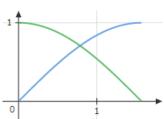
Разбор коллоквиума «Интегралы»

ЗАДАЧИ С КОНКРЕТНЫМИ ИНТЕГРАЛАМИ	2
Использовании симметрии функции	2
Действия с функциями и неравенства	5
Интеграл и первообразная	9
Теорема о замене переменной	10
ТЕОРЕТИЧЕСКИЕ ЗАДАЧИ	13
ТЕОРЕТИЧЕСКИЕ ЗАДАЧИ Определение интеграла	
	13
Определение интеграла	13

ЗАДАЧИ С КОНКРЕТНЫМИ ИНТЕГРАЛАМИ

Использовании симметрии функции

Задание 1. Доказать, что $\int_0^{\pi/2} f(\sin x) dx = \int_0^{\pi/2} f(\cos x) dx$ (f — непрерывная функция). Указание. Сделайте замену $x = \pi/2 - t$.



Решение. Ясно, что графики синуса и косинуса $^{\circ}$ переходят друг в друга симметрией относительно оси $x = \frac{\pi}{4}$.

$$\int_{0}^{\frac{\pi}{2}} f(\sin x) dx = \begin{bmatrix} x = \frac{\pi}{2} - t & t(0) = \frac{\pi}{2} \\ dx = -dt & t(\frac{\pi}{2}) = 0 \end{bmatrix} = -\int_{\frac{\pi}{2}}^{0} f(\sin(\frac{\pi}{2} - t)) dt = \int_{0}^{\frac{\pi}{2}} f(\cos t) dt$$

Следующие равенства доказываются аналогично:

1.1.
$$\int_0^{\pi} f(\sin x) dx = 2 \int_0^{\pi/2} f(\sin x) dx$$

1.2.
$$\int_0^{\pi} x f(\sin x) dx = \frac{\pi}{2} \int_0^{\pi} f(\sin x) dx$$
.

Указание. Сделайте замену $x = \pi - t$.

1.3. Доказать, что
$$\int_{a}^{a+T} f(x) dx$$
 = $\int_{0}^{T} f(x) dx$, если T – период непрерывной функции $f(x)$.

Первый интеграл — между синими отрезками, второй — между красными. Чтобы превратить один в другой, надо «отрезать» заштрихованную область (используется аддитивность интеграла) и передвинуть на T (замена переменных)

$$\int_{a}^{a+T} f(x)dx = \int_{a}^{0} f(x)dx + \int_{0}^{a+T} f(x)dx = \begin{bmatrix} x = t + T & t(a) = a + T \\ dx = dt & t(0) = T \end{bmatrix} =$$

$$= \int_{a+T}^{T} f(t+T)dt + \int_{0}^{a+T} f(x)dx = \int_{0}^{a+T} f(x)dx + \int_{a+T}^{T} f(t)dt = \int_{0}^{T} f(x)dx$$

1.4. Чему равен интеграл по симметричному промежутку от нечётной функции? А от четной?

Решение. Интеграл от нечетной функции на симметричном промежутке равен 0. Докажите это подходящей заменой. Покажите также, что для четной функции $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$.

Задание 2. Какой интеграл больше: $\int_0^{\pi} \cos^3 x \, dx$ или $\int_0^{\pi} \sin^5 x \, dx$?

Решение. Можно воспользоваться решением задания 1, но можно обойтись и без него. График косинуса симметричен относительно точки $\left(\frac{\pi}{2};0\right)$, то же верно для $\cos^3 x$. Значит, первый из интегралов равен 0.

Во втором же подынтегральная функция положительна, так что он больше 0. Итак, первый интеграл меньше второго.

2.1. Каков знак интеграла $\int_{-\pi}^{\pi} \frac{\cos x dx}{x}$?

Решение. Это интеграл от нечетной функции. Но он имеет особенность в 0, причем он там не сходится. Интеграл не существует.

Действия с функциями и неравенства

Задание 3. Известно, что $\int_0^1 f(x) dx = 1$, $\int_0^1 g(x) dx = 3$. Для каких ещё функций, выраженных через f и g, мы можем найти интеграл?

Решение. Интегрируемыми являются все арифметические операции, но численно найти интеграл мы можем только для линейных комбинаций данных функций:

$$\int_0^1 af(x) + bg(x)dx = a \int_0^1 f(x)dx + b \int_0^1 g(x)dx = a + 3b$$

Задание 4. Известно, что $\int_0^1 f(x) dx = 3$. Что можно сказать об $\int_0^1 |f(x)| dx$?

Решение. Если существует интеграл от функции, то существует и интеграл от ее модуля. Запишем неравенства $-|f(x)| \le f(x) \le |f(x)|$. В частности, интегрируя последнее неравенство, получим, что

$$3 = \int_0^1 f(x) dx \le \int_0^1 |f(x)| dx$$

то есть интеграл от модуля не меньше 3.

В общем случае получаем $\int_a^b |f(x)| dx \ge \left| \int_a^b f(x) dx \right|$

4.1. Известно, что $\int_0^2 |f(x)| dx = 2$. Что можно сказать об $\int_0^2 f(x) dx$?

Решение. Существование интеграла от модуля не гарантирует интегрируемость самой функции (в собственном смысле). Но если она интегрируема, то

$$\left| \int_a^b f(x) dx \right| \le \int_a^b |f(x)| dx$$
, то есть $-2 \le \int_0^2 f(x) dx \le 2$

4.2. Функции f и g непрерывны и $\int_0^1 |f(x)| dx = 2$, $\int_0^1 |g(x)| dx = 3$. Может ли оказаться, что $\int_0^1 |f(x) + g(x)| dx = 6$?

Решение. Решим задачу в более общем виде. Пусть

$$\int_a^b |f(x)| dx = A; \int_a^b |g(x)| dx = B$$

По неравенству треугольника имеем

$$|f(x)| - |g(x)| \le |f(x) + g(x)| \le |f(x)| + |g(x)|$$

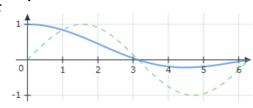
Интегрируя эти неравенства, получим, что

$$|A - B| \le \int_a^b |f(x) + g(x)| dx \le A + B$$

В частности, в нашем примере $1 \le \int_0^1 |f(x) + g(x)| dx \le 5$.

Задание 5. Каков знак интеграла $\int_0^{2\pi} \frac{\sin x dx}{x}$?

Решение. График синуса симметричен относительно точки $(0; \pi)$, так что «положительная» часть компенсирует «отрицательная» ную». Но при делении на x «отрицательная»



часть делится на бОльшие значения, то есть площадь *под* графиком меньше, чем *над*. Искомый интеграл положителен. Заметим, что интеграл собственный (в нуле особенности нет).

При желании можно доказать утверждение формально. Имеем

$$\int_{\pi}^{2\pi} \frac{\sin x \, dx}{x} = \begin{bmatrix} x = t + \pi & t(\pi) = 0 \\ dx = dt & t(2\pi) = \pi \end{bmatrix} = \int_{0}^{\pi} \frac{\sin(t + \pi) \, dt}{t + \pi}$$
 Значит,

$$\int_0^{2\pi} \frac{\sin x \, dx}{x} = \int_0^{\pi} \frac{\sin x \, dx}{x} - \int_0^{\pi} \frac{\sin t \, dt}{t + \pi} = \int_0^{\pi} \left(\frac{1}{x} - \frac{1}{x + \pi} \right) \sin x \, dx > 0$$
 как интеграл от положительной функции.

Задание 6. Какой интеграл больше: $\int_0^1 \sin^{10} x \, dx$ или $\int_0^1 \sin^2 x \, dx$.

Решение. Синус не превосходит 1, так что $\sin^{10} x \le \sin^2 x$, так что первый интеграл меньше.

Задание 7. Найти приближенно значение интеграла $\int_0^{\pi} \frac{dx}{\sin x + 100}$.

Решение. Заметим, что знаменатель функции почти не меняется,

$$\frac{1}{101} \le \frac{1}{\sin x + 100} \le \frac{1}{100}; \frac{1}{\sin x + 100} \approx 0.01$$

Значит, по теореме о среднем,

$$\frac{\pi}{101} \le \int_0^{\pi} \frac{dx}{\sin x + 100} \le \frac{\pi}{100}; \int_0^{\pi} \frac{dx}{\sin x + 100} \approx 0.01\pi$$

Интеграл и первообразная

Задание 8. Найдите первообразную от функции $f(x) = x^n |x|$ (с помощью определенного интеграла).

Решение. Первообразная только константой отличается от интеграла с переменным верхним пределом. Имеем,

$$\Phi(x) = \int_{0}^{x} t^{n} |t| dt = \text{sign } t \int_{0}^{x} t^{n+1} dt = \text{sign } t \frac{x^{n+2}}{n+2}$$

Заметим, что знак t совпадает со знаком x. Значит, первообразная имеет вид $\frac{x^{n+1}|x|}{n+2} + C$.

Задание 9. Найти g'(x), если $g(x) = \int_0^{x^2} \sqrt{1 + t^2} dt$.

Решение. Функция $F(u) = \int_0^u \sqrt{1+t^2} dt$ является первообразной для функции $f(u) = \sqrt{1+u^2}$. Значит,

$$g'(x) = (F(x^2))' = f(x^2) \cdot 2x = 2x\sqrt{1+x^4}$$

Теорема о замене переменной

Задание 10. Можно ли в интеграле $\int_0^\pi \frac{dx}{1+\sin^2 x}$ сделать замену tg x=t? Почему?

Решение. Формальная замена приводит к тому, что новый интеграл берется в пределах от t = tg(0) = 0 до $t = tg(\pi) = 0$, то есть интеграл равен 0. Но интеграл от положительной функции положителен!

Ошибка в том, что функция tg(x) имеет разрыв в точке $\pi/2$, поэтому она не переводит отрезок $[0,\pi]$ в другой отрезок.

Правильная замена может выглядеть так (воспользуемся результатом Задания 3). Период подынтегральной функции равен π , так что

$$\int_0^{\pi} \frac{dx}{1 + \sin^2 x} = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{dx}{1 + \sin^2 x} = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{dx}{\cos^2 x} \left(\frac{1}{\cos^2 x} + \lg^2 x \right) = \int_{-\pi/2}^{\pi/2} \frac{dx}{\cos^2 x \left(1 + 2\lg^2 x \right)} = \int_{-\pi/2}^{\pi/2} \frac{d(\lg x)}{1 + 2\lg^2 x} = \int_{-\pi/2}^{\pi/2} \frac{dx}{1 + 2\lg^2 x} = \int_{-\pi$$

$$= \begin{bmatrix} \operatorname{tg} x = t & t(-\pi/2) = -\infty \\ \frac{dx}{\cos^2 x} = dt & t(\pi/2) = \infty \end{bmatrix} = \int_{-\infty}^{+\infty} \frac{dt}{1 + 2t^2}$$

Другой способ – разбить интеграл на два и сделать замену отдельно в каждом.

10.1. Можно ли в интеграле $\int_{-1}^{1} \frac{dx}{x^2 + x + 1}$ сделать формальную замену x = 1/t? Почему?

Решение аналогичное. Формальная замена приводит к интегралу

$$\int_{-1}^{1} \frac{dx}{x^2 + x + 1} = \begin{bmatrix} x = \frac{1}{t} & t(-1) = -1 \\ dx = -\frac{dt}{t^2} & t(1) = 1 \end{bmatrix} = -\int_{-1}^{1} \frac{dt}{t^2 \left(\frac{1}{t^2} + \frac{1}{t} + 1\right)} = -\int_{-1}^{1} \frac{dt}{1 + t + t^2}$$

То есть интеграл равен самому себе с минусом. Это возможно, только если он равен 0, но он положителен.

10.2. Можно ли в интеграле $\int_{-1}^{1} x dx$ сделать замену $t = x^{\frac{2}{3}}$? Почему? **Решение**. По условию теоремы, заменяющая функция должна переводить новый отрезок интегрирования в старый. Но функция $x^{\frac{2}{3}}$ не имеет обратной на [-1; 1]. При формальной замене получаем интеграл по вырожденному отрезку.

ТЕОРЕТИЧЕСКИЕ ЗАДАЧИ

Определение интеграла

Задание. Постройте интегральную сумму функции $f(x) = x^2 + 1$ на отрезке [-1; 1].

Ответ. При равномерном разбиении и разметке правыми концами получаем сумму

$$\frac{2}{n}\sum_{i=1}^{n} \left(\left(-1 + \frac{2i}{n} \right)^2 + 1 \right) = \frac{2}{n}\sum_{i=1}^{n} \left(2 - \frac{4i}{n} + \frac{4i^2}{n^2} \right)$$

Можно упростить это выражение:

$$\frac{2}{n}\left(2n - \frac{4}{n}\frac{n(n+1)}{2} + \frac{4}{n^2}\frac{n(n+1)(2n-1)}{6}\right) = \frac{8}{3} - \frac{4}{3n} - \frac{4}{3n^2}.$$

2. Постройте интегральную сумму функции ln(x) на отрезке [1; 2].

Ответ. При равномерном разбиении и разметке правыми концами получаем сумму $\frac{1}{n} \sum_{i=1}^{n} \ln \left(1 + \frac{i}{n} \right)$.

Задание. Можно ли считать, что суммы Дарбу — частный случай интегральных сумм? Для каких функций это всегда верно?

Ответ. Для непрерывных. Суммы Дарбу составляются с использованием инфимумов и супремумов, но разрывная функция может не достигать их на каких-то подмножествах.

Задание. Чему равно колебание функции $f(x) = \sin\left(\frac{1}{x}\right)$ на отрезке $\left[0; \frac{1}{\pi n}\right]$? Интегрируема ли эта функция на отрезке $\left[0; 1\right]$?

Ответ. Колебание равно 2, так как в любом таком отрезке функция принимает как значение -1, так и 1. Тем не менее, функция интегрируема. Дело в том, что особенность можно окружить такой малой окрестностью, что на ней $\sum \omega_i \Delta x_i$ будет меньше $\frac{\varepsilon}{2}$. В остальной части отрезка функция непрерывна, для нее также можно сделать $\sum \omega_i \Delta x_i$ малым за счет уменьшения колебания функции.

Задание. Всякая ли монотонная на промежутке функция интегрируема?

Ответ. Нет. Она должна быть ещё и ограниченной.

Свойства интеграла

Задание. Для непрерывных на [a;b] функций выполняется $f(x) > g(x), x \in [a;b], a < b$. Верно ли, что $\int_a^b f(x) dx > \int_a^b g(x) dx$?

Ответ. Аналогичная теорема говорит о том, что $\int_a^b f(x)dx \ge \int_a^b g(x)dx$. Будет ли это неравенство строгим? Да. Достаточно, чтобы исходное неравенство $f(x) \ge g(x)$ было строгим хотя бы в одной точке. Тогда $f(x) - g(x) \ge \alpha > 0$ в некотором промежутке. Но тогда и $\int_a^b (f(x) - g(x)) dx > 0$.

Замечание. Если функция не является непрерывной, задача сложнее. Критерий интегрируемости говорит, что интегрируемая функция не может быть разрывной в каждой точке. Так что достаточно подобрать точку x_0 , в которой функция непрерывна, к ней подходит предыдущее рассуждение.

Задание. Что общего и в чем разница между линейностью интеграла и его аддитивностью?

Ответ. И то и другое представляет интеграл как сумму интегралов. Геометрически линейность делит криволинейную трапецию «по вертикали», а аддитивность — «по горизонтали». Это частные случаи аддитивности меры.

Приложения интеграла

Задание. Всегда ли $\int_a^b f(x) dx$ задает площадь под графиком функции f(x)?

Ответ. Нет. При а < b и только если функция положительна (и если площадь под ней существует).

Задание. Что такое длина кривой? Для каких кривых ее можно вычислить?

Ответ. Длина кривой — предел длин вписанных в неё ломаных. Ее можно вычислить для гладких и кусочно-гладких кривых.

Задание. Можно ли найти объем с помощью интеграла? Сколько раз для этого надо интегрировать?

Ответ. Да, как интеграл от площади сечения. Интегрировать один

или два раза (второй – для нахождения площади).

Несобственный интеграл

Задание. Можно ли вычислить несобственный интеграл как предел интегральных сумм?

Ответ. Нет, так как они будут неограничены, так что не будут иметь предела.

Задание. Сколько особенностей у интеграла $\int_0^{+\infty} \frac{\sin x}{x^3 - x} dx$? Какие?

Ответ. Бесконечность – сама по себе особенность. Знаменатель обращается в 0 в точках $0, \pm 1$. Точка (-1) не входит в пределы интегрирования. При $x \to 1$ функция стремится к бесконечности, а при $x \to 0$ функция стремится к -1 (особенности нет).

2. Сколько особенностей у интеграла $\int_0^{+\infty} \frac{x-1}{\ln x} dx$? Какие?

Ответ. Только +∞.

При $x \to 0$ логарифм стремится к бесконечности. Но функция стремится к 0. У интеграла особенности нет.

При $x \to 1$ логарифм стремится к нулю.

$$\frac{x-1}{\ln x} \sim \frac{x-1}{x-1} = 1$$

То есть функция стремится к 1. У интеграла особенности нет.

Задание. Как выглядит формула Ньютона-Лейбница для несобственного интеграла с особенностью в нижнем пределе?

Ответ. Если особенность в верхнем пределе, то $\int_a^b f(x)dx = F(b-0) - F(a)$, где F(b-0) – предел слева в точке b. В частности, это может быть предел в $+\infty$.

Задание. Почему признаки сходимости несобственного интеграла зависят от знака функции?

Ответ. Если подынтегральная функция неотрицательная, то первообразная монотонна. Сходимость монотонной функции равносильна ее ограниченности. Для немонотонной первообразной этого недостаточно.

Задание. Чем отличаются два признака сравнения для несобственного интеграла?

Ответ. «Сравнение» можно понимать как неравенство и как сравнение по порядку величины (асимптотическое равенство).