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Corollary. Let X be a separable compact space. Then the N;p —nucleus of a space
X is a Qy,—space.
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HEKOTOPBIE TEOMETPUYECKUWE CBOVICTBA [TPOCTPAHCTBA CBSI3AHHBIX CUCTEM
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H3yuaemcs Hekaccuueckoe ypasHeHue 8 UacmHbsIX NPouU3800HbIX uemeepmozo nopsdka. Ilocmpoetoi
KJIACCbl €20 MOUHBIX pelleHUll, U3yueHo ux KauecmeeHHoe nogedeHue.
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INTRODUCTION TO MODIFIED GRAVITY
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In this paper we give an overview of the evolution of homogeneous and isotropic subspaces in
modified multidimensional gravity.

Keywords: gravity, extra dimensions, modified theory

The compact extra spaces is widely used idea [1, 2, 3, 4]. Any multi-dimensional
model has to lead to the effective 4-dim theory. This would imply relations between the
observable four-dimensional geometry and a geometry of the higher dimensions.

One of the question remaining not clarified yet is: why specific number of dimen-
sions are compactified and stable while others expand? Which specific property of sub-
space leads to its quick growth? There are many attempts to clarify the problem, mostly
related to introduction of fields other than gravity. It may be a scalar field (most used case)
or gauge fields. A static solutions can be obtained using the Casimir effect or form fields.
Sometimes one of the subspace is assumed to be Friedmann-Robertson-Walker space by
definition. Another possibility was discussed in [5]: it was shown that if the scale factor
of our 3D space is much larger than the growing scale factor of the extra dimensions, a
contradiction with observations can be avoided.

The origin of our Universe is usually related to its quantum creation from the space-
time foam. Here we are interested in the subsequent classical evolution of the metrics
rather than a calculation of this probability. Manifolds are nucleated having specific
metrics. The set of such metrics is assumed to be very rich. After nucleation, these
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manifolds evolve classically forming a set of asymptotic manifolds, one of which could
be our Universe. In paper [6] we consider models of modified gravity acting in 5 and 6
dimensions. No other fields are attracted to stabilize an extra space. We have found out
that a number of asymptotic solutions is quite limited. This conclusion was confirmed
both analytically and numerically. There is a set of initial conditions that lead to a
common asymptote of classical solutions.

The work performed under the development program of Volga Region Mathematical
Center (agreement no.075-02-2020-1478). The work was also supported by the Russian
Foundation for Basic Research Grant No. 19-02-00496.
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B amoti pabome daemcst 0630p pewieHull, 0NUCHIBAIOWUX IBONHOYUID MAKCUMANBHO CUMMEMPUUHBLX
noonpocmpamicme 8 MooupuUYUpPOB8AHHbIX MHOZOMEPHBIX MEOPUSX 2pasUmayuul.
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The paper discusses some geometric properties of space of the permutation degree
Keywords: space of the permutation degree, permutation group

A permutation group X is the group of all permutations ( i.s. one-one and onto
mappings X — X ). A permutation group of a set X is usuallay denoted by S(X). If
X ={1,2,...,,n}, then S(X) is denoted by S,,, as well.

Let X" be the n-th power of a compact X. The permutation group S, of all
permutations, acts on the n-th power X" as permutation of coordinates. The set of all



