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Abstract Cluster spike analysis is widely used for studies of
neuronal activity when electrical signals are sorted out and
grouped according to the different shapes.We recently applied
this method to sort out the nociceptive spikes in the trigeminal
nerve implicated in generation of migraine pain. However, the
electrical noise leading to less accuracy of calculated spike
parameters often hinder the correct sorting of nerve signals.
In this study, in order to improve the accuracy of calculations,
we explored the prior approximation of spike shapes before
applying clusterization. The prior fitting of spike shapes
allowed us to extract signal parameters much more precisely
and detect the strongly increased number of spike clusters
which is close to the expected number of fibers in the trigem-
inal nerve. Prior approximation improved cluster analysis out-
comes and, importantly, revealed new clusters that demon-
strated the different functional properties, suggesting that their
function was previously hidden within the multiple firing.

Keywords Clusterization . Approximation . Time course of
firing frequency .Migraine pain

1 Introduction

Analysis of spikes recorded by different electrophysiological
techniques is the most reliable current approach to evaluate the
function of the neurons in the central and peripheral nervous
system [1–4]. Given a large number of synapses and compli-
cated morphology of neurons, spiking activity is typically
very heterogeneous, thus, requiring advanced methods for
separation of multiple spikes. One of the commonly used ap-
proaches for obtaining physiologically relevant information
on the neuronal activity is the clustering of spikes [3, 5].
Thus, the cluster spike analysis based on signal grouping ac-
cording to the amplitude and the shape of spikes is commonly
used to identify spikes originating from different cells.
Basically, there are various ways for spike features extraction:
principal component analysis [5, 6], wavelet analysis [7, 8], or
the direct calculation of the parameters [9].

To improve the quality of registration and to reduce the
contribution of the noise to spike numerical description, dif-
ferent types of filtration, both analog and digital, are common-
ly used. However, all types of filtration, especially in the case
of low signal/noise ratio, can modify the original signal, thus
affecting physiological conclusions.

Recently, we applied clusterization method to sort out the
nociceptive spikes generated in the peripheral branches of the
trigeminal nerve in meningeal tissues [9]. This study provided
a novel information on the neurochemical mechanisms of
nociception in trigeminal nerve endings implicated in genera-
tion of migraine pain.

In the above study, we used the recordings with suction
electrode [10] resulting in relatively low amplitude signals.

* O Gafurov
gsoleg@yahoo.com

A Zakharov
mphiszav@rambler.ru

K Koroleva
kseniya.ks29061991@yandex.ru

R Giniatullin
Rashid.Giniatullin@uef.fi

1 Laboratory of Neurobiology, Kazan Federal University,
Kazan 420008, Russia

2 Department of Physiology, Kazan State Medical University,
Kazan 420012, Russia

3 A.I.Virtanen Institute for Molecular Sciences, University of Eastern
Finland, Kuopio, Finland

BioNanoSci. (2017) 7:565–569
DOI 10.1007/s12668-017-0428-9

mailto:gsoleg@yahoo.com
http://crossmark.crossref.org/dialog/?doi=10.1007/s12668-017-0428-9&domain=pdf


Therefore, in the current study, we decided to employ the prior
approximation of the recorded spikes in order to overcome the
low single/noise ratio and more accurately calculate the am-
plitude and the time course of nociceptive signals. After prior
approximation, we performed spike clustering using
KlustaKwik 1.7 program [11]. This approach strongly in-
creased the number and quality factors of detected clusters
and allowed us to reveal new properties of trigeminal
nociceptors.

2 Methods

Experimental data used for prior approximation method de-
velopment were obtained from the study of capsaicin-induced
neuronal activity in rat meningeal nerve fibers. In short, ex-
periments were performed on male P40–42 Wistar rats at
room temperature (22–24 °C). The skull was thoroughly
cleaned from the surrounding tissues, divided into two halves
and the brain was carefully removed. The resulting hemi-skull
was continuously superfused in oxygenated (95% O2/5%
CO2) Krebs solution composed of (in mM) NaCl 115, KCl
3, CaCl2 2, MgCl2 1, NaH2PO4 1, NaHCO3 25, and glucose
11; pH = 7.3. Immediately before the experiment, the periph-
eral large branch of the trigeminal nerve in meninges was
removed from the surrounding dura mater and placed in a
recording glass electrode. Capsaicin (1 μM, diluted in
DMSO, the final concentration of latter 0.01% which did not
affect firing) was applied to the area of divergence of the
medial meningeal artery (MMA) in the dura mater.

The choice of capsaicin treatment was due to remarkable
pro-nociceptive effect of capsaicin, largely increasing the
number of spikes in trigeminal nerve fibers (Fig. 1a). The total
number of spikes in these experiments ranged between 1000
and 9000, which provided essential dataset for reliable
calculations.

Custom written program in MATLAB was used offline to
detect spikes in digitized electrical recordings [12]. Supra-
threshold, i.e., greater than five standard deviations (SD) of
a baseline recording, electrical activity was considered as a
spike event. Time windows of 6 ms with 2 ms before and
4ms after positive peak of the spike were pulled out for further
analyses as described by us elsewhere [12]. Spikes collected
were normalized by amplitude to SD of each recording base
line to account for differences in recording conditions.

The typical experimental spike has the positive and nega-
tive phases (Fig. 1b). As positive and negative phases of the
spike are based on different ionic mechanisms, we decided to
approximate each of these phases separately (Fig. 1d). To
improve the quality of approximation, the end parts of the
positive phase were overlapped with initial parts of negative
phases. In Fig. 1d, this overlapping range is indicated by black

dots. As a result, we obtained a complete signal with a smooth
transition from the positive to negative phase.

To approximate the time course of spikes we used the
Weibull function, [13] as it allows to scale the signal on the
axes and to choose the final waveform. This distribution is
represented by the following formula:

f tð Þ ¼ a*
t
b

� � c−1ð Þ*
e
−

t
b
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where a is a coefficient for scaling in the vertical axis, b is for
time scaling, and c is the coefficient to set the shape of the
curve.

Fitting of positive and negative phases to Weibull function
was done by varying above the coefficients using MATLAB
function - nlinfit (X, Y, modelfun, beta0). In brief, 6 ms re-
cording representing a spike was put in X vector, modelfun
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Fig. 1 Spike detection and shape approximation. a Original trace of
spontaneous multiple unit activity obtained from the peripheral
trigeminal nerve stimulated with 1 μM capsaicin. b Example of
variable amplitudes and shapes of spikes detected in trigeminal nerve. c
Scheme showing the calculation of action potential parameters such as
amplitudes of the positive and negative peaks as well as the rise time and
decay time. d Overlapping positive and negative segments of the action
potential used for approximation after separation (up) and after
reconstruction (bottom). e Example of approximation (red) of the
original spike (black). Filled black and red circles indicate key points of
spike calculated from original and approximated shapes, respectively
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was our Weibull function, beta0 vector was used to set initial
values for a, b, and c coefficients. As a result, this function
returned Yvector containing estimated a, b, and c coefficients
that were finally used to represent approximated spike.

Figure 1e shows an example of experimental (black line)
and calculated signal after approximation (red line). Black
dots in the curves indicate the key points of original signal
(peaks, onsets and offsets of positive and negative phases).
Red dots mark the same for calculated curve.

Main spike parameters, which were calculated on both raw
recordings and approximated spikes time courses in the current
study, are shown in the Fig. 1c. The following parameters were
calculated: positive and negative amplitude, area of each phase,
rise time (between 10 and 100% of positive amplitude), and
decay time (from 100 to 10% of positive amplitude) (Fig. 1c).

These parameters were entered to the KlustaKwik to ana-
lyze clustering of both raw and approximated spikes.

All calculations were performed by using the MATLAB
software (MathWorks, USA) with the KlustaKwik tool box.
Statistical analysis was performed with two tailed t test and
results were considered significantly different when p < 0.05.

3 Results

The efficiency of calculations with spike approximation was ob-
vious even with visual inspection, as the density of spikes in
clusters was much more compact (Fig. 2a–d). Thus, the density
of the cluster calculated without approximation was much lower
(Fig. 2a) than of cluster obtained after approximation (Fig. 2b).

Even more interesting was the finding that, after approxi-
mation, the previously homogenous large size cluster (Fig. 2c)
was divided into two clearly distinguishable smaller clusters
(Fig. 2d). Remarkably, in this case, the histograms of corre-
sponding spike parameters (inset to Fig. 2d) indicated two
non-overlapping Gaussian-like distributions.

To assess the effectiveness of spike approximation on the
quality of clustering, we constructed the temporal distribution
of parameters of spikes, which were grouped into one cluster.
To this end, we compared the time course of firing frequency
in control (Fig. 2e) with respective new clusters obtained after
approximation (Fig. 2f). Interestingly, the newly identified
clusters demonstrated significantly a different time course of
firing. In one case (upper trace of Fig. 2f) the firing was
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growing slowly, possibly reflecting a secondary effect, where-
as in the other case (bottom trace), there was a very steep rise
in activity suggesting an immediate opening of TRPV1 chan-
nels. Thus, the prior approximation revealed previously hid-
den different temporal properties of the neurochemical re-
sponses in the trigeminal nerve.

For numerical evaluation of effectiveness of our approach,
we calculated the number of clusters obtained with and with-
out approximation. Figure 3 shows an example of the exper-
iment when the previous method without approximation de-
tected 20 clusters from 7061 spikes (Fig. 3a). However, after
approximation, we identified 54 clusters. Notably, in the latter
case (Fig. 3b), clusters were occupying a larger space and
were presented by better separated groups (multiple individual
clusters). Improved separation is confirmed by Mahalanobis

distance which indicates the Bremoteness^ of clusters from
each other, assuming the higher distance, indicating the better
clusterization. We found that the Mahalanobis distance (cal-
culated as mean distance between each clusters and averaged
across all experiments) was significantly higher for approxi-
mated spikes (24.1 ± 2.5) than for original spikes (16.4 ± 1.4,
n = 17, p < 0.05 with t test, Fig. 3d).

4 Discussion

Themost importantadvanceofourstudy is improveddetectionof
clusters of spikes recorded from the meningeal trigeminal nerve
resulting in better description of physiological properties of pe-
ripheralnociceptive fiberscritical forgenerationofmigrainepain.

The spike approximation applied in this study to analyze
the nociceptive firing in trigeminal nerve during physiologi-
cally relevant stimulation, revealed an essential deviation of
experimental spikes from the idealized shape mainly due to
noise contribution. Therefore, a more careful spike inspection
is most important for low amplitude spikes with low signal/
noise ratio [3, 14–16]. More specifically, for small signals, the
detection of the amplitude from the peak was largely depen-
dent on the presence of contaminating noise on the peak. In
addition, the resulting rise time of the spike analyzed without
approximation could vary by several folds. Consistent with
this, approximation which largely standardized (smoothed)
the rise time was most effective in the cases with small fast
spikes resulting in detection of more clusters. Interestingly, the
total number of clusters detected with the method of prior
approximation approached 100, which is close to the expected
number (120–150) of fibers in the trigeminal nerve detected
after specific labeling [10].

The validation of our approach was performed by compar-
ing the distribution of rise-time parameters before and after
approximation. The Gaussian type of distribution in the latter
case indicated more reliable approach for spike clusterization.

By analyzing the distribution of spikes in clusters obtained
with and without approximation, we found that in most cases,
thesingleclusterwasdividedintoseveralnewclearlydistinguish-
able clusters. Notably, this transformation may change, in some
cases, the frequency of firing in the new cluster and can modify
even the temporal profile of response. Thus,most interestingwas
that new clusters often demonstrated new temporal patterns of
activity. Previously, we found that the trigeminal nerve inmenin-
ges contains about 65% of capsaicin-sensitive TRPV1 positive
clusters [9]. This number in the current studywas 68% in control
and72%after approximation that exceedsby~2-timesanexpect-
ed fraction of TRPV1 positive trigeminal neurons we previously
counted in cell culture [17]. Sincewe also foundhere that activity
in new clusters could develop either instantly or slowly, the latter
could be due to secondary indirect activation of nearby fibers by
endogenous agents released from the fast responder. This is
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consistentwith our previous observation that the activation of the
trigeminal nerve could be presented by Bearly^ and Blate^ re-
sponders [9]. The late responders could be activated via release
of endogenous activemolecules such as extracellularATPwhich
canprovidemassiveactivationof trigeminalnerve terminals [18].
Moreover, the approximation of spikes resulting in a larger num-
berofclusterscouldprovideamoreprecisefractionalanalysisand
a better link between clusters and single fibers in the trigeminal
nerve branches [9, 12, 19].

5 Conclusion

In conclusion, we suggest that prior spike approximation is an
important component of the clustering analysis of spiking ac-
tivity especially when the contribution of the negative factors
such as the noise, is essential. Approximation can provide
more detailed analysis of spiking activity both in the periph-
eral and central nervous system, allowing detection of neuro-
nal functional properties which otherwise are hidden in mul-
tiple firing activity.
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