES*
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Kapitza pendulum is a rigid pendulum in which the pivot point vibrates in
a vertical direction, up and down. The unique feature of the Kapitza
pendulum is that the vibrating suspension can cause it to balance stably in an
inverted position. A pendulum with vibrating point is a classical problem of
perturbation theory. The phenomenon of stabilisation of the upper vertical
position of the pendulum by fast vertical vibrations of the suspension point
was discovered by A. Stephenson [1, 2]. P.L. Kapitsa has developed a
method of separation of slow and fast motions for the pendulum [3, 4].
Different aspects of this problem were discussed in many publications [5,
6−8]. In this work generalizations to Kapitza pendulum whose suspension
point moves in the vertical and horizontal planes is investigated. Lyapunov
stability analysis of the motion for this pendulum subjected to excitation of
stochastic driving forces that random act in the vertical and horizontal planes
has been studied. The numerical study of the random motion for generalized
Kapitza pendulum under stochastic driving forces has made. It is shown the
existence of stable quasi-periodic motion this pendulum.

Generalized Kapitza pendulum model

Let l  and m be length of the massless rod and mass of the bob for this
pendulum. Let ( )x t  and ( )y t  be horizontal and vertical Cartesian
coordinates of the suspension point. Denote by ( )tθ  the angle between the
rod of the pendulum and the vertical. In this case we can written the
coordinates of bob in the form

{ ( ) sin ( ) ( ),
( ) cos ( ) ( ),

x t l t a t
y t l t b t

= θ +
= θ +

(1)
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where ( )a t  and ( )b t  are random functions that associated with acting upon
the pendulum of stochastic forces that drive in the vertical and horizontal
planes oscillations along the axes x  and y . If in (1) we take the time
derivative of ( )x t  and ( )y t  we can write

( ) cos ( ) ( ) ( ),
( ) sin ( ) ( ) ( ),

x

y

v x t l t t a t
v y t l t t b t

= = θ θ +⎧
⎨ = = − θ θ +⎩

�� �
��� (2)

where xv x= � , yv y= �  are velocities along each of the axes. Then the kinetic
and potential energies of the bob are

( ) ( ) ( )222 2 cos ( ) ( ) ( ) sin ( ) ( ) ( )
2 2
m mK x y l t t a t l t t b t⎡ ⎤= + = θ θ + + − θ θ +⎣ ⎦

�� �� � � ; (3)

( )( ) cos ( ) ( ) ,V mg y t mg l t b t= = θ + (4)

where m  is mass of the bob and g  is acceleration of free fall.
The total energy of the system is given by the sum of the kinetic and

potential energies

( ) ( )2 2 cos ( ) ( ) ,
2
mE K V x y mg l t b t= + = + + θ +� � (4)

and then Lagrangian of the system has the form

( ) ( )2 2 cos ( ) ( ) .
2
mL K V x y mg l t b t= − = + − θ +� � (5)

The Euler – Lagrange equation for the phase of the pendulum as follows

0,d L L
dt

∂ ∂
− =

∂θ∂θ�

and the equation of the pendulum motion has the form

( ) ( )( ) cos sin 0.a t b t gt
l l

+
θ + θ − θ=

������

We can rewrite this equation in the form of the system differential
equations first order

( ) ( )
( ) ( ) ( ) ( ) ( )1 1

,
cos ( )sin ,

t t
t l a t t l b t g t− −

θ = ϕ⎧
⎨

ϕ = − θ + + θ⎩

�
��� ��

(6)

where ( )tϕ  is an auxiliary variable.
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Lyapunov stability analysis for generalized Kapitza pendulum

In this section Lyapunov stability analysis of the motion for this
pendulum subjected to excitation of stochastic driving forces that random act
in the vertical and horizontal planes has been studied.

Let 0θ  and 0ϕ  be parameters of the bob balance when equilibrium
conditions can be obtained. Let ∆θ  and ∆ϕ  be small deviations from the
equilibrium state. In this case, the motion of the pendulum can be described
as follows:

{ 0

0

( ),
( ).
t
t

θ = θ + ∆θ
ϕ = ϕ + ∆ϕ

(7)

Parameters 0θ  and 0ϕ  can be found from

0

0 0

0,
( )cos ( ( ) )sin 0.a t b t g

ϕ =⎧
⎨ θ − + θ =⎩ ����

(8)

If the mathematical expectation ( )aM M a t= ��  and ( )bM M b t= ��  exist we
can get the coordinates of the equilibrium position for the pendulum

0

0

0,

tan .a

b

M
M g

ϕ =⎧
⎪
⎨ θ =⎪ +⎩

(9)

Using the substitution variables (7) and linearization we can write the
system

( )1
0 0

( ),
sin ( )cos ( ).a b

t
l M M g t−

∆θ = ∆ϕ⎧
⎨

∆ϕ = − θ + + θ ∆θ⎩

�

�
(10)

The characteristic polynomial of the linear system (10) has the form
( )2 1

0 0( ) sin ( )cos .a bD p p l M M g−= − − θ + + θ (11)
In this case the stability condition given by ( ) 0D p >  and

0tan .b

a

M g
M

+
θ > (12)

Numerical study of the generalized Kapitza pendulum motion

In this section the numerical study of the random motion for generalized
Kapitza pendulum under stochastic driving forces has made. Suppose that
random functions ( )a t  and ( )b t  can be represented in the form
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1( ) ( )sin ,a t A t t= ν  2( ) ( )sinb t B t t= ν , where ( )A t  and ( )B t  are random
functions of amplitudes, 1ν and 2ν  are the frequencies of the harmonic
vertical and horizontal forced oscillations of the pendulum suspension.

We can rewrite the system differential equations (6) in the form

( )
( )

1 2
1 1 1 1 1

1 2
2 2 2 2 2

( ),
( )sin 2 ( ) cos ( ) sin cos ( )

( )sin 2 ( ) cos ( ) sin sin ( ) ,

t
l A t t A t t A t t t

l B t t B t t B t t g t

−

−

θ = ϕ⎧
⎪ϕ = − ν + ν ν − ν ν θ +⎨
⎪+ ν + ν ν − ν ν + θ⎩

�
�� ��

�� �
(13)

where ,A B� �  are random velocities and ,A B�� ��  are random accelerations of the
pendulum suspension long each of the axes.

The numerical example is presented in the figure (Fig. 1), where
0.5ml =  is length of the massless rod, 1

1 40sec−ν = , 1
2 10sec−ν =  are the

frequencies of the harmonic vertical and horizontal forced oscillations of the
pendulum suspension, 210m/secg =  is acceleration of free fall.
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φ( )t

0 2 4 6 8 t
–15
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10

15

Fig. 1. The motion of generalized Kapitza pendulum
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The random functions of amplitudes ( )A t  and ( )B t  were taken in the form

{ 0

0

( ) ,
( ) ,

t

t

A t a
B t b

= +
= + η

ε (14)

where parameters 0 0,1a = , 0 0,05b = , 2(0, )t xN σ∼ε  and 2(0, )t yNη σ∼  are
independent normally distributed random variables (in the numerical
example 0,01xσ =  and 0,001yσ = ). In this numerical example it was
shown the existence of stable quasi-periodic motion this pendulum.

Conclusions

In this work generalizations to Kapitza pendulum whose suspension point
moves in the vertical and horizontal planes was investigated. Lyapunov
stability analysis of the motion for this pendulum subjected to excitation of
stochastic driving forces that random act in the vertical and horizontal planes
had been studied. The numerical study of the random motion for generalized
Kapitza pendulum under stochastic driving forces had made. It was shown
the existence of stable quasi-periodic motion this pendulum. The vertical and
horizontal motion simulation of the pendulum can be used for analysis of
buildings and structure stability during earthquake.
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The Internet Network gives a wide range of chances to transmit
confidential information in terms of creating secret channels. These
stenographic channels can be created in internet protocols, social networks,
cloud technology.

One of these covert channels founded by Brian Acton and Jan Koum in
2009 and gained a wide audience of users within a short time can be created
by the opportunities presented by WhatsApp.

WhatsApp is famous among the most broadly utilized personal messaging
mobile applications for free messaging and object sharing (in particular
audio, video, pictures, location and contacts), with more than 800 million
clients worldwide and was purchased by facebook in 2014 for $19 Billion.
As of late, WhatsApp was procured by world's most youthful business person
"Mr. Mark Zukerberg" after its popularity and being recorded among one of
the well known messaging application [1].

Being widespread addition for smartphones, WhatsApp gives users an
opprotunity to send SMS in a special form of information exchange. Here the
information can be sent in forms of short messages, photos, videos and audio.
It is possible to create a chance for transmitting the information secretly via
WhatsApp, in other words secret information channel can be created.

WhatsApp users can transmit certain information secretly, in other words,
can create a secret communication channel by their own accounts. So, using
JPEG (Joint Photographic Experts Group) stenographic method, the
information can be hidden in the images of JPEG format and thus it can be
transmitted to other users.

Among all covert channel, the JPEG is the most prevalent medium for
steganography. There are various techniques accessible for steganography. In
any case, just a couple of algorithms work with JPEG compressed pictures.
JPEG-based steganography calculations work just and just with the DCT
(Discrete Cosine Transformation) coefficients, that are whole number values
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in the scope of [−2p−1 ... 2p−1] for a p-bit encoding. Couple of other
compression techniques work with DCT quantization values, considering the
adjusting error. JPEG techniques do not work with quantization errors. Along
these lines, there is no simple approach to control the adjustment bending [2].

Here it should be taken into account that WhatsApp may be exposed to
some changes during the placement, transmission and acquisition (recovery)
process of the information so that, it can result in loss of some hidden
information. For example, it is not appropriate to use the profile photo as
stegocontainer. Thus, as the profile photo is exposed to some changes there a
loss of hidden information takes place. It has been confirmed in the result of
the carried out experience. So, using JPHS and Silent Eye for Windows
operating systems, profile photo functions of WhatsApp processed in Stegais
and Stegos software for Android operating system, it was attempted to be
used as confidential information transmitting channel, but because of the
above-mentioned reasons, it resulted in failure.

It is possible to create confidential information channels using WhatsApp
service opportunities. So, for example bringing any confidential message or
file into the image file one of that digital objects, exchange of confidential
information can be carried out between users. In practice, S-Tools, Stegan
PEG, Open Stego, Quick Stego, JP Hide and Seek, Image Steganography,
DeEgger Embedder, Hide N Send, SilentEye and Invisible Secrets 4 software
tools, the Android operating system applied to the Secret Tigings, Stegais,
Secret image, PixelKnot, Steganogropia, Ineogaito, Hidden Secrets, Pocket
Stego, Photo Hidden, IMessage, VIP Secret, Stegos, Monalisa and Steg APP
stenographic programs written for the Windows operating system have been
used.

As a result of the experiment, it was clear that, Stegocontainers realized in
Stegais and Stegos applications designed for Windows operating systems and
SilentEye and JPHS programs for Android operating system have been
addressed successfully without any loss.

So, for the Windows operating system that supports the JPEG format ten
stenographic means: S-Tools, Stegan PEG, Open Stego, Quick Stego, JP
Hide and Seek, Image Steganography, DeEgger Embedder, Hide N Send,
SilentEye, Invisible Secrets 4 and for Android OS twelve stenographic
means: Secret Tigings, Stegais, Secret image, Steganogropia, Hidden Secrets,
Pocket Stego, Photo Hidden, iMessage, VIP Secret, Stegos, Monalisa, Steg
APP stegocontainers made on stego programs were tested on the WhatsApp.
However, confidential information was able to be recovered from the
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stegocontainers processed in JPHS and Silent Eye for the Windows operating
system, and Stegais, Stegos for the Android operating system. Hence, it can
be concluded that, in Whatsapp service JPHS and Silent Eye and in the
Android operating system Stegais and Stegos can be considered favorable
stenographic means for exchange of confidential information.
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Today’s communication and digital service market is highly competitive.
A thorough analysis of business processes allows the service provider to es-
timate important factors of the telecommunication business success using va-
riety of methods, for instance, queueing theory. Moreover, such an analysis is
facilitated by the standards and recommendations, developed by the global
telecommunication industry association TM Forum**. TM Forum Business
Process Framework, also largely known as eTOM, is one of the core models
of the TM Forum Frameworx standards and best practices suite [1]. Also
eTOM standards package includes document [2] offering a set of generic
end-to-end business flows applicable to the majority of the companies in the
industry. Another TM Forum standard of interest to us [3] contains the defi-
nitions of numerous business metrics permitting quantitative estimation of
various aspects of telecommunication service provision.

A stand-alone eTOM end-to-end business flow was modelled as an open
BCMP [4] network in our previous work [5]. Here, we go further and pro-
pose an approach to modelling several end-to-end business flows jointly.
Such an approach allows to estimate not only the performance measures re-
lated to activity execution time, but also reflects resource sharing among
business processes and delays due to such sharing. To illustrate this ap-
proach, we model several eTOM business flows as a single open BCMP net-
work and show how the model can be used to evaluate a number of important
TM Forum business metrics.

                                                       
* The publication was financially supported by the Ministry of Education and Science of

the Russian Federation (the Agreement number 02.a03.21.0008), RFBR according to the
research projects No. 15-07-03608 and No. 16-07-00766.
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BCMP Model of a Stand-Alone Business Flow

Consider eTOM end-to-end business flow Complaint-to-Solution [2]. The
process deals with customer complaints related to non-technical issues and
consists in identifying the source of the issue, initiating resolution and
monitoring the progress. We start with the reference diagram using standard
eTOM process elements and BPMN (Business Process Model and Notation).
In order to model this process with a BCMP network, we first assign the pro-
cess activities to service stations, or queues, which will serve as network

Service station 1 
(FCFS): Customer 
service specialists

(1,3)

(3,8)

(3,7)

(5,3)

Service station 3 (IS): 
delay due to CRM 
information system 

access

Service station 5 
(FCFS): billing 
specialists

(3,7)

(2,3)

Service station 2
(IS): Automated 

customer interface

(3,3)

α31‐α3

Service station 8 
(FCFS): call‐centre 

operators

source

(8,3)

(3,3)

(3,8)

(5,3)

sink

(2,3)
(1,3)

…

…

…

…

…

…

…

…

γ2

1‐γ2 

Fig. 1. BCMP model of the Complaint-to-Solution business flow
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nodes. Service stations may correspond to the functional units of the com-
pany involved in the business flow (in this case, multiple-server FCFS (First
Come First Served) queues are used) or to certain random delays (IS (Infinite
Server) queues).

The resulting network model is shown in Fig. 1. Here, for each transition
we indicate its source and destination service station and class in the form
(service station, class); in case of branching, the corresponding probabilities
are also indicated.

Joint Model Description and Notation

Let us introduce the formal notation for a joint BCMP model of a set of K
business processes sharing certain resources/service stations. Let

{ }M= 1,..., M  be the set of network’s service stations, and let { }R= 1,..., R  be
the set of job classes. Service stations correspond either to the resources
shared by the business processes under consideration or to the delays com-
mon to some of these processes. All stations have infinite waiting room,
however they may be of different types: we shall use 

icM FCFS−  queues

for shared resources (we denote the set of such stations FCFSM ), and M IS
queues for delays (denoted ISM ), FCFS ISM M M+ = . Note that other types
of service stations for which the BCMP theorem [4] holds can be used, for
example a Processor Sharing (PS) station could correspond to a time-
consuming data processing activity. Let 1ic ≥  be the number of servers at
FCFS stations, FCFSi M∈ . Job classes mainly correspond to different cus-
tomers requests (e.g., information request, complaint, etc.) and serve for
routing.

Now, let ( , )( , ) , , , ,i r j s i j M r s Rθ ∈ ∈ , denote the transition probability, i.e.,
the probability that a job that completes service in class r at station i will next
require service in class s at station j. The routing matrix ( , )( , )i r j sΘ = θ⎡ ⎤⎣ ⎦  de-

fines a Markov chain (MC) with the state space ( ){ }, , ,L i r i M r R= ∈ ∈ .
Transition probabilities are chosen so that the MC is decomposable into K
ergodic subchains, each corresponding to one business flow. In other words,
for the sake of simplicity of the modelling procedure, we assign job classes
and transitions between them so that each business flow is modelled with its
own ergodic subchain, although this requirement can be relaxed.



Modeling end-to-end business processes of a telecom company  237

(5)

(5)

Subchain 5: Request‐to‐Change

1

2

3 4

8

6 7

5

(5)

(5)

(5)

(5)

(5) (5)

(5)

(4)

(4)

Subchain 4: Termination‐to‐Confirmation

1

2

3 4

8

6 7

5

(4)

(4)

(4)

(4)

(4)

(4)

1

2

3 4

8

6 7

5

(6) (6) (6),(9)

(6)

(6)

Subchain 3: Problem‐to‐Solution

(6) (6)

1

2

3 4

8

6 7

5

(3) (3)

(3)

(3)
(3)

(3)

(8)

1

2

3 4

8

6 7

5

(2)(1),(2)

(1),(2)

(2)

Subchain 1: Request‐to‐Answer

Subchain 2: Complaint‐to‐Solution

(1) (1),(2)

(2)

(1)

(1),(2)

(1) (2)

(2)

(3)

(7)

(3)(3),(7)
(8)

(6)
(9)

(10)

(10)

(6)

(4)

(6)

(3)

(2)

(4)

(5)

(5) (5)

i i‐|M|c‐FCFS queue ‐|M|IS queue

Customer 
service team

Automated 
interface

CRM system 
access

Inventory 
system access

Billing 
specialists

Technical 
specialists

Supplier/
partner

Call centre

(r) job class

Fig. 2. Joint model transitions

Let kL denote the set of states in subchain 
1

1,... ,
K

k
k

k K L L
=

= = ∑ . Each sub-

chain has its Poisson arrival stream of rate ( ) , 1,...,k k Kλ = . An arrival in
stream k will enter service station i in class r with probability
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, ,
( , )

, 1
k

i r i r
i r L

q q
∈

=∑ . Finally, a job of class r that completes service at station i

will depart the system with probability ( , )( , ) ( , )(0)
( , )

1 :
k

i r j s i r
j s L∈

− θ = θ∑ . De-

pending on the context, (0) denotes the network’s source or sink node. The
general routing diagram for the joint model is depicted in Fig. 2.

Now, we apply the notation introduced above to describe a joint BCMP
model of K = 5 end-to-end eTOM business flows: Request-to-Answer, Com-
plaint-to-Solution, Problem-to-Solution, Termination-to-Confirmation and
Request-to-Change. Please refer to [2] for the business flows description.
The network contains L = 8 service stations, { }1,5,6,8FCFSM =  and

{ }2,3,4,7ISM = , and has R = 10 job classes. The subchains consist of the
following MC states:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 1,1 , 1,2 , 2,1 , 2,2 , 3,1 , 3,2 , 4,2 , 8,2 ,L =

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }2 1,3 , 2,3 , 3,3 , 3,7 , 3,8 , 5,3 , 8,3 ,L =

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }3 1,6 , 3,6 , 3,9 , 3,10 , 6,6 , 7,6 , 8,6 ,L =

( ) ( ) ( ) ( ) ( ) ( ){ }4 1,4 , 2,4 , 3,4 , 4,4 , 5,4 , 7,4 ,L =

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }5 1,5 , 2,5 , 3,5 , 4,5 , 5,5 , 6,5 , 7,5 , 8,5 .L =

Performance Measures

We are interested in the mean response time of the service stations, which
allows to evaluate certain standard TM Forum business metrics, related to the
processes under consideration (see Table 1).

T a b l e  1

Standard TM Forum business metrics that can be estimated
with the five-process joint model

Metric ID Metric name

28 (CM-CE-2a) Average Hold Time
29 (CM-CE-2b) Average Handle Time
69 (A-OE-2a) # Minutes per Service Problem Resolution
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The mean response time iT  of station i M∈  can be obtained using Lit-

tle’s law i i iT n= λ  , where in  is the mean number of jobs at station i .
Thus, we have

1

2
0

1 1 , ,
! ! !( ) 1

1 , .

i iic cc m
i i i i i

FCFS
imi i ii i i

i i

IS
i

c
i M

c m cc
T c

i M

−

=

⎧ ⎛ ⎞μ ρ ρ ρ
+ + ∈⎜ ⎟⎪ ρ μμ − λ ⎜ ⎟⎪ −⎪ ⎜ ⎟= ⎨ ⎝ ⎠

⎪
⎪ ∈

μ⎪⎩

∑

Now, we can derive expressions for standard business metrics. For exam-
ple, TM Forum business metric 28 is the average hold time when a customer
contacts the company by telephone, which corresponds to the waiting time at
service station 1 of the five-process joint model. Hence, the following for-
mula can be used to estimate this measure:

28 1 11I T= − μ .

Business metric 29 is the average time needed to handle any request:

( )
29

1

K
k

i
i M k

I n
∈ =

= λ∑ ∑ .

Business metric 69 is related to subchain 3 and corresponds to the mean
time between the creation of a trouble ticket and its closure upon the confir-
mation by the customer that the problem has been resolved. Thus, we can es-
timate the value of the metric as the sum of the stations’ mean response times
multiplied by the corresponding visit ratios:

3

69 ,
\{1} :( , )

i i r
i M r i r L

I T e
∈ ∈

= ∑ ∑ .

Fig. 3 shows metrics 29 and 69 as functions of (3)λ , which is plotted on
the X-axis. The metrics are computed for 6 2с =  and 6 3с =  and the curves

have vertical asymptotes at (3) 1.5λ =  and (3) 2.5λ = respectively. This is due
to a bottleneck at service station 6, since the station utilisation

(3)
6

6 6 6

0.5
с с
λ λ +

=
μ

 equals 1 at these points. Finally, Fig. 4 shows metric 28 for

1 2с = and 1 3с = .
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Conclusion

Combining several business processes in a single queueing network
allows to take into consideration resource sharing, occurring at functional
units of the company (such as the technical team, the billing team, call-centre
operators, etc.). We have proposed an approach to estimating certain
important TM Forum business metrics using a BCMP network that combines
the models of several standard end-to-end eTOM business flows. The method
can be applied to analyze the set of business processes of a particular service
provider.
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MODELING OF SEVEN CLIENT-ORIENTED BUSINESS
PROCESSES USING QUEUING NETWORK THEORY*
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Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia

Over the last years, customer satisfaction has become one of the most
critical factors to success in service environment which is characterized by
growing market transparency, customer requirements and reduced customer’s
loyalty. The key to success is, however, not purely a case of clever customer
loyalty programs, but also the consistent orientation of the core processes
towards customers’ requirements [1].

The paper presents an approach to the analysis of performance indicators
of telecommunication company, which represents a symbiosis of simulation
modeling in GPSS World and queuing theory. This approach is applied to the
business process model consists of seven reference client-oriented processes,
taken from Enhanced Telecom Operations Map (eTOM) [2].

Description of client-oriented business processes

The eTOM helps enterprises to atomize and categorize all the business
activities that include different spheres such as connections between organi-
zations and customers, search the source of problems and their solutions
(technical and non-technical), accounts control. This process is divided into
seven processes:

• Requests – to – Answer comprises activities relevant to managing cus-
tomer requests across all communication channels (customer interfaces);

• Order – to – Payment is linked with all activities which convert the
customer request or an accepted offer into a ready for use product;

• Usage – to – Payment deals with all activities related to the handling of
the product/service usage;

• Request – to – Change is connected with all activities which convert the
customer‘s change request into a ready for use product;

                                                       
* The reported study was partially supported by the RFBR, research projects No. 15-07-

03051, 16-07-00766, 17-07-00845.
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• Termination – to – Confirmation is linked with all activities related to
the execution of customer‘s termination request;

• Problem – to – Solution deals with a technical complaint (problem)
initiated by the customer, analyses it to identify the source of the issue,
initiates resolution, monitors progress and closes the trouble ticket;

• Complaint – to – Solution deals with customer inquiries in which the
customer is not pleased with a product or handling speed of an inquiry etc.

Constructing a generalized process model

The reference client-oriented business processes are aimed at various
types of requests, starting from requests for the purchase of services/products
and ending with the completion of customer service. Every type of requests
will correspond to the classes of requests served in the model (Table 1):

T a b l e  1

Classes of requests

1 Request for change of services/product according to client's wish
2 Request for change of services/product due to the poor quality of services
3 Request for usage and payment for services/product
4 Informational request for the payment for services/product
5 Request for technical failures of service/product
6 Request due to reduced quality of service/ product delivery
7 Request for termination of service
8 Request for preparing last payment and termination of service
9 Complaint about service/ product
10 Complaint about the quality of services/products
11 Informational request for services/ products
12 Informational request for sales
13 Request for receiving the finished services/products
14 Request for ordering services/products

In order to simplify the simulation model, all subprocesses in each of the
processes are combined into semantic nodes. They reflect the change in the
status of the received requests. After this step, it is noticed that some of the
nodes turns out to be common, for example, nodes 1 and 2 are responsible
for registration requests received; node 8 generates and provides invoices to
the customers; node 9 checks the customer satisfaction.
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In order to assess the quality of customer service, a generalized process
model is developed in the form of an open heterogeneous exponential queu-
ing network (Fig. 1) with nodes of two types – a single-line node with an in-
finite queue and an infinity-type node.

Fig. 1. Queuing network for generalized business process

Constructed queuing network represents the sequence of execution of dif-
ferent types of requests. Moreover it should be noticed that the simulation
model built in the GPSS World environment takes into account the impossi-
bility of repeated maintenance of requests in the node during the cyclical
processing of the request.
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Mathematical model for generalized process

The main performance indicators of constructed model are the average
number of requests in the node, as well as the average process execution time
in the node and in the whole model. In order to obtain formulas for the basic
performance indicators of the model, it is necessary to know the intensities of
the flows entering each node [3].

Flow intensity ( ),i rλ  is found from the equilibrium equation system:

( ) ( ) ( ) ( )
( )

( )0, , , , , 0, ,
,

j s i r i r j s j s
i r ∈

λ = λ θ + λ θ∑
L

, ( ),j s ∈L  (1)

The intensity of the total flow iλ  entering the node is determined by the
formula

( ),i i r
r∈

λ = λ∑
R

(2)

with a stationary mode i iλ ≤ μ . (3)

Formulas for the average process execution time in the nodes are

0

1
(1 )

i
i

i i

N
U = =

λ μ − ρ
, { }2,3,4,5,6,7,8,9,11,13,21,24,26i ∈ , (4)

for a single-line node with an infinite queue and

0

1j
j

j

N
U = =

λ μ
, { }1,10,12,14,15,16,17,18,19,20,22,23,25,27j ∈ , (5)

for an infinity-type node.
Summarizing the average times over all nodes, we obtain the formula of

the average process execution time in the network
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Numerical example

Let 100000 requests enter the constructed simulation model, and we know
the average duration of the execution of each subprocesses

1 1 1 1 1 1
1 2 10 12 16 23 7 min,− − − − − −μ = μ = μ = μ = μ = μ =  1 1

3 7 8 min,− −μ = μ =
1 1 1 1

4 15 24 27 10 min,− − − −μ = μ = μ = μ =  1 1 1
5 9 26 9 min,− − −μ = μ = μ =

1 1
6 21 4 min,− −μ = μ =  1 1

8 13 6 min,− −μ = μ =  1
14 13 min,−μ =  1

17 15 min,−μ =
1 1 1 1 1 1

11 18 19 20 22 25 5 min.− − − − − −μ = μ = μ = μ = μ = μ =

As a result, the simulation time of the generalized business process is 19993
minutes, which is approximately equals to 42 days of the company's work,
given the eight-hour day.

The graph of the average process execution time, depending on the inten-
sity of the receipt of requests in the queuing network is showed in Fig. 2.
According to the graph the system is received a Poisson flow, so the curve of
the graph is close to the exponent. With zero intensity of the query flow, the
average execution time of the process is very small and tends to zero. And
with a single intensity of the flow of incoming requests, the average execu-
tion time of the process is approximately 30 minutes. Due to the fact that in
each node, which receives the requests, the service is carried out according to
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Fig. 2. The graph of the average process execution time
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an exponential law with different intensities. In addition, mathematical model
takes into account the transfer of requests to certain nodes, corresponding to
the types of requests

Conclusions

The advantage of the developed method is scalability. Constructing a
common business process model provides significant advantages to evaluate
the performance of the company. The proposed technique, shown on the ex-
ample of analysis of the generalized process, can be used to assess the effi-
ciency of other business processes occurring in the company, for example,
responsible for the network operation of the company. In addition, it is
proved that the integration of business processes into the overall model sig-
nificantly influences the evaluation of the company's performance, optimiz-
ing the execution time of requests service, which leads to an increase in the
flow of incoming requests [4].
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АНАЛИЗ ПОКАЗАТЕЛЕЙ КАЧЕСТВА
ТРАФИКА РЕАЛЬНОГО ВРЕМЕНИ В БЕСПРОВОДНОЙ СЕТИ

С ПОМОЩЬЮ РЕСУРСНЫХ СМО*

К.А. Агеев1, Э.С. Сопин1,2

1Российский университет дружбы народов, г. Москва, Россия
2Институт проблем информатики ФИЦ ИУ РАН, г. Москва, Россия

Число пользовательских мобильных устройств неустанно растет, это
касается как ассортимента, так и уже существующих моделей. Смарт-
фоны, планшеты, ноутбуки используются различными группами поль-
зователей в совершенно разных сферах жизнедеятельности. В крупных
городах люди приобретают и используют сразу по несколько таких уст-
ройств: для работы, для дома, для путешествий, для развлечений.
В 2017 г. трудно представить такие портативные устройство без досту-
па к Интернету, который может обеспечиваться различными способами
подключения: Bluetooth, Wi-Fi, сотовая связь [1]. С развитием устройств
возрастают потребности пользователей, что, в свою очередь, приводит к
созданию новых услуг и росту требований качества уже существующих
услуг.

В связи с резко растущим объемом трафика, генерируемого в бес-
проводных сетях (БС), возникает проблема нехватки частотного диапа-
зона. Одним из возможных решений такой проблемы является приме-
нение различных планировщиков управления частотно-временными ре-
сурсами, которые позволяют учесть расстояние от устройства до БС [2].

Проведен расчет характеристик трафика реального времени для по-
пулярных сервисов голосовых вызовов, видеовызовов, и телеконферен-
ций, которые используют передачу данных через сотовую сеть.

Планировщик Full Power

Принцип работы планировщика Full Power (FP) основан на передаче
данных с максимальной мощностью. Суть заключается в различных ва-
риациях параметров ресурсного блока – частоты, мощности и времени.

                                                       
* Исследование выполнено при финансовой поддержке РФФИ в рамках научных
проектов № 16-37-60103, 16-07-00766, 17-07-00142.
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Базовая станция работает на предельной мощности и обслуживает уст-
ройства по мере их обращения к ней. Если же при обращении устройст-
ва недостаточно ресурса для обеспечения оказания услуги, то устройст-
во отклоняется до следующей попытки подключения.

Рассмотрим одну пиктосоту беспроводной сети радиуса R . Предпо-
ложим, что устройства являются стационарными и распределены по
территории соты равномерно. С интенсивностью λ они переходят в ак-
тивное состояние и передают данные с интенсивностью µ в восходящем
канале (uplink channel). Обозначим dξ  – расстояние от устройства
до БС, maxp  – максимальную мощность передачи сигнала устройством,

maxp pξ <  – текущую мощность передачи. Отметим, что dξ  и pξ  явля-

ются случайными величинами (СВ). Предположим, что устройства пе-
редают данные с гарантированной скоростью 0r . Достигаемая устрой-
ством скорость передачи данных ( ),d pr ξ ξ  зависит от ширины полосы

частот восходящего канала ω, мощности передачи сигнала pξ , удален-

ности dξ  от БС и определяется как

( )
0

, ln 1 p
d p

d

G
r

Nκ

ξ⎛ ⎞
ξ ξ = ω +⎜ ⎟

ξ⎝ ⎠
.

Пусть в соте расположены три устройства (рис. 1) – первое и второе
устройства неподвижны и расположены соответственно на расстоянии

1d  и 2d  от БС. Третье устройство может быть расположено либо близко

к БС на расстоянии 3
Ad , либо далеко – 3

Bd . Все устройства работают на
максимальной мощности, а временной ресурс делится пропорционально
достигаемой скорости передачи ( ),d pr ξ ξ  [2].

В случае А (рис. 2, А) третье устройство получает достаточный для
достижения гарантированной скорости временной интервал обслужи-
вания и начинает обслуживаться.

В случае B (рис. 2, B) устройство находится далеко и не может по-
лучить достаточный для достижения гарантированной скорости вре-
менной интервал, поэтому его запрос на обслуживание блокируется.
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Рис. 1. Пример расположения и активации устройств в соте

А B

Рис. 2. Схема занятия временного ресурса (кадра) в случае A и B
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С учетом описанных выше особенностей планировщика FP, по-
строена функция распределения требований к ресурсам ( )F

δξ δ [2]:

( )
( )

( ]
0

22
0 max

2
max 0

0,
0,

1 1 , 0, ,
, ,

1,

r

d

r Gp
F P e

r p NRδ

− κκ
δω

ξ

⎧
⎪ δ ≤⎛ ⎞⎧ ⎫ ⎛ ⎞⎪δ = < δ = − δ∈ φ⎜ ⎟⎨ ⎬ ⎨ ⎜ ⎟ ⎜ ⎟ξ ⎝ ⎠⎩ ⎭ ⎪ ⎝ ⎠ δ > φ
⎪
⎩

(1)

где 0

max

0

.
ln 1

r
Gp
N Rκ

φ =
⎛ ⎞

ω +⎜ ⎟
⎝ ⎠

Соответствующая плотность ( )f
δξ δ  распределения определяется по

формуле [2]

( ) ( ]

( ]

0
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2
2

0 max
2 2

0

2
1 , 0, .

0, 0,

r
rr Gp e ef NRδ

+κ
−

κκ δω
δω

ξ

⎧
⎛ ⎞⎛ ⎞⎪⎪ − δ∈ φ⎜ ⎟⎜ ⎟δ = ⎨ ⎜ ⎟ωκ δ⎝ ⎠ ⎝ ⎠⎪

δ∉ φ⎪⎩

(2)

Математическая модель

Рассмотрим (рис. 3) ресурсную систему, на вход которой поступает
поток заявок с параметром λ, время обслуживания каждой заявки рас-
пределено по экспоненциальному закону с параметром µ. При поступ-
лении заявка занимает прибор и часть ресурса. Если при поступлении
для заявки нет свободного прибора либо не хватает требуемого ресурса,
то такая заявка блокируется.

N

B

k
kl

L
λ, μ

Рис. 3. Схема ресурсной модели
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В модели не отслеживается объем занимаемого или освобождаемого
ресурса каждой заявкой, рассматривается только суммарный занятый и
свободный объем ресурса [3].

Рекуррентный алгоритм

Для расчета вероятностно временных характеристик применен алго-
ритм дискретизации функции распределения требований к ресурсам [4].
Рекуррентный алгоритм применяется для расчета вероятностно времен-
ных характеристик для системы с дискретным ресурсом [5].

( ) ( ) ( ) ( )( )
0

, 1, 1, 2,
l

j
j

G n l G n l p G n l j G n l j
n =

ρ
= − + − − − − −∑ , (3)

где jp  – вероятность того, что j-я заявка занимает l ресурса.

( )0, 1G l = , 0 l L≤ ≤ ; (4)

( )
0

1, 1
l

j
j

G l p
=

= + ρ∑ , 0 l L≤ ≤ . (5)

Вероятность блокировки B  может быть посчитана с использованием
следующей формулы:

( ) ( )1

0
1 , 1, .

L

j
j

B G N L p G N L j−

=

= − − −∑ (6)

Средний объем занятого ресурса b  определяется по формуле

( ) ( )1

1 1
, ,

mLM

m m
m l

b L G N L e G N L le−

= =

= − −∑ ∑ . (7)

Расчет показателей для услуг связи

Для проведения расчетов параметры соты были установлены в соот-
ветствии с данными в таблице.

Для расчета показателей трафика услуг были взяты требования к
скорости, необходимые для осуществления звонков (40 кбит/с) и видео
звонков (128 кбит/с) в приложении Skype. Максимальное число уст-
ройств в зоне действия соты 1000N = . Число устройств, одновременно
передающих данные базовой станции, ρ варьируется от 5 до 50.
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Исходные значения параметров соты

Параметр Значение
R 100 м
ω 10 МГц

maxp 0,00398 Вт
N0 10−9 Вт
G 197,43
κ 5
L 1

На рисунках ниже представлено поведение вероятностно-временных
характеристик.

5 15 25 35 45 ρ

r0 = 40 кбит/с

r0 =  128 кбит/с

0

0,1

0,2

0,3

B

Рис. 4. Вероятность блокировки
в зависимости от предложенной нагрузки

5 15 25 35 45 ρ

r0 = 40 кбит/с

r0 =  128 кбит/с

0,8

0,9

B

Рис. 5. Объем занятого ресурса
в зависимости от предложенной нагрузки



254 К.А. Агеев, Э.С. Сопин

Логично предположить, что вероятность блокировки для видео
звонков больше, чем для голосовых. С увеличением числа одновремен-
но активных пользователей вероятность отказа новому пользователю
увеличивается.

Очевидно, что требования к ресурсу для голосовых вызовов ниже,
чем для видеозвонков. С увеличением ρ это становится менее заметно,
что связано с особенностями работы планировщика FP.

Заключение

В работе проведен расчет показателей характеристик трафика реаль-
ного времени для услуг, предоставляемых через сотовую сеть. Резуль-
таты получены с помощью алгоритма дискретизации функции распре-
деления требований к ресурсам и рекуррентного алгоритма расчета ха-
рактеристик. Стоит отметить, что область применения данных алгорит-
мов значительно шире и может применяться для расчетов характери-
стик на основе других функций распределений.
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О ЗАДАЧЕ ОПТИМИЗАЦИИ ЭНЕРГОПОТРЕБЛЕНИЯ
ОБЛАЧНОЙ ИНФРАСТРУКТУРЫ*

А.В. Дараселия, Э.С. Сопин
Российский университет дружбы народов, г. Москва, Россия

В целях повышения энергоэффективности облачной системы серве-
ры могут быть переведены в режим ожидания при низкой нагрузке. Пе-
ревод в режим ожидания, с одной стороны, позволяет снизить энерго-
потребление, а с другой – приводит к дополнительным затратам на
включение/выключение сервера. Поэтому важно понимать, при каких
условиях будет выгодно перевести серверы в режим ожидания, а при
каких –оставить их в рабочем состоянии.

В работе [1] мы рассмотрели систему облачных вычислений с уче-
том разогрева и выключения серверов, причем считалось, что сервер
выключается сразу же, как только остается пустым. В данной работе
представлена модель, в которой сервер выключается по прошествии не-
которого случайного времени после того, как он остался пустым.

Математическая модель

Рассматривается система массового обслуживания, состоящая из N
групп приборов (серверов), каждая из которых состоит из Vi приборов.
Для краткости, в данной работе приведем результаты анализа для одно-
го сервера.

На систему поступает пуассоновский поток с интенсивностью λ,
времена обслуживания заявок, а также периоды разогрева и выключе-
ния распределены экспоненциально с параметрами µ, α и β соответст-
венно [1], γ – экспоненциальное время ожидания новой заявки, в тече-
ние которого система не уходит в спящий режим, когда заявок не ос-
тается. Пространство состояний описывается вектором (s,k), где k –
количество заявок на сервере, s – состояние сервера, где s = 0 в со-
стоянии ожидания, 1 – включение сервера, 2 – работа и 3 – выключе-
ние соответственно. Система переходит в режим выключения, когда

                                                       
* Исследование выполнено при частичной финансовой поддержке РФФИ в рамках
научных проектов № 15-07-03051, 15-07-03608.
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остается пуста. Система переходит в режим выключения, когда оста-
ется пуста дольше γ.

Рис. 1. Диаграмма интенсивностей переходов

На основе диаграммы интенсивностей переходов (рис. 1) выпишем
систему уравнений равновесия, которая позволяет получить стационар-
ные вероятности системы:
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( )3, 3, 1 1
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Система уравнений равновесия была решена аналитически, ниже
представлено ее решение:
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Показатели энергопотребления

Получив стационарное распределение системы, вычислим показате-
ли энергопотребления. Будем считать, что в режиме включения/выклю-
чения энергопотребление постоянно и равно среднему значению. В ре-
жиме обслуживая заявок потребляемая мощность зависит от загружен-
ности сервера. По аналогии с приведенной в работах [2, 3] формулой,
выведем формулу средней потребляемой сервером мощности:

1 1 1 1

0 0, 1 1, 3 3, 2, 2,
0 0 0 0

,
V V V V

i i i i i
i i i i

P P p P p P p P p
= = = =

= + + +∑ ∑ ∑ ∑

где 2,max 2,min
2, 2,min

1
.k

P P
P P k

V
+

= +  (23)

Значения Pi были взяты из статьи [4], согласно которой P0 = 10 Вт,
P1 = 170 Вт, P3 = 120 Вт, P2,min = 105 Вт и P2,max = 268 Вт.

Результаты численного анализа для значений V1 = 7, µ = 20, α = 1,
β = 2 представлены на рис. 2 и 3.
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Рис. 2. Графики зависимости мощности Р от интенсивности нагрузки λ

График потребляемой сервером мощности (рис. 2) для нашей модели
наиболее резко возрастает при небольших значениях интенсивности на-
грузки λ, также заметим, что с увеличением экспоненциального време-
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ни ожидания новой заявки γ, в течение которого система не уходит в
спящий режим, значение потребляемой мощности увеличивается соот-
ветственно.

145

150

155

160

165

170

P

5 10 15 γ

λ = 5
λ = 10
λ = 15

Рис. 3. Графики зависимости мощности Р от экспоненциального вре-
мени ожидания новой заявки γ, в течение которого система не уходит
в спящий режим

На рис. 3 заметим, что наибольший перепад для потребляемой мощ-
ности происходит при небольших значениях экспоненциального време-
ни ожидания новой заявки γ и что с увеличением значений интенсивно-
сти нагрузки λ также возрастает и энергопотребление.

Заключение

Рассмотрена система облачных вычислений, в которой сервер вы-
ключается по прошествии некоторого случайного времени после того,
как он остался пустым. В дальнейшем планируется решить задачу оп-
тимизации этого времени для снижения энергопотребления.
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МОДЕЛИ РАСПРЕДЕЛЕНИЯ СОЕДИНЕНИЙ
В БЕСПРОВОДНЫХ ТЕЛЕКОММУНИКАЦИОННЫХ СЕТЯХ*

И.В. Коннов, О.А. Кашина
Казанский (Приволжский) федеральный университет, г. Казань, Россия

Преимущества телекоммуникационных сетей, основанных на ис-
пользовании беспроводных технологий передачи данных (например,
Bluetooth, Wi-Fi или NFC), перед традиционными сетями (использую-
щими провода или оптоволокно) неоспоримо. Это не только мобиль-
ность и компактность беспроводных устройств, независимость от ка-
бельной инфраструктуры, простота подключения, удобство примене-
ния, но и возможность обеспечения более высокоскоростного доступа к
сети Интернет, и финансовая доступность для широких слоёв населе-
ния. Названные преимущества обуславливают быстрое развитие бес-
проводных технологий и расширение сферы применения беспроводных
коммуникационных сетей – одной из основных тенденций их современ-
ного развития является так называемый «Интернет вещей» (англ.:
Internet of Things, IoT) – сеть самых разных объектов, взаимодействую-
щих друг с другом и с внешней средой посредством применения бес-
проводных технологий. Если изначально «Интернет вещей» рассматри-
вался, в основном, как совокупность «умных» технологий (в первую
очередь, «умный дом») [1], то сейчас он включает такие решения, как,
например, системы быстрого реагирования, системы интеллектуального
управления цепочкой поставок товаров, производство «по запросу»,
адаптивная торговля, прогнозная клиническая аналитика и т.д. Если в
настоящее время к сети Интернет во всём мире подключено 10 млрд
устройств, то к 2020 г. это количество, как ожидается, составит 50–
60 млрд [2]. Более того, можно ожидать постепенного стирания граней
между «Интернетом вещей» и так называемым «Интернетом всего»
(или «Всеобщим Интернетом») – интеллектуальной сетью, компонен-
тами которой, наряду с людьми и «вещами», становятся также данные и
процессы. Понятно, что для этого необходим универсальный сетевой

                                                       
* Работа выполнена при финансовой поддержке Российского фонда фундаментальных
исследований, проект 16-01-00109a, для первого автора также в рамках выполнения
государственного задания Минобрнауки России, номер задания 1.460.2016/1.4.
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стандарт высокой пропускной способности, и предпосылки для его соз-
дания уже есть. Так, новый интернет-протокол IPv6 позволяет исполь-
зовать практически неограниченное число IP-адресов. Микрочип, раз-
работанный компанией ARM Holdings (Великобритания), за счёт сверх-
низкого потребления энергии и сверхмалого размера (1 кв. мм), позво-
ляет подключить к Интернет практически любой объект [2].

В связи с возрастающей востребованностью беспроводных сетей
возрастает и актуальность задач, связанных с оптимизацией их произ-
водительности. Особенностью этих задач является их большая размер-
ность (ввиду огромного числа абонентов) и частое изменение исходных
данных (ввиду мобильности абонентов). Вместе с тем требования к
точности решения таких задач обычно не слишком высоки – приоритет
отдаётся скорости получения решения. Это позволяет применять к ре-
шению задач оптимизации беспроводных сетей приближённые методы
нелинейного программирования.

Рассмотрим вначале постановку задачи в фиксированный момент
времени (для краткости опускаем его обозначение).

Имеется некоторая территория, входящая в зону покрытия каждого из
m провайдеров мобильных услуг. На данной территории находится
большое число мобильных абонентов, каждый из которых может высту-
пать и как приёмник, и как передатчик сигнала. Обозначим через n число
парных соединений абонентов сети. Естественно считать, что для обес-
печения каждого соединения провайдерами расходуется некий сетевой
ресурс (например, пропускная способность беспроводного канала связи),
«запас» которого (у провайдера i) ограничен заданной величиной ;iγ  че-
рез xi,j обозначим искомое количество ресурса сети, выделяемого i-м про-
вайдером для обеспечения j-го соединения ( 1 , , ;i m= …  j = 1,…,n). Далее
для краткости будем называть величину xi,j потоком (i, j). Предположим,
что существуют нижняя и верхняя границы каждого потока (i, j) – без ог-
раничения общности рассуждений нижнюю границу будем считать рав-
ной 0; верхнюю границу потока (i, j) обозначим через αi,j Предположим
также, что и суммарный поток для каждого соединения j ограничен свер-
ху некоторой величиной βj. В [3] предполагается, что для каждой пары j
определена величина bj «цена», которую данная пара готова платить за
единицу потока. Аналогично, будем считать заданной величину расходов
провайдера i , связанных с обеспечением единицы потока для соедине-
ния j – обозначим её через ai,j. Тогда чистые суммарные расходы, связан-
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ные с обеспечением всех потоков сети, равны
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Получаем задачу линейного программирования:
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Таким образом, задача об оптимальном распределении потоков в се-

ти с мобильными абонентами формулируется как открытая транспорт-
ная задача с двусторонними ограничениями на переменные. Несмотря
на хорошо разработанный инструментарий решения задач линейного
программирования и, в частности, транспортной задачи (например, [4]),
применять на практике точные методы решения задачи_(1) – (4) вряд ли
целесообразно. Поскольку в силу быстрого изменения конфигурации
беспроводных сетей коэффициенты оптимизационных задач обнаружи-
вают нестационарное поведение, значения их можно рассматривать
лишь как приближённые. Поэтому имеет смысл решать задачи вида (1)
– (4) приближёнными методами, в частности – методами типа штраф-
ных и/или барьерных функций (например, [5, с. 172 – 182]). Так, в [3]
для приближённого решения задачи (1) – (4) в каждый фиксированный
момент времени используется метод внешних штрафных функций
(МВШ). В [6] для решения той же задачи предложен так называемый
метод частичного штрафа (МЧШ). Штрафная функция в этом методе
строится не для всех, а лишь для части ограничений:
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где знак «+» понимается в смысле функции срезки; { }max 0, t t+ =  – для
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произвольного вещественного t ; через X обозначена m × n – матрица с
компонентами xi,j. Вспомогательная задача, решаемая на каждом шаге k
МЧШ, имеет вид

min  Ψ( , )kX→ τ (6)

при ограничениях (2) и (4). Здесь ( ) ( ) Ψ ,   ,  Φk kX C X Xτ ≡ + τ , где  C –
матрица с компонентами ci,j из формулы (1), τk– значение параметра
МЧШ. Ограничения (2) и (4) задают множество достаточно простой
структуры – этот факт позволил нам предложить конечный алгоритм
решения задачи (6), (2), (4) (см. [6], Algorithm A) при каждом
фиксированном k = 0, 1, ... .

Экспериментально доказано преимущество МЧШ перед классиче-
ским методом «полного» штрафа при m ≤ 20 и n m� .

Более общий случай открытой транспортной задачи как модели оп-
тимального распределения соединений в беспроводной сети исследует-
ся в [7], где целевая функция, вообще говоря, является нелинейной (она
необязательно является квадратичной или выпуклой), а её параметры
подвержены случайным (затухающим со временем) возмущениям. Не-
линейность целевой функции связана с тем фактом, что на практике це-
на на ресурсы сети, как правило, зависит от объёма продаж. Формаль-
ная постановка задачи имеет вид

min  →  ( )G X  (6)

при ограничениях _(2) – (4), где функция G по предположению являет-
ся непрерывно дифференцируемой на пространстве вещественных
m × n-матриц X и при всех X и всех { } { } 1, , ,    1, ,i m j n∈ … ∈ … выполнено

условие 
, 

( ) .  
i j

G X
x

∂
<∞

∂
Показано, что последовательность приближённых

решений возмущённых задач сходится к решению задачи с нулевым
возмущением. Экспериментально подтверждена гипотеза о том, что бы-
стродействие МЧФ по сравнению с МВШ тем заметнее, чем больше
число соединений n, устанавливаемых в сети в единицу времени.

Можно показать, что полученные результаты остаются справедли-
выми и для более общего случая задачи распределения ресурсов в сети
с мобильными абонентами, а именно – когда случайным затухающим
возмущениям подвержены не только параметры целевой функции, но и
коэффициенты ограничений задачи.
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Для простоты изложения в рассмотренных постановках задачи пред-
полагалось, что каждое соединение j { }1, ,n∈ … может быть обеспечено
любым провайдером i { }1, , . m∈ … Вообще говоря, это условие может не
выполняться, и для каждого j множество { }1, ,m…  следует заменить на
некоторое подмножество Pj номеров тех провайдеров, которые могут
обеспечить соединение j, положив , 0i jx ≡  для всех ji P∉ , j { }1, ,n∈ … .
Заметим, что задача оптимального распределения беспроводных соеди-
нений может решаться не только в целях расчёта величин всех потоков,
но и в целях оценивания производительности сети (т.е. исследователя
интересует только значение целевой функции задачи). В этом случае
имеет смысл перейти от детерминированной постановки задачи к веро-
ятностной, заменив целевую функцию средним значением случайной
величины (математическим ожиданием размера затрат, зависящим от
случайного «состава» множеств Pj). Это позволяет снизить размерность
задачи (за счёт потери точности решения). Как следствие, возникает во-
прос о выборе адекватной модели случайного «поведения» Pj,
j { }1, ,n∈ …  обеспечивающей практически приемлемый «баланс» между
точностью решения и временем, затраченным на его получение. Эти
вопросы мы планируем изложить в следующих публикациях.
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МЕТОДЫ РАСПРЕДЕЛЕНИЯ РЕСУРСОВ
В СЕТЯХ ТЕЛЕКОММУНИКАЦИИ*

И.В. Коннов, А.Ю. Кашуба
Казанский федеральный университет, г. Казань, Россия

Несмотря на существенное повышение мощности и производитель-
ности современных устройств обработки и передачи данных, значи-
тельная нестабильность спроса на ресурсы сетей телекоммуникации,
особенно беспроводных, приводит к их неравномерному и поэтому не-
эффективному использованию. В результате одной из основных задач в
управлении сетями телекоммуникации является построение гибких ме-
ханизмов распределения ресурсов, таких, как спектр радиосвязи (см.,
например, [1–3]). Большинство работ использует теоретико-игровые
модели (см., например, [4, 5]). Также существуют методы, основанные
на оптимизации [6, 7, 5, 3].

Рассматривается общая задача распределения ресурсов провайдером
(менеджером сети) сети, поделенной на зоны (кластеры), с учетом того,
что менеджер сети может привлекать дополнительный внешний ресурс
с целью удовлетворения запросов пользователей. Предлагаются методы
решения этой задачи.

Описание задачи
Рассмотрим сеть с узлами (пользователями), разбитую на n  зон. Для

k-й зоны ( = 1, ,k n… ) Ik обозначает множество индексов узлов, находя-
щихся в этой зоне, bk – максимальное фиксированное количество ресур-
са. Менеджер сети с целью удовлетворения запросов на ресурс пользо-
вателей в k -й зоне распределяет свой (внутренний) ресурс [0, ]k kx b∈  и
привлекаемый внешний ресурс [0, ],j j kz c j J∈ ∈ ( kJ  обозначает множе-

                                                       
* Исследование выполнено при финансовой поддержке РФФИ в рамках научного
проекта № 16-01-00109a; для первого автора также в рамках выполнения государст-
венного задания Минобрнауки России, номер задания 1.460.2016/1.4; для второго
автора – за счет средств субсидии, выделенной в рамках государственной поддержки
Казанского (Приволжского) федерального университета в целях повышения его
конкурентоспособности среди ведущих мировых научно-образовательных центров.
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ство индексов внешних провайдеров, находящихся в k-й зоне). Распре-
деляемые ресурсы требуют затрат на обслуживание ( )k kf x  и побочных
(сторонних) платежей ( ),j j kh z j J∈  для каждого = 1, ,k n… . Пусть так-
же существует верхняя граница B  на общее количество внутреннего
ресурса сети. Если i -й пользователь получает iy  ресурса с учетом
верхней границы ia , тогда он выплачивает ( )i iyφ . Задача менеджера
сети заключается в нахождении оптимального распределения ресурсов
между зонами и имеет вид

=1
max ( ) ( ) ( )

n

i i k k j j
k i I j Jk k

y f x h z
∈ ∈

⎡ ⎤
→ φ − −⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑ ∑ ; (1)

=1
;

n

k
k

x B≤∑ (2)

= , = 1, , ;i k k
i I j Jk k

y x z k n
∈ ∈

+∑ ∑ … (3)

0 , , 0 , 0 , , = 1, , .i i k k k j j ky a i I x b z c j J k n≤ ≤ ∈ ≤ ≤ ≤ ≤ ∈ … (4)

Пусть функции ( )i iyφ , ( )k kf x  и ( )k kh z  являются кубическими, то
есть для всех = 1, ,k n…

3 2
3, 2, 1, 0, 3, 2, 1, 0,( ) = , , 0, 0, 0,i i i i i i i i i i i i i ky y y y i Iφ α + α + α + α α α < α > α ≥ ∈ ; (5)

3 2
3, 2, 1, 3, 2,( ) = , , > 0k k k k k k k k k kf x x x xβ + β + β β β ; (6)

3 2
3, 2, 1, 3, 2,( ) = , , > 0, .j j j j j j j j j j kh z z z z j Jγ + γ + γ γ γ ∈ (7)

Методы решения

Пусть существует хотя бы одна точка, удовлетворяющая условиям
(2) – (4). Все функции ( )k kf x , ( )j jh z  и ( )i iy−φ , согласно (5) – (7), яв-
ляются выпуклыми. Тем самым (1) – (4) является задачей выпуклой оп-
тимизации. Применим подход, который был предложен в [8]. Для задачи
(1) – (4) в качестве функции Лагранжа возьмем следующую функцию:
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=1 =1
( , , , ) = ( ) ( ) ( ) .

n n

i i k k j j k
k i I j J kk k

L x y z y f x h z x B
∈ ∈

⎡ ⎤ ⎛ ⎞
λ φ − − − λ −⎢ ⎥ ⎜ ⎟

⎢ ⎥ ⎝ ⎠⎣ ⎦
∑ ∑ ∑ ∑

Множитель Лагранжа λ  был применен только к условию (2). Теперь
исходная задача (1)–(4) может быть заменена двойственной:

0
( ),min

λ≥
→ ψ λ (8)

( , , )

( , , ) =1

( ) = ( , , , )max

= ( ) ( ) ( ) ,max

= ,0 , ,
= ( , , )

0 , ,0 , = 1, , .

x y z W

n

i i k k k j j
x y z W k i I j Jk k

i k k i i k
i I j Jk k

j j k k k

L x y z

B y f x x h z

y x z y a i I
W x y z

z c j J x b k n
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∈ ∈ ∈

∈ ∈

ψ λ λ =
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⎪ ⎪
⎨ ⎬
⎪ ⎪≤ ≤ ∈ ≤ ≤⎩ ⎭

∑ ∑ ∑

∑ ∑
…

Благодаря двойственности (см., например, [9, 10]), задачи (1) – (4) и
(8) имеют одно и то же оптимальное значение. Но решение задачи (8)
может быть найдено с помощью одного из хорошо известных алгорит-
мов одномерной оптимизации (см., например, [10]). Для подсчета зна-
чения ( )ψ λ  необходимо решить внутреннюю задачу:

=1
max ( ) ( ) ( ) ,

n

i i k k k j j
k i I j Jk k

y f x x h z
∈ ∈

⎡ ⎤
→ φ − − λ −⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑ ∑

= ,i k k
i I j Jk k

y x z
∈ ∈

+∑ ∑  0 , ,i i ky a i I≤ ≤ ∈ 0 , ,j j kz c j J≤ ≤ ∈

0 , = 1, , .k kx b k n≤ ≤ …

Эта задача разбивается на n  независимых зональных задач оптими-
зации

max ( ) ( ) ( ) ,i i k k k j j
i I j Jk k

y f x x h z
∈ ∈

⎡ ⎤
→ φ − − λ −⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑ (9)

= ,i k k
i I j Jk k

y x z
∈ ∈

+∑ ∑  0 , ,i i ky a i I≤ ≤ ∈  0 , ,j j kz c j J≤ ≤ ∈  0 ,k kx b≤ ≤
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для = 1, ,k n… . Каждая k-я независимая зональная задача (9) совпадает с

( , , )
( ) ( ) ( ),max i i j j

x y z D i I j Jk

y u x h z
∈ ∈ ∈

→ φ − −∑ ∑ (10)

3 2
3, 2, 1, 0, 3, 2, 1, 0,( ) = , , 0, 0, 0, ,i i i i i i i i i i i i i ky y y y i Iφ α + α + α + α α α < α > α ≥ ∈

3 2
3, 2, 1, 3, 2,( ) = ( ) = , , > 0,k k k k k k k k k k k ku x f x x x x x x+ λ β + β + β + λ β β

3 2
3, 2, 1, 3, 2,( ) = , , > 0, ,j j j j j j j j i i kh z z z z j Jγ + γ + γ γ γ ∈

= ( ) , = , = ( ) , = , = ,i i I k j j J k ky y I I z z J J x x∈ ∈

= ,
= ( , , )

0 , , 0 , , 0 .

i j
i I j J

i i j j

y x z
D x y z

y a i I z c j J x b
∈ ∈

+⎧ ⎫⎪ ⎪
⎨ ⎬

≤ ≤ ∈ ≤ ≤ ∈ ≤ ≤⎪ ⎪⎩ ⎭

∑ ∑

Допустим, что множество D  не пусто. Тогда (10) является задачей
выпуклой оптимизации. К ней можно применить метод условного гра-
диента с линейным поиском (CGDM) [11] или Алгоритм (BS) [12],
адаптировав его к случаю с несколькими продавцами.

Опишем сначала метод CGDM. Решаем

( ).min
w W

w
∈

→ μ
��

� �

В качестве начальной точки берем точку 0w W∈ � . На k -й итерации
( = 0,1, )k …  имеем kw W∈ �  и ищем ku W∈ �  как решение

< '( ), > .min k

w W
w w

∈
→ μ

�
�

После этого подсчитываем =k k kp u w− . Если kp ≤ δ , то решение

найдено. Иначе ищем (0,1)kσ ∈  из условия

( ) ( ) < '( ), >,k k k k k
k kw p w w pμ + σ ≤ μ + ασ μ� � �

например, = , = 0,1, , (0,1).m
k mσ γ γ ∈…  После этого подсчитываем

1 =k k k
kw w p+ + σ  и переходим на следующую итерацию.
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Опишем Алгоритм (BS). Задача выпуклой оптимизации (10) может
быть представлена в виде модели двустороннего аукциона с продавца-
ми с нелинейными выпуклыми возрастающими функциями цен и поку-
пателями с нелинейными выпуклыми функциями цен (см. [13, 14]) .

Пусть ( ) = ( )g x u x′ , ( ) = ( )j j j jv z h z′  и ( ) = ( )i i i iw y y′φ . Необходимое и
достаточное условие оптимальности задачи (10) может быть записано в
форме вариационного неравенства: найти ( , , )x y z D∈ , такую, что

( )( ) ( )( ) ( )( ) 0, ( , , ) .j j j j i i i i
j J i I

g x x x v z z z w y y y x y z D
∈ ∈

− + − − − ≥ ∀ ∈∑ ∑

В этом случае условия оптимальности могут быть записаны как
*

* *

*

* *

* *

**

если = 0,
( , , ) , ( ) = если (0, ),

если = ;

если = 0, если = 0,
( ) = если (0, ), ( ) = если (0, ),

если = ,если = ,
для .для ;

j i

j j j j i i i i

i ij j

p x
x y z D p g x p x b

p x b

p z p y
v v p z c w y p y a

p y ap z c
i Ij J

⎧≥
⎪∈ ∃ ∈⎨
⎪≤⎩

⎧≥ ⎧≤
⎪ ⎪⎪ ∈ ∈⎨ ⎨
⎪ ⎪≥≤ ⎩⎪⎩

∈∈

(11)

Для такого рода задач существует довольно много эффективных ме-
тодов решения (см., например, [15] и ссылки на нее). Все они в большой
степени основаны на теории двойственности. Следуя этому подходу,
запишем функцию Лагранжа для задачи (10) с отрицательным знаком:

( , , , ) = ( ) ( ) ( ) .j j i i j i
j J i I j J i I

M x y z p u x h z y p x z y
∈ ∈ ∈ ∈

⎛ ⎞
+ − φ − + −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑

С целью нахождения значения двойственной функции затрат

[0, ], [0, ], [0, ]
( ) = ( , , , ),min

x b y a z c
p M x y z p

∈ ∈ ∈
θ

где = ( )i i Ia a ∈  и = ( )j j Jc c ∈ , необходимо решить следующие одномер-
ные задачи:

0
( ( ) ),min

x bk k

u x px
≤ ≤

→ −
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0
( ( ) ), for ,min j j j

z cj j

h z pz j J
≤ ≤

→ − ∈

0
( ( ) ), for .min i i i

y ai i

y py i I
≤ ≤

→ −φ + ∈

Решения этих задач, обозначенные через ( )x p , ( )jz p , j J∈ , и

( )iy p , i I∈ , соответственно определяются однозначно.
Отсюда следует, что функция ( )pθ  выпукла и дифференцируема

( ) = ( ) ( ) ( ).i j
i I j J

p y p x p z p
∈ ∈

′θ − −∑ ∑

Кроме того, одномерная двойственная задача
( )max

p
p→ θ

совпадает с обычным уравнением
( ) = 0,p′θ (12)

где ( )p′θ  не возрастает. Если *p  является решением (12), тогда мы мо-
жем найти решение исходной задачи (10) из (11) путем присвоения

*=p p .
Пусть = min{ (0), min (0)}.jj J

g v
∈

′γ  Тогда ( )( < ( ) если = (0))g b g b g′ ′ ′γ ≤ γ γ

и ( ), ( < ( ) если : = (0), ').j j j j jv c j J v c j J v j j′′ ′ ′ ′γ ≤ ∀ ∈ γ ∃ ∈ γ =
 
Пусть =i i′δ β  и

=i i i ia′′δ α +β .
Если взять = max ii I

p
∈

′′ ′δ  и =p′ ′γ , тогда случай p p′′ ′≤  сразу дает

нулевые решения согласно (11). Тем самым, можно рассматривать
только нетривиальные случаи, где <p p′ ′′ . Тогда из (11) мы должны
иметь ( ) > 0p′ ′θ  и ( ) < 0p′ ′′θ . Эти свойства позволяют найти решение
для (12) с помощью обычного алгоритма деления отрезка пополам, обо-
значенного как Алгоритм (BS). Для заданной точности > 0ε  и началь-
ного отрезка [ , ]p p′ ′′ , мы берем = 0.5( )p p p′ ′′+� , подсчитываем ( )p′θ � .
Далее устанавливаем =p p′ � , если ( ) > 0p′θ �  и =p p′ �  – иначе, до тех
пор, пока ( ) <p p′′ ′− ε .
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Численные эксперименты

Реализованные на C++ методы были протестированы на ПК со сле-
дующими характеристиками: Intel(R) Core(TM) i7-4500, CPU 1,80 GHz,
RAM 6 Gb.

В качестве начального отрезка для выбора двойственной переменной
λ  был выбран отрезок [0,1000]. Величины kb , ia , jc  были сформиро-
ваны с помощью тригонометрических функций на отрезках [1, 51],
[1, 2] и [1, 10] соответственно. В качестве значения B  была взята 1000.
В качестве значений γ  и α  в (CGDM) были взяты значения 0,7 и 0,4
соответственно. Количество внешних провайдеров в каждой зоне было
фиксированным и равным 5. Количество зон варьировалось от 5 до 105,
количество пользователей – от 210 до 10010. Пользователи по зонам
были распределены равномерно либо согласно нормальному закону
распределения. Коэффициенты функций ( )i iyφ , ( )k kf x  и ( )j jh z  выби-
рались с помощью тригонометрических функций. Для всех методов ре-
шения задачи (1)–(4) точность решения верхней задачи варьировалась
от 10−1 до 10−4. Точность решения задач нижних уровней (внутренних
задач) была фиксированной и равной 10−2. Для каждого множества па-
раметров было выполнено 50 тестов.

Во всех случаях предложенные методы смогли найти решение. Бо-
лее того, для одинаковой точности оба метода давали одинаковое коли-
чество верхних итераций, поэтому основное различие было в затрачен-
ном процессорном времени, которое показало, что использование Ал-
горитма (BS) для внутренних задач оптимизации является более произ-
водительным.

Заключение

Рассмотрена задача оптимального распределения однородного ре-
сурса в телекоммуникационной сети, разбитой на зоны. Применяя двой-
ственный метод Лагранжа к ограничению на общее количество внут-
реннего ресурса, предлагается уменьшить исходную задачу до одно-
мерной задачи оптимизации, в которой подсчет функции стоимости ве-
дет к поиску решений независимых зональных задач. Решения зональ-
ных задач могут быть найдены с помощью простых методов. Результа-
ты проведенных численных экспериментов подтвердили возможность
применения предложенных методов.
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ПОСТРОЕНИЕ КОНЦЕПТУАЛЬНОЙ МОДЕЛИ ТРАФИКА
В БЕСПРОВОДНЫХ СЕТЯХ

Е.А. Печеный, Н.К. Нуриев
Казанский национальный исследовательский

технологический университет, г. Казань, Россия

Беспроводные сети передачи данных являются в настоящее время
неотъемлемой частью большинства телекоммуникационных информа-
ционных систем. Легкость масштабирования, эксплуатационная надеж-
ность, широкий набор постоянно обновляющихся технических средств,
дает возможность реализации самых разнообразных проектных реше-
ний, удовлетворяющих практически любым требованиям заказчиков.
Объемы трафика в таких сетях и интенсивность информационных пото-
ков, как правило, весьма значительны. Однако на сегодняшний день
единой научно-обоснованной концепции управления трафиком не су-
ществует, что вызывает определенные сложности в процессе эксплуа-
тации. На практике управление идет в режиме оперативного реагирова-
ния на сложившуюся ситуацию и во многом определяется опытом ад-
министратора и особенностями его личности, т.е. факторами часто
субъективными. В связи с этим очевидны актуальность и практический
интерес формулирования концепции рационального управления трафи-
ков и построение соответствующей математической модели.

Наиболее наглядно явление трафика
может быть продемонстрировано с по-
мощью физической модели «дырявое
ведро», представленной на рис. 1. Поток
пакетированной информации из различ-
ных источников поступает в буфер, отку-
да по специальному каналу доставляется
к серверу. При наличии в системе не-
скольких специализированных серверов
может добавляться функция сортировки.
Когда наступает момент полной загрузки
буфера, система прекращает прием паке-
тов, что равнозначно их потере.

х t( )

g t( )

на сервер

Рис. 1. Модель типа
«дырявое ведро»
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В ходе ряда наблюдений, выполненных в режиме реального време-
ни, было замечено, что входной поток информации g(t) представляет
собой случайный процесс ξ(t) с наложенной на него периодической
функцией y(t), частота которой значительно меньше частоты случайных
колебаний (рис. 2). Линия g(t) = g0 соответствует ситуации наполненно-
сти буфера.

t

g0

g t( )

Рис. 2. Изображение фрагмента входного потока

Заметим, что как физический объект буфер выполняет функцию
фильтра низких частот. Этот эффект известен и широко применяется в
различных областях техники, например для устранения пульсаций жид-
кости в трубопроводах, в системах стабилизации вакуума, радиотехнике
и т.п. Отсюда следует, что при построении модели управления трафи-
ком случайной составляющей ξ(t) можно пренебречь, поскольку ее
влияние практически полностью устраняется буфером.

Из рис. 2 видно, что потери информации, обусловленные переполне-
нием буфера, имеют периодический характер. Однако в процессе экс-
плуатации беспроводных сетей потери информационных пакетов могут
происходить по ряду других причин, не связанных непосредственно с
наполненностью буфера. Поэтому представляются вполне обоснован-
ным принять в качестве рабочей гипотезы предложение о том, что
функция потерь непрерывна и является гармонической. Это позволяет
принять в качестве базовой модели уравнение

2 1( ) (1 ( ))y P t y R P t−′ + α = β − ,  (1)

использованное в работе [1], где y′  – скорость передачи информации,
P(t) – функция вероятности потерь, предполагаемая гармонической, R –
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временная задержка, α и β  – настроечные параметры системы, которые
в этой работе именуются соответственно мультипликативным умень-
шением размера окна передачи данных при потере пакетов и адаптив-
ным увеличением размера окна при отсутствии потери пакетов.

Данное уравнение представляет собой уравнение Риккати, которое в
общем случае не разрешимо в квадратурах. Из общей теории обыкно-
венных дифференциальных уравнений [2] известно, что уравнение Рик-
кати тесно связано с линейными дифференциальными уравнениями
второго порядка. В частности, если коэффициент при квадратичном
члене есть непрерывная дифференцируемая функция, каждое решение
уравнения (1) преобразованием

exp[ ( ) ]u P t y dt= α∫ (2)

переводится в отличное от нуля решение линейного дифференциально-
го уравнения

2( ) ( ) ( )(1 ( )) 0P t u P t u P t P t u
R

αβ′′ ′ ′− + − = . (3)

Если корни характеристического многочлена этого уравнения ока-
жутся комплексными сопряженными числами, то решение будет давать
описание свободных колебаний некоторой системы. Но поскольку ко-
эффициенты уравнения (3) есть гармонические функции времени, соз-
даются предпосылки для возникновения параметрического резонанса,
при котором источником возбуждения становятся изменения парамет-
ров внутри системы.

Поведение системы подобного типа практически непредсказуемо,
так как решение чрезвычайно чувствительно к изменениям параметров
уравнения (3). Ничтожный сдвиг параметров в ту или иную сторону
может стать причиной внезапного перехода системы в совершенно иное
состояние и кардинально поменять вид интегральных кривых.

Для уравнения (1) была сформулирована задача Коши при естест-
венных начальных условиях y(0) = 0 и получено ее решение методом
Рунге-Кутты, реализованного с помощью специально созданной ком-
пьютерной программы. В процессе вычислений было принято, что
функция вероятности потерь изменяется по закону синуса. На рис. 3, а–г
приведены интегральные кривые, полученные для некоторых значений
параметров. На рис. 3, а наблюдается ярко выраженные пик, свидетель-
ствующий о попадании в область резонанса.
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Рис. 3а. Интегральная кривая

Рис. 3б. Интегральная кривая
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Рис. 3в. Интегральная кривая

Рис. 3г. Интегральная кривая
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По мере увеличения частоты решение сохраняет колебательную при-
роду, однако амплитуда колебаний заметно уменьшается (рис. 3, б−г).
Естественно, что при иных значениях параметров α и β вид решения,
может претерпеть очень существенные изменения.

Изучение поведения систем, в которых существует возможность
возникновения параметрического резонанса, представляет собой задачу
чрезвычайной сложности и трудоемкости. В самых общих чертах ее
решение предполагает отыскание множества значений параметров, при
которых явление параметрического резонанса невозможно, и другого
множества, при котором резонанс имеет место. Представляя эти множе-
ства в виде точек на плоскости, получают так называемые диаграммы
Айнса – Стретта [3], разделяющие «резонансные» и «нерезонансные»
области. Основным, и по сути дела единственным, способом эффектив-
ного управления такого рода объектами являются отстройка от резонан-
са, т.е. отыскание значений параметров, принадлежащих «нерезонанс-
ной» области и инструментов, позволяющих поддерживать их на же-
лаемом уровне в течение всего времени работы системы.

Заключение

1. Экспериментально показана возможность потока информации в
беспроводной сети как суммы случайной (высокочастотной) и квазире-
гулярной (низкочастотной) составляющих.

2. Обоснована нецелесообразность включения в состав модели слу-
чайно составляющей.

3. Обоснован гармонический характер функции вероятности потерь
информационных пакетов.

4. Установлен колебательный вид решения уравнения Риккати и дока-
зано наличие предпосылок возникновения параметрического резонанса.

5. Сформулирован общий принцип управления трафиком беспро-
водной сети.
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ПРИКЛАДНОЙ ВЕРОЯТНОСТНЫЙ АНАЛИЗ

О ПРИМЕНЕНИИ ТАУБЕРОВОЙ ТЕОРЕМЫ
ДЛЯ ПРОИЗВОДЯЩИХ ФУНКЦИЙ

В ТЕОРИИ ВЕТВЯЩИХСЯ СЛУЧАЙНЫХ ПРОЦЕССОВ

А.Х. Мейлиев, Э.Э. Тухтаев
Каршинский государственный университет, г. Карши, Узбекистан

В настоящем сообщении обсуждаются свойства инвариантных мер
для ветвящихся процессов с помощью известных тауберовых теорем.
Происхождение тауберовых теорем связано с исследованием асимпто-
тических свойств меры ( )U x , сосредоточенной на положительной оси
R+ , с помощью ее преобразование Лапласа

( ) ( )xe U dx−θω θ = ∫R+
.

На самом деле, при весьма общих условиях, поведение ( )ω θ  вблизи
нуля однозначно определяет асимптотическое поведение ( )U x  при
x → ∞ . Любое подобное соотношение между ( )ω θ  и ( )U x  принято на-
зывать Тауберовой теоремой. Суть Тауберовой теоремы можно излагать
в следующем утверждении, доказанном в [1, с. 508–510].

Теорема T. Для фиксированного ρ∈R+  и любого λ ∈R+  каждое из
соотношений

( ) 1 0
( )

при
ρ

ω λτ
⎯⎯→ τ ↓

ω τ λ
(1)

и ( )
( )

U xt x при t
U t

ρ⎯⎯→ → ∞ (2)

влечет другое.
Обратный переход от (2) к (1), как известно, называется Абелевой

теоремой.
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Помимо Теоремы Т приходится иметь дело с функциями, для кото-
рых выполняется условие типа (2). Такие функции называются пра-
вильно меняющимися. Автором идеи создания понятия правильного
изменения функций является ныне хорошо известный математик
И. Карамата, который свои фундаментальные работы по этой тематике
опубликовал в начале 30-х годов 20-го века (см. [2, 3]). Из множества
положительных и измеримых по Лебегу функций вещественного пере-
менного выделим следующий класс:

( ): ( ) : lim 1,   
( )x

xx для
x∞ →∞

λ⎧ ⎫= ∈ = ∀λ ∈⎨ ⎬
⎩ ⎭

R R+ +S
l

l
l

.

Функция ( )L x  называется медленно меняющейся функцией в беско-
нечности (в смысле Карамата), если она принадлежит классу ∞S :

( )L x ∞∈S . Обозначение ( )L ∗  для медленно меняющихся (ММ) функ-
ций происходило из первой буквы французского слова «Lentement», что
в переводе означает «медленно» и, это потому, что основополагающие
работы по теории ММ-функций были написаны Караматой на француз-
ском языке. Функция ( )V x  называется правильно меняющейся (ПМ) в
бесконечности, если она принадлежит классу

{ }: ( ) : ( ) ( ),    ( )V x V x x x где xρ
∞ ∞= = ∈ρR Sl l ,

где параметр ρ∈R+  называется показателем правильного изменения.
Из сходимости (2) видно, что ММ-функция является ПМ-функцией с
показателем 0ρ = : ∞ ∞≡S R0 .

Элементы теории функций Караматы в исследовании ветвящихся
процессов одним из первых были применены в работе Золотарева [4].
В список ранних работ, где удачно используется ПМ функций в теории
ветвящихся процессов, можно внести также работы Слэк [5, 6] и Сенеты
[7, 8]. Подробные материалы, связанные с применением ПМ функций в
теории ветвящихся процессов, можно найти в монографиях [9] и [10].

Обозначим { }0( ),Z n n ∈N  численность популяции частиц в ветвя-
щемся процессе дискретного времени с вероятностной производящей
функцией (ПФ) ( )( ) Z nF s s= E , где 0 {0}= ∪N N  и {1,2, }= …N . Рассмат-
риваемый процесс образует однородную цепь Маркова с пространством
состояний 0⊆ NS . Введем переходные вероятности { }( )ij i nP n Z j= =P ,
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где { }{ }:i nZ i∗ = ∗ =P P . Эти вероятности определяются функциональ-
ными итерациями

( ) ( )1 1( ) ( ) ( )n n nF s F F s F F s− −= = ,

где ( ) ( ) j
n ij

j
F s P n s

∈

= ∑
S

для любых ,i j ∈S ; см. [11].
Эволюция процесса управляется регулирующим параметром

(1 )A F ′= −  – средним числом непосредственных потомков одной части-
цы за одно поколение. Величина { }: min : ( ) 0n Z n= ∈ =NH �  обозначает
момент вырождения процесса. Из теоремы о вырождении известно, что

{ } i
i q< ∞ =P H , где q  есть вероятность вырождения процесса, которая

является наименьшем корнем уравнения ( )x F x= . Этот корень равен 1 ,
если 1A ≤  и меньше 1  при 0A > . Процесс { }( )Z n  классифицируется
как субкритический, критический и суперкритический, если 1A < ,

1A =  и 1A >  соответственно.
Мы изучаем предельные свойства переходных вероятностей ( )ijP n .

Обсуждаем задачу существования инвариантной меры и свойство эрго-
дичности процесса { }0( ),Z n n ∈N . Докажем теоремы о сходимости к
инвариантным мерам. При исследовании свойств инвариантной меры
воспользуемся аналогом Теоремы Т для ПФ.

Основные результаты

Для нашей цели существенно используем следующую лемму о мо-
нотонной сходимости отношений.

Лемма [11, с. 15]. Для всех A < ∞  и ,i j ∈S

1

11

( )
( )

j
j

P n
P n

↑ π ≤ ∞ (3)

при n → ∞  и выполняется инвариантное соотношение

( )t
j k kj

k
P n

∈

β ⋅ π = π∑
S

, (4)

при любом n ∈N , где ( )F q′β = .
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Введем ПФ

11

( )
( ; )

( )
ij j

i
j

P n
n s s

P n∈

= ∑
S

P  и ( ) j
j

j
s s

∈

= π∑
S

P .

В этих обозначениях сходимость (3) эквивалентна тому, что
1( ; ) ( )i

i n s iq s−⎯⎯→ ⋅P P

при n → ∞  равномерно для 0 1s≤ <  и, (0) 0=P . А соотношение (4)
влечет функциональное уравнение

( ) ( )( ) ( ) (0)n
n ns F s Fβ ⋅ = −P P P .

Таким образом, множество неотрицательных чисел { , }j jπ ∈S  пред-

ставляет собой инвариантную меру для процесса { }0( ),Z n n ∈N .
Рассмотрим критический процесс в случае, когда распределение

числа потомков одной частицы имеет бесконечную дисперсию. Но ПФ
( )F s  допускает для 0 1s≤ <  следующее представление:

1 1( ) (1 )
1

F s s s
s

+ν ⎛ ⎞= + − ⎜ ⎟−⎝ ⎠
L , [ ]νℜ

где 0 1< ν ≤  и ( )x ∈ ∞L S . Для случая когда (1 )F ′′ − < ∞ , условие [ ]νℜ
имеет место со значением 1ν =  и

(1 )( )
2

Fn
′′ −

⎯⎯→L

при n → ∞ . Следовательно, рассматриваемый случай содержит процесс
с конечной дисперсией. Представление же [ ]νℜ  означает условие пра-
вильного изменения «хвоста» распределения числа потомков одной
частицы.

Следующие две теоремы доказываются с помощью тауберовой тео-
ремы для ПФ. Они описывают основные свойства инвариантных мер
для критических ветвящихся процессов.

Теорема 1. Пусть 1A =  и выполнено условие [ ]νℜ . Тогда

2
1

(0) ( )
( )

n

j
j

F n nν

=

π =
ν ⋅ Γ ν

∑ πL ,

где ( )Γ ∗  – Гамма-функция Эйлера и ( ) ( ) 1n n⋅ →πL L  при n → ∞ .
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Рассмотрим теперь случайный процесс i{ }0( ),Z n n ∈N , с переходны-
ми вероятностями

i { }( )ij i nP n Z j n= = >P H .

Имеем следующую теорему.
Теорема 2. Пусть выполнено условие [ ]νℜ . Тогда при n → ∞

i ( )ij jn P nν ⋅ ⎯⎯→μ ,

независимо от i ∈S . Множество { , }j jμ ∈S  является инвариантной

мерой для процесса i{ }0( ),Z n n ∈N  и, сумма

2
1

1 ( )
( )

n

j
j

n nν

=

μ =
ν ⋅ Γ ν

∑ μL ,

где ( )Γ ∗  – гамма-функция Эйлера и ( ) ( ) 1n n⋅ →μL L  при n → ∞ .
Авторы выражают благодарность своему научному руководителю

А.А. Имомову за поддержку и внимание при выполнении данной работы.
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РАСПРЕДЕЛЕНИЙ ВЕРОЯТНОСТЕЙ КОНЕЧНЫХ

СЛУЧАЙНЫХ МНОЖЕСТВ НА ДУПЛЕТЕ СОБЫТИЙ

Н.А. Лукьянова1,2, Д.В. Семенова1,2

1Сибирский федеральный университет, Институт математики
и фундаментальной информатики, г. Красноярск, Россия

2Красноярский государственный медицинский университет
им. профессора В.Ф. Войно-Ясенецкого, г. Красноярск, Россия

В теории вероятностей и ее приложениях в качестве случайных эле-
ментов рассматриваются различные случайные объекты, такие, как слу-
чайные величины, векторы, функции, процессы, множества, а также ко-
нечные случайные множества [1]. Под конечным случайным множест-
вом понимается случайный элемент со значениями из совокупности
всех подмножеств некоторого конечного множества U [2, 3].

Пусть ( ), ,FΩ Ρ  – вероятностное пространство, где Ω  – простран-
ство элементарных исходов, F – σ -алгебра событий, Р – вероятностная
мера на F. Пусть U F⊂  – конечное множеств из N случайных событий,
выбранных из алгебры этого пространства.

Определение 1. Конечное случайное множество (к.с.м.) определяет-
ся как отображение : 2UK Ω → , измеримое относительно пары алгебр

2( , 2 )
U

F , такое, что для всякого X U⊆  справедливо

( ) ( ){ }1 ω : ωK X K X F− = ∈Ω = ∈ .

Отображение : 2UK Ω →  порождает новое вероятностное простран-

ство ( ) ( )( ) ( )( )( )2 1, , 2 , 2 ,
UU

KK K F K −Ω = ⋅Ρ Ρ . Распределение вероят-

ностей к.с.м. определяется вероятностной мерой KΡ . Для того чтобы
уметь задавать распределение к.с.м., необходимо уметь задавать веро-
ятности на прообразах ( )1K − ⋅ . В работах [4–6] предлагается метод по-
строения таких вероятностей. Распределение вероятностей к.с.м. есть
набор из 2N значений вероятностной меры на системе событий, порож-
денной конечным множеством U.
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Распределение вероятностей I рода случайного множества K на U
есть набор { }( ),p X X U⊆  из 2N вероятностей вида ( ) ( ){ } .p X K X= =Ρ
Распределение вероятностей I рода удовлетворяет следующим услови-
ям: ( )0 1,p X X U≤ ≤ ⊆  и ( ) 1.

X U
p X

⊆

=∑
Распределение вероятностей II рода есть набор из 2N вероятностей

вида { },Xp X U⊆ , где ( ){ } .Xp K X= ⊇Ρ
Для полного определения распределения вероятностей к.с.м. доста-

точно любого одного из этих двух типов распределений, каждое из ко-
торых задано на своей системе событий, порожденных конечным мно-
жеством U. Зная одно, можно получить другое по формулам обращения
Мёбиуса [4−6]

( ) ( ) ( )
2 : 2 :

; 1 ,

для всех 2 .

U U

Y X
X Y

Y X Y Y X Y
U

p p Y p X p

X

−

∈ ⊆ ∈ ⊆

= = −

∈

∑ ∑

 (1)
В работах [4 – 6] изложен метод рекуррентного построения распре-

делений вероятностей на основе ассоциативных функций. В теории ве-
роятностей и нечеткой логике широко используются разновидности ас-
социативных функций, такие, как треугольные нормы и копулы [7].
Традиционно под ассоциативной функцией понимается функция 2-х ар-
гументов на отрезке [0, 1], удовлетворяющая следующим свойствам оп-
ределения 2.

Определение 2. Ассоциативная функция [ ] [ ]2AF: 0, 1 0,1→ , удовле-
творяет следующим свойствам:

А1. Граничные условия: [ ]0,1a∀ ∈

( ) ( ) ( ) ( )AF , 0 AF 0, 0, AF ,1 AF 1, .a a a a a= = = =

A2. Монотонность: [ ]1 2 1 2, , , 0,1a a b b∀ ∈  таких, что 1 2 1 2,a a b b≤ ≤ ,
справедливо ( ) ( )1 1 2 2AF , AF ,a b a b≤ .

A3. Коммутативность, т.е. [ ], 0,1a b∀ ∈  ( ) ( )AF , AF , .a b b a=
A4. Ассоциативность, т.е. [ ], , 0,1a b c∀ ∈

( )( ) ( )( )AF AF , , AF , AF ,a b c a b c= .

A5. Условие Липшиц-непрерывности: [ ], , 0,1a b c∀ ∈

( ) ( )AF , AF , , .c b a b c a a c− ≤ − ≤



288 Н.А. Лукьянова, Д.В. Семенова

Заметим, что свойства A1 – A4 соответствуют определению t-нормы
[7]. Таким образом, под ассоциативной функцией будем понимать не-
прерывную t-норму, удовлетворяющую условию Липшица. Методы вы-
числения треугольных норм применимы к распределениям вероятно-
стей к.с.м. В качестве аргументов ассоциативной функции будем рас-
сматривать вероятности событий (их число совпадает с мощностью ба-
зового множества). Свойства ассоциативной функции позволяют полу-
чать вероятностные распределения с заданной структурой зависимости.

В методе рекуррентного построения применительно к распределени-
ям вероятностей II рода заданы N маргинальных вероятностей событий

( ) , ,xx p x U U N= ∈ =Ρ  и задана ассоциативная функция ( )AF ,a b .
Требуется найти распределение вероятностей II рода на основе

( )AF ,a b . Суть метода – это двухэтапное решение данной задачи.
На 1 этапе осуществляется построение функции множества
( ){ },f X X U⊆ , определенной на системе событий II рода как набора

X  – местных функций со следующими значениями:

( ) { }( ) { }( ) ( ) ( ) ( )1; ; , , ; , , .x x y xf f x p f x y g p p f X g p x X∅ = = = = ∈…

Рекуррентное соотношение, определяющее процесс построения функ-
ции множества

( ) { }( )( ), AF , , \x x t
x X

x g p x X p g p t X x
∈

⎛ ⎞
= ∈ = ∈⎜ ⎟

⎝ ⎠
Ρ ∩ . (2)

Данное рекуррентное соотношение получено исходя из свойств ассо-
циативных функций.

На 2 этапе выполняется проверка достаточных условий существова-
ния распределений.

Продемонстрируем метод рекуррентного построения на примере ду-
плета событий. Распределение вероятностей I рода ( ){ },p X X U⊆

случайного множества K можно рассматривать как точку в 2U -вершин-
ном симплексе

( ){ } ( ) ( ), : 0, 1U
X U

p X X U p X p X
⊆

⎧ ⎫
= ⊆ ≥ =⎨ ⎬

⎩ ⎭
∑S ,

каждая вершина которого занумерована подмножеством X U⊆  и ее
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координате соответствует вырожденное распределение случайного
множества событий, когда ( ) 1p X = , а все остальные 2 1U −  вероятно-
сти равны нулю. 

Пусть область AF UΛ ⊂ S

( ){ } ( ) ( ) ( )( )AF , : 1 AF ,Y X

Y X
p X X U p X x x Y−

⊇

⎧ ⎫
Λ = ⊆ = − ∈⎨ ⎬

⎩ ⎭
∑ Ρ

определяет множество распределений, полученных методом рекуррент-
ного построения с ассоциативной функцией AF.

Предложенный в [4–6] рекуррентный метод позволяет выделить в
US некоторую область, каждая точка которой определяет распределение

вероятностей I рода случайного множества событий со свойствами, на-
вязанными используемой ассоциативной функцией.

Лемма. Для любых 0 1, 0 1x yp p≤ ≤ ≤ ≤  и любой ассоциативной

функции ( )AF ,x yp p  всегда существует распределение вероятностей

случайного множества, заданного на дуплете событий { },U x y=  ре-
куррентным методом (2).

Доказательство. Определим функцию множества ( ){ },f X X U⊆

на конечном множестве событий { },U x y= , значения которой опреде-
ляются рекуррентным методом с произвольной ассоциативной функци-
ей AF

( ) ( ) ( ) ( ) ( )1, , , , AF ,x y x yf f x p f y p f x y p p∅ = = = = .

Построим новую функцию множества ( ){ },p X X U⊆ , преобразо-
вав функцию множества ( ){ },f X X U⊆  по формулам обращения Мё-
биуса (1):

( ) ( ) ( ) ( ){ }
( ) ( ){ }

, , , ,
1 AF , , , , AF ,x y x y x y x y

p p x p y p x y
p p p p p p p p

∅ =
= − − − . (3)

Из свойств ассоциативной функции непосредственно следует, что
функция множества (3) является распределением I рода. Лемма дока-
зана.
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Рассмотрим дуплет событий { },U x y= . Симплекс US  будет иметь
вид

( ) ( ) ( ) ( ){ } ( ) ( ), , , , : 0, 1U
X U

p p x p y p x y p X p X
⊆

⎧ ⎫
= ∅ ≥ =⎨ ⎬

⎩ ⎭
∑S .

На рис. 1 представлен симплекс распределений вероятностей I-го
рода US . Каждая точка в симплексе имеет координаты ( ) ( )( , ,p p x∅

( ) ( ), , )p y p x y  и является распределением I рода некоторого случайно-
го множества K, заданного на дуплете событий { },U x y= . Вершины
симплекса занумерованы вероятностями событий и соответствуют вы-
рожденным распределениям:

Рис. 1. Симплекс распределений вероятностей
I рода SU случайного множества K, заданного на
дуплете событий { },U x y=

– вершина ( )p ∅  соответствует
( ) ( ) ( ) ( )( ) ( ), , , , 1, 0, 0, 0p p x p y p x y∅ = ;

– вершина ( )p x  соответствует
( ) ( ) ( ) ( )( ) ( ), , , , 0, 1, 0, 0p p x p y p x y∅ = ;
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– вершина ( )p y  соответствует

( ) ( ) ( ) ( )( ) ( ), , , , 0, 0, 1, 0p p x p y p x y∅ = ;

– вершина ( ),p x y  соответствует

( ) ( ) ( ) ( )( ) ( ), , , , 0, 0, 0, 1p p x p y p x y∅ = .

Для случайного множества K, заданного на дуплете событий
{ },U x y= , распределение вероятностей которого определяется мето-

дом рекуррентного построения с ассоциативной функцией AF, область
{ }AF ,x ySΛ ⊂  имеет вид

{ ( ) ( ) ( ) ( )}AF 1 AF , , AF , , AF , ,AF , .x y x y x x y y x y x yp p p p p p p p p p p pΛ = − − − − −

Далее, рассмотрим однопараметрическое семейство функций Франка:

( ) ( )
( ) ( )

α
αα

α

, ;α AF ,

1 11 ln 1 , α 0.
α 1

yx

x y x y
pp

Frank p p p p

e e

e

− ⋅− ⋅

−

= =

⎛ ⎞− ⋅ −
⎜ ⎟= − + ≠
⎜ ⎟−
⎝ ⎠

 (4)

В работе [5] исследование однопараметрического семейства Франка
показало, что (4) дает инструмент для построения к.с.м. с заранее за-
данной структурой зависимостей. Для данного класса распределений
исследованы предельные случаи. Проиллюстрируем предельные случаи
на примере дуплета. Если конечное случайное множество K определя-
ется распределением II рода ( ){ }, , , , ; αx y x yp p p Frank p p∅ , построен-
ным ассоциативной функцией Франка, тогда

1) ( )
α 0
lim , ; αx y x yFrank p p p p
→±

= ⋅  – независимо-точечное случайное

множество;

2) ( ) { }
α
lim , ; α min ,x y x yFrank p p p p
→+∞

=  – случайное множество вло-

женных событий;

3) ( ) { }
α
lim , ; α max 1, 0x y x yFrank p p p p
→−∞

= + −  – случайное множест-

во непересекающихся событий.
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На рис. 2 представлена визуализация предельных случаев на при-
мере дуплета: структура зависимости дуплета событий от непересе-
кающихся событий до вложенных, и симплекс распределений вероят-
ностей I рода на основе однопараметрической ассоциативной функции
Франка [5].

Рис. 2. Визуализация метода на примере дуплета на основе
однопараметрической ассоциативной функции Франка

Использование однопараметрического семейства ассоциативных
функций Франка дает набор распределений, структура зависимостей
событий которых описывается параметром ассоциативной функции
Франка. Различные значения параметра α приводят к различным
распределениям вероятностей. На рис. 3 представлена область

{ },Frank x ySΛ ⊂  распределений вероятностей I-го рода случайного мно-
жества K, полученная методом рекуррентного построения на основе
ассоциативной функции Франка [5] при различных значениях пара-
метра α .

Использование однопараметрических семейств ассоциативных
функций позволяет получать спектр распределений, описывающих ко-
нечные случайные множества, структура зависимостей которых регу-
лируется параметром α.
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Рис. 3. Области { },Frank x ySΛ ⊆  распределений вероятностей I-го рода случай-

ного множества K, полученные методом рекуррентного построения на основе
ассоциативной функции Франка при различных значениях параметра α
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В настоящее время актуальны задачи, связанные с необходимостью
обработки больших массивов данных с целью поиска новых закономер-
ностей, установления и выявления новых знаний, которые впоследствии
могут быть использованы экспертами прикладной области. Подобные
задачи, как правило, имеют комбинаторный характер и заключаются в
поиске зависимостей между связанными событиями в виде, доступном
интерпретации человеком. Извлечение полезных знаний невозможно
без хорошего понимания сути данных, а успешный анализ требует ка-
чественной предобработки данных и тщательного выбора модели для
интерпретации зависимостей, которые могут быть обнаружены. В рабо-
те в качестве такой математической модели сложных объектов и сис-
тем, когда число описываемых их признаков конечно и появление лю-
бого из этих признаков представляется как случайное событие рассмат-
риваются конечные случайные множества. Вероятностные распределе-
ния конечных случайных множеств позволяют дать сжатое описание
неструктурированных данных, для которых размер каждой транзакции
(множества событий, произошедших одновременно) не является фикси-
рованным.

Пусть ( ), ,F PΩ  – вероятностное пространство. Конечное случайное
множество K (к.с.м.), заданное на конечном множестве U определяется
[1−3] как отображение : 2 ,UK Ω → измеримое относительно пары ал-

гебр 2( , 2 )
U

F , такое, что для всех 2UX ∈  справедливо
1( ) { : ( ) } .K X K X F− = ω∈Ω ω = ∈

Измеримое событие { : ( ) },K Xω∈Ω ω =  которое заключается в том, что
случайное множеств K принимает одно из своих возможных значений
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2 ,UX ∈  означает, что наступившие случайные события из U образуют
подмножество ,X U⊆  а ненаступившие − подмножество \ .cX U X=
Вместо { : ( ) }K Xω∈Ω ω =  будем использовать обозначение { }.K X=

Распределение вероятностей к.с.м. есть набор из 2 U  значений вероят-
ностной меры P на системе событий, порожденной множеством U. Рас-
пределения вероятностей моделируют всевозможные способы теорети-
ко-множественных отношений между подмножествами конечного мно-
жества событий. Для того чтобы построить распределение, необходимо
задать вероятностную меру на различных системах событий, порожден-
ных соответствующим множеством. Рассмотрены две системы событий,
задающих распределения I и II рода соответственно [4−6]. На языке ко-
нечных случайных множеств эти системы событий представлены в пер-
вой строке таблицы. Вторая строка содержит их эквивалентное теоре-
тико-множественное описание. Для полного определения распределе-
ния вероятностей конечных случайных множеств достаточно любого
одного из этих типов распределений, каждое из которых задано на сво-
ей системе событий, порожденных конечным множеством событий.
Зная одно, можно получить другое по формулам обращения Мёбиуса
[4−6].

Распределения вероятностей к.с.м.

Системы событий { }K X= { }K X⊇

Теоретико-множественное описание
c

c

x X x X

x x
∈ ∈

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∩∩ ∩
x X

x
∈

⎛ ⎞
⎜ ⎟
⎝ ⎠
∩

Вероятности ( ) ({ })p X P K X= = ({ })Xp P K X= ⊇

Тип распределения вероятностей к.с.м I-го рода II-го рода

Подгонкой (fitting) называют аналитические процедуры, позволяю-
щие подобрать распределение, которое с достаточной степенью точно-
сти описывает наблюдаемые данные. Рассмотрим численную аппрок-
симацию эмпирических распределений конечных случайных множеств
известными теоретическими распределениями на основе метода мини-
мального расстояния [8]. Процесс аппроксимации выполняется поэтап-
но. На первом этапе выбор осуществляется среди теоретических рас-
пределений, полученных, в частности, методом рекуррентного построе-
ния распределения вероятностей конечных случайных множеств одно-
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параметрическими ассоциативными функциями [4−7]. Тем самым па-
раметр теоретического распределения определяется единственным па-
раметром соответствующей ассоциативной функции. Предполагается,
что вероятности событий px, x∈U, для теоретического и эмпирического
распределений совпадают. На втором этапе для оценки параметра тео-
ретического распределения используют традиционные для математиче-
ской статистики меры близости распределений, такие, как расстояние
Кульбака – Лейблера, χ2-расстояние Пирсона, вероятностную симмет-
рическую χ2-меру, расстояние Евклида между двумя точками в 2|U|-
мерном пространстве и другие [8].

Пусть { }( ) ( ; ), ,p X X Uα = α ⊆ α ∈ AFp Dom  – теоретическое распре-
деление I рода, полученное методом рекуррентного построения распре-
деления вероятностей к.с.м. с использованием одной из однопараметри-
ческих ассоциативных функций [4−7]; AFDom  – область определения
параметра α для используемой ассоциативной функции;

{ }( ),q X X U= ⊆q  – эмпирическое распределение I рода. При вычисле-
нии оценок минимального расстояния по α  минимизируется некоторая
мера «близости» («расстояний») ( )( ),D αp q  между эмпирическим q  и
теоретическим распределениями ( )αp . В качестве оценки параметра α
распределения ( )αp выбирается значение α*, определяемое из соотно-
шения ( )* arg min ( ), .D

α∈
α = α

AFDom
p q

Для анализа выбора типа расстояния при оценке параметра α ассо-
циативной функции, используемой для построения распределения к.с.м.
рекуррентным методом, проводилось имитационное компьютерное мо-
делирование при следующих условиях.

1. Выборки значений к.с.м. генерировались для заданного теорети-
ческого распределения случайного множества, построенного однопара-
метрической ассоциативной функцией. Объемы n выборок изменялись в
диапазоне от nbegin до nfinish с шагом равным h. Мощность множества U,
вид ассоциативной функции с параметром α, начало диапазона nbegin,
конец диапазона nfinish, шаг h для каждого эксперимента задается поль-
зователем.

2. Для каждой сформированной выборки численным методом нахо-
дилось значение параметра ( )* arg min ( ), .D

α∈
α = α

AFDom
p q
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3. Для каждого значения n из заданного диапазона проводилась се-
рия выборок объемом M. Для каждой выборки в серии проводился рас-
чет квадрата отклонения (ошибки) оценок α* от истинного значения α:

2 * 2
,( ) ,j n jS = α − α где *

,n jα  – оценка параметра α при минимизации j-го
типа расстояния.

4. В качестве критерия будем использовать оценку среднеквадратич-

ной ошибки (СКО), вычисленную по серии M выборок: 2
,

1

1 ,
M

j j i
i

Q S
M =

= ∑
где Qj  – оценка СКО для j-го типа расстояния.

В качестве примера рассмотрим следующий эксперимент для |U| = 4.
Цель эксперимента – оценка и анализ СКО по параметру α для расстоя-
ния Кульбака – Лейблера и расстояния Евклида [7, 9]. Выборки генери-
ровались для заданного теоретического распределения к.с.м., построен-
ного однопараметрической ассоциативной функцией Франка с парамет-
ром α = 3. Объемы выборок изменялись в диапазоне от 100 до 3900 с
шагом равным h = 200. В каждой серии было M = 30 выборок. На рис. 1
по горизонтальной оси указан объём выборки n, а по вертикальной оси
– величины QKL и QEuc оценок СКО для расстояния Кульбака – Лейбле-
ра и расстояния Евклида соответственно [9].

Рис. 1. Результаты имитационного моделирования: оценка СКО
для расстояния Кульбака – Лейблера и расстояния Евклида
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Проведенный численный анализ результатов для этих двух типов
мер близости между распределениями позволил сделать выводы об об-
ласти применимости расстояний: из рис. 1 видно, что при объеме вы-
борки более 2500 СКО QKL и QEuc практически совпадают. Выбор того
или иного типа расстояния в каждом конкретном случае осуществляет-
ся в зависимости от особенностей решаемой задачи случайно-множест-
венного моделирования статистических систем.

Выполнение имитационного моделирования и численного анализа
распределений к.с.м. проводились с помощью разработанного комплек-
са проблемно-ориентированных программ «Моделирование и исследо-
вание распределений вероятностей конечных случайных множеств»
[7, 9].
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СТАТИСТИЧЕСКИЙ АНАЛИЗ ЦЕН АКЦИЙ
ОПЕРАТОРОВ СВЯЗИ: МТС, МЕГАФОН, ВЫМПЕЛКОМ

С.А. Сеченова
Томский государственный университет, г. Томск, Россия

В современных условиях управленческие решения должны прини-
маться лишь на основе тщательного анализа имеющейся информации.
Для решения подобных задач предназначен аппарат прикладной стати-
стики, составной частью которого являются статистические методы
прогнозирования. Эти методы позволяют выявить закономерности на
фоне случайностей, сделать обоснованные прогнозы и выявить вероят-
ность их выполнения.

Напомним, что под временным рядом понимается последователь-
ность наблюдений некоторого признака (случайной величины) Y в по-
следовательные моменты времени [1].

В рамках настоящей статьи проанализируем цены закрытия акций
операторов связи: МТС, Вымпелком, Мегафон, на основе данных, взя-
тых с сайта finam.ru за период с 1.09.2015 по 1.02.2017[2].

В пакете Statistica была проведена предварительная обработка выбо-
рок с целью определения вероятностной природы и числовых характе-
ристик наблюдаемых величин.

Числовые характеристики цен закрытия акций операторов связи

Variable Valid
N Mean Me-

dian Mode Mini-
mum

Maxi-
mum

Vari-
ance

Std.
Dev.

Kurto-
sis

МТС 194 241,14 246,93 254,7 158,5 298 723,53 26,90 0,857
Вымпелком 194 98,86 99,19 99 93 109,99 2,17 1,47 19,236
Мегафон 194 950,33 959,5 1012 771 1085 5530,61 74,37 -0,979

В таблице мы видим, что компания Мегафон обладает самой высо-
кой средней ценой на свои акции. Но цены на их акции крайне не ста-
бильны и сильно варьируются по сравнению с ценами на акции МТС и
Вымпелком. Самыми дешевыми и стабильными являются акции Вым-
пелком.
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В программе RStudio, с помощью критерия Харка – Бера была отверг-
нута гипотеза о том, что функция распределения каждого временного ря-
да принадлежит нормальному закону распределения, так как значение p-
value для каждого случая оказалось меньше уровня значимости α = 0,05.

Посмотрим на траектории временных рядов:

№ наблюдения

Ц
ен
а

МТС

Рис. 1. Траектория цен акции компании МТС

Из рис. 1 видно, что к концу 2015 года цены на акции компании
МТС резко упали, что было вызвано тем, что компания решила снизить
цены на свои услуги для расширения своей доли рынка. На фоне этого
компания получила преимущество перед конкурентами и с начала
2016 г. цены вновь начали расти и продолжили свой рост в 2017 г.
Во многом росту выручки способствовала реализация 3-Д (Данные&
Дифференциация&Дивиденды) стратегии компании в 2016 г. Кроме то-
го, МТС выплачивает неплохие дивиденды, что делает акции компании
привлекательными для вложения [3].
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№ наблюдения

Ц
ен
а

Вымпелком

Рис. 2. Траектория цен акции компании Вымпелком

У компании Вымпелком в сентябре 2016 г. наблюдается резкий об-
вал цен акций (рис. 2). Это произошло на фоне отставки главы россий-
ской компании «Вымпелком» Михаила Слободина. На сегодняшний
день цены акций вернулись к уровню 2015 года. Считается, что акции
Вымпелкома недооценены. А ведь они представляют собой удачный
вид инвестирования, как на короткий, так и на долгий срок.

Цены же акций компании Мегафон (рис. 3) в целом значительно
снизились с 2015 года. Это связано с потерей крупных государственных
контрактов, в выполнении которых может участвовать компания. Кроме
того, компания не выдерживает конкуренции, которая присутствует се-
годня на рынке операторов связи и не принимает должных управленче-
ских решений [5, 6].

Исходя из траекторий временных рядов, можно также сделать пред-
положение об отсутствии ярко выраженных трендов у всех выборок.
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№ наблюдения

Ц
ен
а

Мегафон

Рис. 3. Траектория цен акции компании Мегафон

Проверим, являются ли наши временные ряды однородными с по-
мощью критерия Манна – Уитни. По умолчанию критерий проверяет
гипотезу о том, что распределения двух выборок отличаются лишь по-
стоянным и известным сдвигом, который, в свою очередь, по умолча-
нию равен нулю. Задать его можно при помощи параметра mu. Но так
как заранее нам неизвестно значение этого параметра, можно с помо-
щью параметра conf.int = TRUE определить доверительный интервал
для этого значения. И затем, выбрав значение данного параметра из до-
верительного интервала, снова применить тест. Таким образом, приме-
нив данную процедуру, мы получили, что гипотезы о том, что одно рас-
пределение отличается от другого некоторым сдвигом не были отверг-
нуты на уровне значимости α = 0,05, т.е все наши временные ряды яв-
ляются однородными сами по себе и между собой. Это означает, что на
цены акций всех компаний оказывают влияние одни и те же факторы.
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Далее проверим стационарность наших временных рядов с помощью
критерия Дикки – Фулера. В качестве нулевой гипотезы рассматривает-
ся наличие единичного корня, т.е. нестационарность ряда. Тест ADF яв-
ляется односторонним: в качестве альтернативной гипотезы по умолча-
нию считается гипотеза о стационарности ряда. В результате проверки
было выявлено, что временной ряд Вымпелком является стационарным,
остальные временные ряды нестационарные.

Стационарный процесс является наиболее привлекательным с точки
зрения построения прогнозов, но, к сожалению, в природе таких про-
цессов почти не существует, любой реальный процесс по мере своего
развития подвержен изменениям. Но нам повезло и наш временной ряд,
описывающий цены акций компании Вымпелком, оказался стационар-
ным. Таким образом, среднее значение цены и ее дисперсия не зависят
от времени.

Построим ARMA(p,q)-модель. Для выбора параметров q и p постро-
им графики автокорреляционной (ACF) и частной автокорреляционной
функции (PACF):

Lag

A
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F

Рис. 4. Автокорреляционная функция Вымпелком
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Рис. 5. Частная автокорреляционная функция Вымпелком

Выбрав пороговое значение на рис. 4 равное 0,2, получим значения
параметра q = 0,..,4. Из рис. 5 предположим значение параметра p рав-
ное 0,…,3. Таким образом, имеем семейство моделей, изменяя парамет-
ры p и q.

Для сравнения качества моделей между собой применим информа-
ционные критерии Акайке (AIC) [2]. Выберем модель с параметрами
p = 1 и q = 1, для которой значение AIC минимально.

Оценим параметры модели и наша модель примет вид

1 198,9 0,85 0,53t t t ty y − −= + − ε + ε .

По остаткам модели осуществим тестирование качества построенной
модели. Для начала проверим гипотезу о некоррелированности остатков
модели, используя критерий Бокса – Льюнга. Тест Бокса – Льюнга по-
зволяет проверить гипотезу о равенстве коэффициента автокорреляции
нулю. Гипотеза была принята на уровне значимости α = 0,05. Следова-
тельно, ошибки некоррелированы.
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Проверка на нормальность показала, что ошибки не подчиняются
нормальному закону распределения.

Возьмем наши данные с 1.09.2015 по 29.01.2017. Сделаем прогноз на
3 шага, т.е определим возможные цены акции на 30, 31 января и 1 фев-
раля и сравним их с реальными данными. Получили, что цены предпо-
ложительно будут равны 99,64, 99,53, 99,43. Реальный уровень цен:
100,62, 99,9, 100,15. Полученные значения цен акций не сильно отли-
чаются от реальных данных.

На рис. 6 видны прогнозные значения и доверительные интервалы
для прогноза с уровнями значимости 20 и 5 %.

Рис. 6. Цены акций и прогноз
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В процессе прогнозирования возникает задача оценки точности про-
гноза. Оценка точности важна и при сравнении между собой различных
моделей или при определении состоятельности полученного прогноза.
Известно большое количество оценок, определяющих точность прогно-
зирования, но для вычисления любой из них необходимо знать на каж-
дом шаге ошибку прогнозирования. 

Наиболее распространенной оценкой точности прогнозирования яв-
ляется среднее значение квадратов ошибок (MeanSquaredError). В на-
шей модели MSE = 0,54. Следовательно, можно сделать вывод о доста-
точно стабильном прогнозе.

В заключение хотелось бы отметить, что прогнозирование времен-
ных рядов в ближайшее время станет наиболее популярной областью
для исследования, поскольку оно может приносить высокую матери-
альную прибыль. Но самое трудное – это выбор хорошей модели для
качественного прогноза.
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НЕВЕРИЕ В БУДУЩЕЕ
И ИНВЕСТИЦИИ В КАПИТАЛ ЗДОРОВЬЯ

О.В. Суворова, И.В. Розмаинский
Национальный исследовательский университет

Высшая школа экономики, г. Санкт-Петербург, Россия

Теория человеческого капитала стала одним из перспективных на-
правлений развития экономической науки девятнадцатого века. Эффек-
тивное развитие экономики в постиндустриальном обществе подразу-
мевает усовершенствованный подход к использованию человеческого
потенциала. Увеличение инновационного производства в современном
мире приводит к возрастанию роли человеческого фактора. Именно он
становится самым ценным активом в конкурентной борьбе.

Резкое сокращение государственных вложений в человеческий капи-
тал и отсутствие стимулов для частных инвестиций являются особенно-
стью постсоветской жизни в России. Это способствует негативным воз-
действиям на формирование человеческого капитала. Здоровье как ба-
зовый актив человеческого капитала находится в наиболее затрудни-
тельной ситуации.

Известно, что в современной литературе термин «капитал здоровья»
малоизучен, так как трактуется как составляющая человеческого капи-
тала. Вследствие этого исследования в области накопления здоровья в
России практически отсутствуют. Поэтому в работе мы будем придер-
живаться мнения М. Гроссмана о том, что капитал здоровья и человече-
ский капитал нужно рассматривать отдельно [1].

На протяжении истории люди стремились улучшить качество жизни
не только в текущий момент времени, но и в будущем. Это является
причиной использования здоровья как инвестиционного блага. Индекс
развития человеческого потенциала (ИРЧП) является основной харак-
теристикой для оценки качества жизни. Рассматривается средняя ожи-
даемая продолжительность жизни как одно из направлений построения
ИРЧП.

Толчком к написанию статьи выступил тот факт, что социальная
жизнь постсоветской России отличается чрезвычайно низкой продол-
жительностью жизни населения. Стоит заметить, что в последние годы
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наблюдается тенденция к ее увеличению. В 2015 г. показатель достиг
отметки в 70 лет, тем самым побив рекорд за всю историю страны,
включая советское время. Но несмотря на такое увеличение, Россия всё
ещё отстает не только от стран Запада, но и от некоторых стран третье-
го мира, таких, как Бангладеш или Иран. А по величине разницы в про-
должительности жизни между женщинами и мужчинами Россия нахо-
дится на первом месте. В 2015 г. эта разница составила 11,6 лет.

По нашему мнению, главной проблемой ухудшения показателей
продолжительности жизни в России являются негативные инвестиции в
капитал здоровья, которые порождаются таким явлением как «неверие в
будущее», подразумевающее под собой настроение безысходности, пес-
симизм и чрезмерное беспокойство о будущем и выражающееся увели-
чением спроса на алкогольную продукцию и сигареты. Такие инвести-
ции приводят к тому, что люди, которые не верят в будущее и сосредо-
точены исключительно на краткосрочных задачах, «проедают» капитал
здоровья [2].

Теории накопления капитала здоровья

Неоклассическая теория М. Гроссмана считается господствующей
теорией в области накопления капитала здоровья. По мнению осново-
положника теории, запас капитала здоровья определяет время, в тече-
ние которого индивид может использовать свой человеческий капитал
для получения как финансовых, так и нефинансовых выгод [1]. А объем
инвестиций определяется как соотношение предельной производитель-
ности капитала и его стоимости.

Известно, что одной из предпосылок неоклассической экономиче-
ской теории является гипотеза полной информации, которая означает,
что экономические агенты осуществляют инвестиции, уже зная буду-
щие выгоды и издержки от них. Но в реальной жизни агенты не знают
будущего, поэтому они не могут просчитать, в течение какого времени
будут поступать финансовые выгоды и какова будет их величина.
Вследствие этого предельная производительность капитала не может
выступать как фактор, определяющий объем вложений в него. Таким
образом, главной проблемой неоклассического подхода к анализу инве-
стиций в капитал является пренебрежение фактором неопределенности.

На основе вышеизложенного приходим к выводу о том, что для оп-
ределения инвестиций в капитал здоровья необходимо применять аль-
тернативный подход, при котором капитал здоровья может рассматри-
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ваться как актив длительного пользования. Вложения в него связаны с
затратами денег и времени, и отдача от таких вложений выражается в
виде большего количества времени для использования человеческого
капитала.

Выбор активов длительного пользования также связан с неопреде-
ленностью, поэтому будущие выгоды и издержки не всегда могут быть
рассчитаны при помощи теории вероятности. И чем выше степень не-
определенности, тем больше при принятии решений индивид опирается
не на знания, а на привычки, мнение большинства, а также социальные
правила и нормы. При высокой степени неопределенности выбор падает
на активы с большей ликвидностью и более краткосрочной окупаемо-
стью. И так как вложения в здоровье приносят отдачу лишь в отдален-
ном будущем, то в результате такого выбора активов наблюдается со-
кращение инвестиций в капитал здоровья.

Одной из причин «проедания» капитала здоровья в постсоветской
России является такое явление, как инвестиционная близорукость, оз-
начающая уменьшенный интервал планирования и прогнозирования, то
есть исключение агентом из рассмотрения будущих результатов с неко-
торого будущего периода времени [3]. Здесь и далее инвестиционную
близорукость будем использовать как синоним понятия «неверие в бу-
дущее».

Таким образом, приходим к выводу о том, что люди не заботятся о
своем здоровье в условиях неверия в будущее, поскольку отдача от
вложений в здоровье начинает появляться только в очень отдаленный
период времени.

Построение эконометрической модели

Основная предлагаемая гипотеза заключается в том, что большие
расходы на потребление алкоголя и курение, а также низкие «расходы»
на занятия спортом обусловлены «неверием в будущее».

Эмпирической базой исследования служат данные, собранные путем
проведения опроса в социальной сети, составленного на основе вопро-
сов из базы RLMS.

Собственная база данных была создана для сравнения результатов
относительно величины города и региона проживания, в частности от-
носительно городов Западной России (Санкт-Петербург и Москва) и
Томска. В выборке представлены индивиды в возрасте от 15 до 35 лет.
Причиной этому служит тот факт, что у молодежи ещё не полностью



310 О.В. Суворова, И.В. Розмаинский

сформированы привычки к негативным инвестициям, поэтому легче
увидеть динамику и тенденцию к увеличению или уменьшению инве-
стиций в капитал здоровья.

В качестве прокси для зависимой переменной в эконометрических
моделях выделяют переменные, отражающие факт и частоту потребле-
ния алкоголя в течение последних 30 дней, факт потребления табака –
в течение последних 7 дней, периодичность занятий спортом, а также
частоту посещения врача – в течение года.

В качестве прокси для объясняющей переменной выделяются пере-
менные, показывающие уровень жизнерадостности индивида, а также
уровень удовлетворенности жизнью в целом в настоящее время. Эти
переменные отражают желание индивида уйти от психологических и
социальных проблем с помощью алкоголя. Для контролирования зави-
симости такой характеристики, как посещение врача, используется са-
мооценка здоровья, которая имеет высокую степень корреляции с ре-
альным состоянием здоровья индивида. Желание индивида снять на-
пряжение и снизить ежедневный стресс с помощью курения контроли-
руется переменной, которая отражает уровень беспокойства индивида о
будущем.

В качестве контролирующих переменных выделяются переменные
образования, семейного положения и материального положения семьи.

С помощью эконометрического аппарата построена эмпирическая
модель для оценки зависимых переменных

1 2i i i iY X A= β + β + ε ,

где Yi – характеристика одной из зависимых переменных для индивида
i, Xi – вектор социально-экономических характеристик человека (пол,
возраст, уровень образования, семейное положение, род занятий и ве-
личина города проживания), Ai – вектор объясняющих переменных,
β1,2 – соответствующие коэффициенты, а εi – случайная ошибка.

В исследовании присутствуют две бинарные зависимые переменные,
отражающие факт потребления алкоголя и табака. Стандартная методо-
логия для оценивания модели бинарного выбора предполагает построе-
ние logit- и/или probit-регрессии.

Для дальнейшего исследования необходимо было определиться, ка-
кая из моделей будет использована. С этой целью были вычислены ин-
формационные критерии Байеса (BIC) и Акаике (AIC).
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В результате в соответствии с обоими критериями для переменной,
отражающей факт потребления табака, целесообразно использовать
logit-модель, а для переменной, отражающей факт потребления алкого-
ля, наоборот – probit-модель. Но поскольку нам важно продемонстриро-
вать все модели, используя одну разновидность регрессии, было решено
использовать probit-модель.

Остальные зависимые переменные в исследовании являются катего-
риальными и упорядоченными. Для оценивания модели упорядоченно-
го выбора также предполагается построение упорядоченной logit- и/или
probit–регрессии. Было принято решение об использовании probit-мо-
дели.

В отличие от классической регрессионной модели, коэффициенты
при параметрах модели плохо интерпретируемы. Для моделей бинарно-
го выбора в дополнение к коэффициентам рассчитывают предельные
эффекты регрессоров на ожидаемое значение объясняемой переменной.
Предельный эффект не является константой, а зависит от других факто-
ров и отвечает на вопрос о том, как изменится вероятность того, что
Yi = 1 с ростом регрессора на единицу. Обычно предельные эффекты
рассчитываются для среднего значения каждой объясняющей пере-
менной.

Заключение

В результате проведенного анализа были получены следующие вы-
воды.

Снижение степени удовлетворенности жизнью оказывает влияние на
частоту потребления алкогольных напитков, увеличивая ее. Также она
оказывает влияние на регулярность занятий спортом, которая уменьша-
ется с уменьшением степени удовлетворенности.

Уровень жизнерадостности индивида оказался сильно значимым при
анализе зависимости потребления табачных изделий, с его уменьшени-
ем вероятность курения индивидом возрастает. Также на потребление
табака влияет степень беспокойства индивидом о будущем, и чем она
больше, тем выше спрос на курение.

Самооценка здоровья индивидом оказалась значимым регрессором
при анализе зависимости потребления алкоголя, с ее увеличением уве-
личивается как вероятность, так и частота потребления алкоголя. Также
она оказывает влияние на частоту посещения индивидом специалистов,
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и чем выше самооценка здоровья индивидом, тем меньше вероятность
посещения специалиста индивидом.

Увеличение величины города влечет за собой снижение потребления
сигарет, при этом жители крупных городов потребляют алкоголь мень-
ше, чем жители других городов.

Жители Европейской части России потребляют сигареты и алкоголь
меньше, чем жители других регионов. При этом жители Томска потреб-
ляют сигареты и алкоголь меньше, чем жители Москвы и Санкт-
Петербурга.

Таким образом, выдвинутая в работе гипотеза о влиянии «неверия в
будущее» на инвестиции в капитал здоровья, по крайней мере, не отвер-
гается.

В своей статье И. Розмаинский предлагает способы решения про-
блем в сфере здоровья и увеличения средней продолжительности жизни
в нашей стране [2]. По его мнению, необходимо стимулировать у рос-
сиян нормальную, а не заниженную оценку будущего времени. Форми-
рование институтов, помогающих укрепить уверенность в завтрашнем
дне, будет способствовать борьбе с инвестиционной близорукостью.
А развитие институтов гражданского общества поможет обеспечить
контроль общества над властью.

Конечно, вышеперечисленные способы помогут решить часть про-
блем в сфере здравоохранения, но не стоит забывать и о том, что в
большинстве случаев именно отдельные частные лица принимают ре-
шения о характере инвестиций в капитал здоровья. Именно поэтому не-
обходимо просвещать население в сфере здравоохранения и пропаган-
дировать здоровый образ жизни, бороться с высоким потреблением ал-
коголя и табака.
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