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Abstract. A mathematical model of the microelectromechanical system (MEMS) is obtained, 

which performs the task of orienting mobile objects. A distinctive feature of the construction of 

such MEMS is its parametric excitation by modulating the static stiffness of the suspension of 

the sensitive element. Based on the analysis of model equations, the possibility of determining 

the direction of the true meridian with the required accuracy is shown. The results of numerical 

calculations are given that allow not only to illustrate the operation of the device as a high-

speed gyrocompass, but also to determine the conditions that ensure the stable operation of the 

device in the incoherent mode of its excitation. 

1. Introduction 

One of the important directions of creating modern orientation instruments is their construction based 

on micromechanical gyroscopes (MMG) of the planar group of the RR-type (rotary-rotary), which is 

caused by their high technological ability and good prospects for reducing weight, dimensions and 

cost. However, the methods of orienting mobile objects using MMG [1] known to date do not fully 

satisfy the requirements of speed and accuracy. The proposed article is a continuation of a series of 

works [2], in which theoretical bases for the improvement of gyroscopic devices are developed. A new 

approach to the enhancement of MMG functionality is considered, based on the parametric excitation 

of the static stiffness of the suspension of its sensitive element. 

2. The operating principle of MMG  
The Figure 1 shows a kinematic MMG of the RR type, including a rotor 6 in a torsion suspension 5 

with an electrostatic drive consisting of an anchor 3 on the substrate associated with the base 1. The 

drive provides an oscillatory mode of the rotor movement relative to the axis OZ (primary oscillations 

of the rotor). In the presence of a portable angular velocity of the base motion, the resulting gyroscopic 

moment generates secondary oscillations of the rotor around the axis OX, whose amplitude is 

proportional to the measured angular velocity. The oscillations of the rotor are converted into an 

electrical signal by an angle sensor 7. The torque sensor 4 is used to create a compensation mode for 

measuring the angular velocity, and the reference voltage generator 2 is used to obtain information on 

the motion of the base in the coordinate system of the device body (demodulation). 
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Figure 1. Kinematic scheme MMG RR-type: 1 - base; 2 - reference voltage generator; 3 - 

anchor; 4 - the gauge of the moment; 5 - torsion suspension; 6 - rotor; 7 - angle sensor; N 

- the direction of the true meridian; 𝜔ЗВ, 𝜔ЗГ - respectively, the horizontal and vertical 

components of the angular velocity of Earth's rotation; Ω is the angular velocity of 

rotation of the anchor. 

In the incoherent mode of parametric excitation, there is a "strong resonance" (the amplitude of the 

oscillator oscillations increases in comparison with its value at resonance) and a "weak resonance" (the 

amplitude of the oscillations decreases in comparison with the resonance value), which is associated 

with a change in the value coefficient of damping of the gyroscope. In this mode, along with the 

primary oscillations and oscillations with a combination frequency that occurs with parametric 

excitation, the rotor oscillates with a beat frequency. In this case, a change in the phase of the 

oscillations of the rotor creates a "swing" of the sensitivity axis of the device with a beat frequency 

relative to the position corresponding to the absence of excitation. 

 
Figure 2. The change in the position of the MMG sensitivity axis when its static stiffness 

is modulated (incoherent mode). 

The Figure 2 shows the position of the sensitivity axis (the OX axis) of the device with respect to 

the true meridian for the case of its resonant tuning (the OY axis is directed to the north) and its 

position change with incoherent excitation mode. For the case of "strong resonance" - the position of 

the axes OX'Y', and for the case of "weak resonance" - the position of the axes OX''Y''. It can be seen 

that the projection 𝜔ЗГ to the sensitivity axis OX of the tuned device is zero (the value of the 

information signal, that is the output voltage of the sensitivity channel 𝑈x = 0), while the axis OY 

coincides with the direction of the true meridian. With parametric excitation, a periodic change in the 

signal 𝑈x is observed with the same amplitude relative to the "zero position" (corresponding to the 

direction along the "West-East" line). 

In the case of deviation of the device body (sensitivity axis) by some angle ψ, the "center of 

oscillations" will shift from the "zero position" to the value corresponding to this angle. Turning the 

device body around the axis OZ so as to combine the "center of oscillations" with the previously 

indicated "zero position", i.e. achieving a situation where the amplitude of periodic deviations of the 
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axis in the positive and negative directions is the same, you can achieve alignment of the axis with the 

direction of the true meridian. The measured rotation angle of the device body will correspond to its 

desired azimuth. 

It should be noted that the considered method for determining the direction of a true meridian with 

the help of a parametrically excited MMG, despite the apparent analogy with the well-known classical 

gyrocompassing principle based on a three-stage "heavy" gyroscope, has qualitative differences in the 

measurement principle itself. This leads to an increase in the accuracy of determining the direction of 

the true meridian while increasing the speed of the device. 

This unconventional use of MMG, connected with its parametric excitation, makes special 

demands on the dynamics of the device, which, in turn, leads to the need for a numerical analysis of 

the corresponding gyroscopic system based on a rigorous mathematical model. 

2. The mathematical model оf the parametrically excited MMG 

The specificity of the work of MMG allows, based on the use of circuitry solutions, without changing 

the design of the mechanical circuit, to increase the sensitivity of the device to the measured angular 

velocity by its parametric excitation [3]. 

The excitation of the MMG, as an oscillatory system, is carried out by modulating the static 

stiffness of the suspension by changing within a small range the alternating current applied to the 

additional winding of the moment sensor by law, which leads to the creation of a moment 

𝑀 = ∆𝑘 sin(𝜔m𝑡 − 𝜑),                                          (1) 

where where  𝜔m is the modulation frequency, Δk is the amplitude of static stiffness oscillations of the 

rotor suspension, φ is the initial phase, and t is the time. 

To describe the motion of  MMG mounted on the moving base, we introduce a coordinate system  

0𝜉∗𝜂∗𝜁∗ with the origin at the center of mass of the gyro rotor.  

 

 
a                                                                     b 

Figure 3. Coordinate systems. 

With a movable base we can tie the coordinate system   𝑂𝑋об𝑌об𝑍об, the axis 𝑍об  of which 

coincides with the axis of rotation of the rotor MMG (Figure 3a). The motion of the base of the device 

will considered as known, i.e. in each instant of time is known the orientation of the coordinate system 

OXобYобZоб relative to the inertial  0𝜉∗𝜂∗𝜁∗, and the projection  Φ̇x, Φ̇y, Φ̇z  of the vector of absolute 

angular velocity on the base axis system   0𝜉∗𝜂∗𝜁∗  are given functions of time. In addition to the 

above systems are required two systems of axes 𝑂𝑋в𝑌в𝑍в , 𝑂𝑋𝑝𝑌𝑝𝑍𝑝 associated respectively with the 

shaft of a drive motor  and with the principal axes of inertia of the rotor (Figure 3b). 

The point of origin of the system   𝑂𝑋в𝑌в𝑍в , 𝑂𝑋𝑝𝑌𝑝𝑍𝑝  lies in the center of mass of the MMG and 

its position relative to the system  𝑂𝑋об𝑌об𝑍об is successive turns in the positive direction on 

appropriate angles  𝜃𝑧  for OXвYвZв  and   𝜃𝑥, 𝜃𝑦   for   𝑂𝑋𝑝𝑌𝑝𝑍𝑝. 
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For deriving the equations of motion of a gyroscopic system will use the variational principle of 

Ostrogradsky – Hamilton (see for example [4]), from which follow equations 

d

d𝑡

𝜕𝑇

𝜕𝑞�̇�
−

𝜕𝑇
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𝜕Ф𝑖

𝜕𝑞
�̇�

 ,                                                               (2) 

where  T  is the kinetic energy of the considered gyroscopic system;  qi  – generalized coordinates 

defining the position of all points of the system in space; Qi – generalized forces acting on the system; 
20.5i i iП k q  – the potential energy of the system under consideration; 20.5i i iq   is the dissipative 

function of the system; i  – number of generalized coordinates describing the degrees of freedom of 

the considered electromechanical system.  

We choose as the generalized coordinates the rotation angles of the rotor 𝜃𝑥= β, 𝜃𝑦= α, 𝜃𝑧 = 𝛾, 

which uniquely determine its position in the coordinate system associated with the anchor, and as the 

generalized forces, the moments of damping of the rotor and the moments of elasticity of the torsions. 

Suppose that the rotor is an absolutely rigid body, and the suspension has rigidity, which excludes the 

displacement of the center of mass of the rotor relative to the center of the suspension. With such 

limitations on the design, it is possible not to take into account the effect of portable accelerations on 

the dynamics of the MMG. 

The differential equations of motion for the case of a constant angular velocity of rotation of the 

base, after the factorization procedure [5] and subsequent linearization with the help of the Jacobi 

matrix, taking into account the generalized forces, will have the form 

𝐴�̈� + 𝜇α�̇� + (𝑘α + (𝐶 − 𝐵)�̇�(�̇� + 2�̇�z) + ∆𝑘 sin(𝜔m𝑡 − 𝜑) )𝛼

= −𝐴�̈�x − (𝐶 + 𝐴 − 𝐵) �̇��̇�y + (𝐴 + 𝐵 − 𝐶) �̇��̇�z, 

𝐵�̈� + 𝜇β�̇� + (𝑘β + (𝐶 − 𝐴)�̇�(�̇� + 2�̇�z)) 𝛽 = −𝐵�̈�y − (𝐶 + 𝐵 − 𝐴) �̇��̇�x + (𝐴 + 𝐵 − 𝐶) �̇��̇�z,              

𝐶�̈� + 𝜇γ�̇� + 𝑘𝛾𝛾 = −𝐶�̈�z + (𝐶 + 𝐴 − 𝐵) �̇��̇�y − (𝐶 + 𝐵 − 𝐴) �̇��̇�x + 𝑀0 sin 𝛺𝑡,            (3)  

where A, B, C are the principal moments of inertia of the rotor; 𝜇𝛼 , 𝜇𝛽 , 𝜇𝛾  are the coefficients of 

viscous friction with respect to the corresponding coordinates; 𝑘𝛼 , 𝑘𝛽 , 𝑘𝛾- rigidity of the elastic 

suspension elements relative to the axes of the secondary and primary gyro oscillations; 𝑀0 is the 

amplitude of the torque developed by the drive relative to the axis of the primary oscillations. 

 

3. Numerical study 

Notice, that   𝑘𝛽 >> 𝑘𝛼,   𝑀0 >> (𝐶 + 𝐴 − 𝐵) 𝛼 ̇ �̇�𝑦, and in the system of differential equations (3) we 

can put β = β̇ = 0, then for the case of motion of a base with constant angular velocity we obtain 

simplified equations 

𝐴�̈� + 𝜇α�̇� + (𝑘α + ∆𝑘 sin(𝜔m𝑡 − 𝜑) ) = −(𝐶 + 𝐴 − 𝐵) �̇��̇�y,                   (4) 

𝐶�̈� + 𝜇γ�̇� + 𝑘γ𝛾 = 𝑀0 sin 𝛺𝑡. 

The solution of the second equation of system (4) has the form 

𝛾(𝑡) =
𝑀0(1−𝑒−𝑎𝛾𝑡) 𝑐𝑜𝑠 𝛺𝑡

2𝑎𝛾𝐶𝛺
,        𝑎𝛾 =  

𝜇𝛾

2𝐶
 .                                           (5) 

In the steady-state oscillation mode we have 

𝛾(𝑡) =
𝑀0(1−𝑒−𝑎𝛾𝑡) 𝑐𝑜𝑠 𝛺𝑡

2𝑎𝛾𝐶𝛺
,        𝑎𝛾 =  

𝜇𝛾

2𝐶
 .                                         (6) 

Substituting expression (6) into the first equation of system (4), we obtain 

�̈� + 2𝑎𝛼�̇� + 𝜔0
2(1 + 𝑚 sin(𝜔𝑚𝑡 − 𝜑))𝛼 = 𝐾 �̇�y sin Ω𝑡,                                (7) 
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where  𝑎𝛼 =  
𝜇𝛼

2𝐴
, 𝜔0 = √

 𝑘𝛼

𝐴
, 𝐾 =

(𝐶+𝐵−𝐴) 𝛾0 𝛺

𝐴
 , 𝑚 =

∆𝑘

𝑘𝛼
 – the modulation factor, �̇�y = 𝜔ЗГ cos 𝜓,  

𝜓 – the angular deviation of the axis from the direction of the true meridian. 

A feature of the differential equation (7) is the presence of a term associated with a periodic change 

in the positional moment 𝜔0
2 𝑚 sin(𝜔𝑚𝑡 − 𝜑) 𝛼. The presence of such periodically varying energy 

parameters MMG as gyroscopic moments and static stiffness included in the respective 

nonhomogeneous differential equations, provides favorable conditions for the parametric excitation of 

the mechanical contour of the considered gyro [6]. 

Numerical calculations were performed using the Maple 9 with 𝜔𝑚 ≈ 2Ω (incoherent mode). The 

calculation algorithm consisted of the following operations:  

 calculation of the value 𝛼в(𝑡)  of the angular motion of the gyroscope rotor in the shaft coordinate 

system;  

 determination of the value 𝛼к(𝑡) of the angular motion of the rotor in the coordinate system 

associated with the body and, accordingly, determination of the output signal  𝑈𝑥 of the demodulator 

by multiplying the solution by a periodic function sin Ω𝑡 (demodulation process);  

 filtering the output signal 𝑈𝑥 of the demodulator; t.i. screening of  periodic components of the 

output signal with a frequency equal to 2Ω;  

 smoothing out the resulting graphical solutions based on regression analysis in a Maple 9 

environment. 

  
Figure 4. The change of output signal 𝑈𝑥. 

In Figure 4 graphs of the output signal 𝑈𝑥(𝑡) are shown for three cases: 1) the MMG axis OY 

coincides with the direction of the true meridian N ("the center of oscillations" coincides with the 

position of the line "west-east"); 2) the axis OY  is deviated from the direction of the true meridian by 

an angle 𝜓 = 300; 3) the axis is deviated from the direction of the true meridian by an angle 𝜓 =
−300.  

These solutions confirm that in the case of deviation of the body of the device by a certain angle, 

the "center of oscillations" (the dashed line in Figure 4) is displaced from the "zero position" by an 

amount proportional to this angle.  

Thus, the results of numerical studies of the presented mathematical model describing the dynamics 

of motion of a parametrically excited MMG showed the possibility of its use as a ground-based 

precision device for orienting mobile objects. 
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