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A B S T R A C T

We discuss the way of solving the hierarchy problem. We show that starting at the Planck scale, the three
energy scales — inflationary, electroweak and the cosmological ones can be restored. A mechanism for
generating small parameters that leads to a successful solution of the problem is proposed. The tools involved
in the process are 𝑓 (𝑅) gravity and inhomogeneous extra dimensions. Slow rolling of a space domain from
the Planck scale down to the inflationary one gives rise to three consequences: an infinite set of causally
disconnected domains (pocket universes) are nucleated; quantum fluctuations in each domain produce a variety
of fields and an extra-dimensional metric distribution; these distributions are stabilized at a sufficiently low
energy scale.
. Introduction

Assuming that the Universe has been formed at the Planck scale, it
s naturally implied that its initially formed parameters are of the order
f the same scale. The essence of the Hierarchy problem is the question:
hy are the observable low-energy physical parameters so small as

ompared to those of the Planck scale? How did Nature manage to
ecrease the parameter values so substantially?

There are at least four important energy scales during evolution of
he Universe: the Planck scale (∼ 1019 GeV) at which our Universe can-
ot be described by classical laws; the inflationary scale (∼ 1013 GeV)
here our horizon has appeared, the electroweak scale (∼ 102 GeV),
nd the cosmological scale specified by the cosmological constant (∼
0−61 GeV2) (CC).

According to the inflationary paradigm, the physical laws are formed
t high energies [1,2], where the Lagrangian structure is yet unknown.
herefore, physics has been established at an energy scale 𝑀 between
he inflationary scale 𝐸𝐼 ∼ 1013 GeV and the Planck scale 𝐸𝑃 ∼
019 GeV, see [3,4] in this context. We study the way of physical
arameter reduction at the mentioned scales, which are below the
nitial scale 𝑀 .

In this paper, we invoke the idea of multidimensional gravity which
s a widely used tool for obtaining new theoretical results [5–9].
he paper [10] uses warped geometry to solve the small cosmological
onstant problem. Multidimensional inflation is discussed in [11–
3] where it was supposed that an extra-dimensional metric 𝑔n is
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stabilized at a high-energy scale. Stabilization of extra space as a pure
gravitational effect has been studied in [14,15], see also [16].

The present research is also based on nonlinear 𝑓 (𝑅) gravity. The
interest in 𝑓 (𝑅) theories is motivated by inflationary scenarios start-
ing with Starobinsky’s paper [17]. At present, 𝑓 (𝑅) gravity is widely
discussed [18,19], leading to a variety of consequences, in particular,
the existence of dark matter [20,21]. Including a function of the Ricci
scalar, 𝑓 (𝑅), is the simplest extension of general relativity. In the frame-
work of such an extension, many interesting results have been obtained.
Some viable 𝑓 (𝑅) models in 4D space that satisfy the observational
constraints are proposed in [22–26].

An application of nonlinear gravity to the description of the cosmo-
logical constant has been done in [27]. As shown there, this approach
suffers from overproduction of scalar particles. The authors of [28–
30] considered a class of 𝑓 (𝑅) models operating over a wide range of
distances.

The idea that the Lagrangian parameters can be considered as some
functions of a field has been widely used since Schwinger’s paper [31].
Such fields can be involved in the classical equations of motion together
with the ‘‘main’’ fields or treated as background fields. The latter
were applied for fermion localization on branes [32–34], gauge field
localization [35], extensions of gravity in a scalar-tensor form (with
𝑓 (𝜙)𝑅) [36] and so on. In this paper, we show that a self-gravitating
scalar field can serve as a reason for the emergence of small parameters.

As a mathematical tool, we use the Wilsonian approach [37] tech-
nique, a well-known method for theoretical studies of the energy
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scale. It is achieved by sequentially integrating the Euclidean action
over a small slice of the momentum interval 𝛥𝑘𝐸 . The renormalization
group equations thus obtained are widely used in this concern [38].
The relations between low-energy parameter values and high-energy
ones are discussed in [68]. Also, quantum fluctuations could modify
the same form of the Lagrangian [69,70].

The inclusion of a compact extra space into consideration com-
plicates the procedure. Indeed, we cannot choose an arbitrarily small
momentum interval due to the energy level discreteness. For example,
if a size is quite small, 𝛥𝑘𝐸 < 1∕𝑟, 𝑟 being the scale of extra dimensions,
then this momentum interval does not contain energy levels at all. A
possible way to overcome this difficulty is discussed in [48], where the
truncated Green functions

𝐺𝑇 (𝑍,𝑍′) ≡
∑

𝑁∈

𝑌𝑁 (𝑍)𝑌𝑁 (𝑍′)∗

𝜆𝑁

ere introduced. Here 𝑌𝑁 (𝑍) is a subset of 𝑛+4-dimensional eigenfunc-
ions. The coordinates 𝑍 describe both 4D space and a compact extra
pace. It allows for approximately calculating the parameters at low
nergies. As a result, quantum corrections caused by a scalar field are
roportional to its self-coupling. This means that such quantum effects
annot be responsible for reducing the parameter values by many
rders of magnitude, from the Planck scale to the electroweak scale.
he classical mechanism discussed in this paper was elaborated just
or this aim. The procedure of quantum renormalization is a necessary
nd unavoidable element that leads to fine tuning of the physical
arameters at low energies.

. Matter localization around a singularity

In this section, we briefly discuss a possible extension of our ap-
roach to show that matter concentrates near singularities, forming
kind of thick branes. In general, it is assumed here that matter is

istributed throughout the extra dimensions as in the Universal Extra
imensional approach [71,72]. At the same time, there is another point
orth discussing. Indeed, we see from Fig. 1 that there are two points
here the extra metric is singular or has sharp peaks. They could

ndicate the formation of branes if the extra space is large enough and if
atter is concentrated in a close neighborhood of these peaks (certainly

ssuming that the formal infinities are somehow suppressed by quan-
um effects). The structure of such a brane should be rather nontrivial
ecause of the presence of a possible singularity. This direction may be
eveloped in the future.

As shown in Appendix A, matter is localized around both ‘poles’,
s it should be in a brane world. It opens a door for developing a
echanism of strong reduction of the initial parameter values. For

xample, an interaction term of the form

∫ 𝑑𝐷𝑍
√

|𝑔𝐷|𝜒(𝑧)�̄�(𝑧)𝜓(𝑧)

contains the overlapping integral

𝐼overlap ≡ ∫ 𝑑𝑛𝑦
√

|𝑔𝑛|𝜒(𝑦)�̄�(𝑦)𝜓(𝑦)

over the extra dimensions which could be arbitrarily small if the
fields 𝜒(𝑦) and 𝜓(𝑦) are localized near different branes. It leads to the
coupling constant renormalization

𝜅 → 𝜅′ = 𝜅𝐼overlap ≪ 𝜅.

We will leave this idea for future studies.

8. Conclusion

This paper discusses the reduction mechanism of the physical pa-
rameters values defined at high energies to those now observed. Start-
ing from a unified Lagrangian at high energies, we have succeeded in
fitting the physical parameters describing different physical phenomena
7

— inflation, the Higgs field and the cosmological constant. The flexible
extra metric is a necessary tool for a successful solution of the problem.

The set of small parameters is formed in the following way. Slow
rolling of a spatial domain from a sub-Planckian scale down to the
inflationary one gives rise to several consequences: (1) nucleation of
an infinite set of causally disconnected domains (pocket universes),
(2) quantum fluctuations in each domain produce a variety of fields
and an extra-space metric distribution, (3) these distributions are sta-
bilized when the energy scale is low enough. Self-gravitating (scalar)
fields do not necessarily settle at states with minimum energy. On
the contrary, e.g., the boson stars activity [63] is based on the fact
that self-gravitating scalar fields can settle at a continuum set of static
states. There are states with arbitrarily small amplitudes among them.
These states are formed in a small but finite set of universes. As a
result, a small but nonzero measure of different universes contains
small effective parameters that are applied here to solve the Hierarchy
problem at three energy scales.

Attempts to experimentally test the extra dimensions paradigm are
repeatedly being made. Traces of Large Extra Dimensions are searched
for on cosmological scales [73] and in colliders [74]. Non-compact
extra dimensions affect the propagation of gravitational waves at cos-
mological distances [75]. At the same time, attempts to find traces of
extra dimensions run into difficulties if they are compact and stabilize
at energies above the inflationary one, as happens in the case discussed
here. One of the possible directions in this case is to study the change
in inflationary parameters as the Hubble parameter decreases.

We hope that the mechanism elaborated here will open a way
to fix other physical parameters observed at low energies, starting
from a unified Lagrangian at high energies. The mechanism developed
should be accompanied by a renormalization group analysis aimed at
correction of the initial parameter values.
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Appendix A. Geodesics in extra dimensions

Consider the motion of classical particles in a gravitational back-
ground described by the metric

𝑑𝑠2 = e2𝛾(𝑢)(𝑑𝑡2 − 𝑑𝑥2 − 𝑑𝑦2 − 𝑑𝑧2) − 𝑑𝑢2 − 𝑟(𝑢)2(𝑑𝜉2 + sin2 𝜉 𝑑𝜓2) (48)

where the functions 𝑟(𝑢) and 𝛾(𝑢) are solutions of Eqs. (6), (8), (9), (10)
for parameters indicated in Fig. 1, with the exception of 𝑅(0) ≃ 0.004
and 𝐻 = 0, as was done in Section 4.

In this background, the geodesic equations have the form

𝑡 + 2 �̇� 𝛾 ′ �̇� = 0, (49)
′ ′ ′
�̈� + 2 �̇� 𝛾 �̇� = 0, �̈� + 2 �̇� 𝛾 �̇� = 0, �̈� + 2 �̇� 𝛾 �̇� = 0, (50)
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