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Abstract. As is known, the problem of �nding a three-dimensional sta-
ble matching with cyclic preferences (3DSM-CYC) always has a solution,
if the number of objects of each type (i.e., the problem size n) does not
exceed 5. According to the conjecture proposed by K. Eriksson, J. Sös-
trand, and P. Strimling (2006), this is true for any n. However, C.-K. Lam
and C.G. Plaxton (2019) have proposed an algorithm for constructing
preference lists in 3DSM-CYC which has allowed them to disprove the
mentioned conjecture. The size of the initially constructed counterexam-
ple equals 90; however, according to the results obtained by us recently
for the problem with incomplete preference lists, one can use the same
construction for getting a counterexample of size 45. The main contri-
bution of this paper consists of reducing the size of the counterexample
to n = 20. We summarize results of the application of the technique
developed by us for constructing counterexamples for 3DSM-CYC. In
the �nal section of the paper we discuss a new variant of 3DSM, whose
solution always exists and can be found within the same time as that
required for solving 2DSM.

Keywords: 3-dimensional stable matching · cyclic preferences · prefer-
ence graph · Gale-Shapley algorithm

1 Introduction

The monograph [11] by Donald Knuth devoted to the analysis of the Gale�
Shapley algorithm for �nding a stable matching has inspired many mathemati-
cians. Let us brie�y recall the essence of the problem solved by this algorithm
in �matrimonial� terms of the mentioned book by D. Knuth.

Given n representatives of each of two genders (men and women), we assume
that each person has a complete list of preferences of representatives of the oppo-
site gender. We consider sets consisting of n disjoint pairs of men and women, in
other words, perfect matchings of a complete bipartite graph. We say that a man
and a woman who prefer each other to their partners, represent a blocking pair
of matching. If no blocking pair exists for matching, then the latter is said to be
stable. D. Gale and L.S. Shapley [7] have stated the problem of �nding a stable
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matching (2DSM) and proved that such matching always exists. Moreover, they
have proposed a su�ciently simple algorithm for �nding a stable matching.

In the case of two genders, the problem with incomplete preference lists
(2DSMI) is also easily solvable. It is convenient to symmetrize preference lists
in 2DSMI so as to make a man X and a woman x either concurrently enter in
preference lists of each other or concurrently be not included in them. If initially
this condition is not ful�lled, we can just truncate preference lists by deleting
persons, whose sympathies are unrequited. Stable matchings in 2DSMI are not
necessarily complete, it is only necessary that single X and x do not enter in
preference lists of each other and cannot �steal� someone from his/her �spouse�.
In other words, a blocking pair in 2DSMI consists of a man and a woman, who
would become �happier� when forming a couple (note that though the loneliness
is the most unpleasant state for them, it is possible, as distinct from marrying a
person, who does not enter in their preference lists).

The technique for solving 2DSMI with the help of the algorithm proposed for
solving 2DSM is rather simple. To this end, we supplement arbitrarily preference
lists in 2DSMI, solve the resulted 2DSM, and then make persons, who did not
enter in initial preference lists of each other, remain single. One can easily make
sure that as a result we get a stable matching for 2DSMI.

The main content of the monograph of D. Knuth ([11]) is the analysis of the
behavior of the Gale�Shapley algorithm with random preference lists. However,
the end part of the mentioned book contains some problems that are beyond
this issue. In particular, Problem 11 is stated as follows [11, p. 64]: �Can the
stable-matching problem be generalized to three sets of objects (for example
men, women, and dogs)?�. Since the publication of the monograph by D. Knuth,
mathematicians have been studied various three-dimensional generalizations of
the theory of stable matchings. A well-known problem is 3DSM-CYC [4]. In a
problem instance, we are given n men, n women, and n dogs such that each man
(respectively woman, dog) has a strictly ordered preference list over a subset of
women (respectively dogs, men). Recall that a 3-dimensional matching (3DM) µ
is a partition of the set of all men, women, and dogs into disjoint heterogeneous
triples. If (m,w, d) is a triple in µ, we let µ(m) denote w, µ(w) denote d and µ(d)
denote m. µ is (weakly) stable if it admits no blocking triple, which is a triple
(m,w, d) such that m prefers w to µ(m), w prefers d to µ(w), and d prefers m to
µ(d). The 3DSM-CYC problem then is to �nd a stable matching or report that
none exists for a given problem instance.

E. Boros, V. Gurvich, S. Jaslar, and D. Krasner prove that if n ≤ 3, then
3DSM-CYC is solvable with any preference lists (see [4] for the proof of this fact
in the case of k genders, k > 2). In [6], K. Eriksson, J. Söstrand, and P. Strimling
generalize this result for the case when n = 4. Ibid, they state the conjecture
that any 3DSM-CYC (or just 3DSM) has a solution with any n. Using the
statement of the satis�ability problem and performing an extensive computer-
assisted search, K. Pashkovich, L. Poirrier (see [16]) prove the validity of the
conjecture stated by K. Eriksson et al. for n = 5. In [17], B. Pittel proves that
with random preference lists the mean value of stable matchings in 3DSM grows
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as Ω(n2 ln2(n)). Note that heuristic solution algorithms for 3DSM with random
preference lists �nd a solution rather quickly, if n ∼ 10−30. In Chapter �Further
stable matching problems� of the review book ([15, p. 299]) devoted to stable
matchings, D. Manlove writes: �Perhaps the most intriguing open problem in this
list at least in view of the number of authors that have mentioned it, concerns
3DSM-CYC, and in particular the question of whether every instance I of this
problem admits a weakly stable matching.�

However, hopes for the existence of both a solution in 3DSM and a polyno-
mial algorithm for �nding this solution were somewhat naive. The paper [2] by
P. Biró and E. McDermid is devoted to �nding a stable matching with incom-
plete preference lists in the 3D-case (3DSMI). Note that in this problem similarly
to the two-gender case some agents, possibly, remain single. A blocking triple is
also de�ned in a similar way, namely, as a triple consisting of a man, a woman,
and a dog, such that all of them would become �happier�, when forming a family.
However, in contrast to the two-gender case, in the mentioned paper published
back in 2010, P. Biró and E. McDermid give a su�ciently simple example of
3DSMI of size n = 6, where no stable matching exists. Moreover, they prove
that the problem of establishing the solvability of 3DSMI is NP-complete.

The conjecture stated by K. Eriksson et al. has been recently disproved by
C.-K. Lam and C.G. Plaxton [12]. They associate 3DSMI with a certain 3DSM
problem, where n is 15 times greater than the initial size; this problem is solvable
if and only if so is the initial 3DSMI. Therefore, the problem of establishing the
solvability of 3DSM is NP-complete.

The example proposed in the paper [2] allows one to construct an instance
of 3DSM with no stable matching for n = 90 = 6 × 15. The question on the
existence of counterexamples of a lesser size remained open.

An evident way to reduce the size of counterexamples of 3DSM is to solve
the P. Biró and E. McDermid problem that implies the search of instances of
3DSMI with no stable matching for n < 6. We solve the mentioned problem in
the paper [14]. We prove the absence of such instances for n < 3 and construct
several counterexamples for 3DSMI with n = 3. Therefore, the result obtained
in [12] allows one to construct an instance of 3DSM with no stable matching for
n = 45.

Another approach to reduce the size of counterexamples of 3DSM is to reduce
the value of the multiplier (its current value equals 15) when constructing an
unsolvable instance of 3DSM from an unsolvable 3DSMI problem. We apply this
approach in [13]. We prove that one can associate each instance of 3DSMI of size
n with no stable matching with an instance of 3DSM of size 8n with the same
property. This allows us to reduce the size of the counterexample of 3DSM to
3× 8 = 24.

This paper completes the series of works devoted to decreasing the size of
counterexamples for 3DSM. We tried to make this text understandable even for
an unprepared reader. Developing constructions proposed in the paper [13] and
making use of speci�c features of a certain concrete instance of 3DSMI with no
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stable matching, we have succeeded in constructing a counterexample for 3DSM
of size n = 20.

The remainder of the paper has the following structure. In Sect. 2 (similarly
to previous papers of this series) we present formal statements of 3DSM-CYC
and 3DSMI-CYC in terms of the graph theory. In Sect. 3, we state the Key
Lemma given in [13] (in somewhat di�erent terms, which seem to be more clear)
and auxiliary lemmas for it, which are used by us in this paper. Ibid, we also give
the proof of the main Theorem from [13]. The technique used for proving the
main Theorem of this paper is based on the approach applied in the mentioned
paper. The main results of this paper are presented in Sect. 4 and 5. In Sect. 4,
we improve the Key Lemma for further decreasing the size of counterexamples.
In Sect. 5, we propose a counterexample of 3DSM of size 20. In Sect. 6, we
summarize the obtained results and discuss in detail some potential future work.
In particular, we propose a new variant of 3DSM, whose solution always exists
and one can �nd it within the same time as that consumed for solving 2DSM.
In the Appendix, we give a short proof of Theorem 2 from [14]; we use it in this
paper.

2 The statement of 3DSM (3DSMI) in terms of graph
theory

Let G be some directed graph. Denote the set of its edges by E (or E(G)); assume
that no edge is multiple. Assume that the vertex set V of the graph G is divided
into three subsets, namely, the set of men M , women F , and dogs D. Assume
that edges (v, v′), v, v′ ∈ V , of this graph are such that either v ∈ M,v′ ∈ F ,
or v ∈ F, v′ ∈ D, or v ∈ D, v′ ∈ M . Assume that |M | = |F | = |D| (otherwise
we supplement the corresponding subgraph with vertices that are not connected
with the rest part of the graph). The number n = |M | = |F | = |D| is called the
problem size. Evidently, the length of all cycles in the graph G is a multiple of 3.
Note also that this condition ensures the possibility of dividing the vertex set of
any digraph G into three subsets M , F , and D so that all its edges are directed
as is indicated above.

Each edge (v, v′), v, v′ ∈ V , corresponds to some positive integer r(v, v′); it is
called the rank of this edge. For �xed v ∈ V all possible ranks r(v, v1), . . . , r(v, vk)
coincide with {1, . . . , k}, where k is the outgoing vertex degree v (if r(v, v′) = 1,
then v′ is the best preference for v, and so on).

We understand a three-sided matching as a subgraph H of the graph G,
V (H) = V (G) = V , where each vertex v ∈ V has at most one outgoing edge
and the following condition is ful�lled: if a vertex v has an outgoing edge, then
this edge belongs to a cycle of length 3 in the graph H. Cycles of length 3 in the
graph H are called families. Evidently, each family, accurate to a cyclic shift,
takes the form (m, f, d), where m ∈ M , f ∈ F , and d ∈ D. Note that in what
follows, for convenience of denotations of families, we do not �x the order of
genders in a family, i.e., we treat denotations of families as triples derived from
an initial one by a cyclic shift as equivalent.
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In what follows, we sometimes use the notion of a family in a wider sense,
namely, as any cycle of length 3 in the graph G. However, if some three-sided
matching H is �xed, then we describe other cycles of length 3 explicitly, applying
the term �a family� only to cycles that enter in a three-sided matching.

A matching µ is a collection of all families of a three-sided matching H. For
a vertex v, v ∈ V , in the matching µ, the rank Rµ(v) is de�ned as the rank of
the edge that goes out of this vertex in the subgraph H. If some vertex v in the
subgraph H has no outgoing edge, then Rµ(v) is set to +∞.

A triple (v, v′, v′′) is said to be blocking for some matching µ, if it represents
a cycle in the graph G, and

r(v, v′) < Rµ(v), r(v′, v′′) < Rµ(v
′), r(v′′, v) < Rµ(v

′′). (1)

A matching µ is said to be stable if no blocking triple exists for it.
Recall that 3DSMI consists of �nding a stable matching for a given graph G.

As is well known, such a matching does not necessarily exist. Moreover, the
problem of establishing its existence for a given graph G is NP-complete. As
was mentioned in the Introduction, the proof of this fact belongs to P. Biró and
E. McDermid. They have constructed an explicit example of the graph G of
size 6, for which no stable matching exists.

Evidently, 3DSM represents a particular case of the 3DSMI, where the out-
going (and incoming) degree of each vertex of the corresponding graph equals
the problem size n.

Let us construct on the set of agents (graph vertices) the same map as that
used in [15] and in other papers. Denote it by the symbol µ; the same symbol
stands for the matching from which we construct this map. If an agent x re-
mains single, then we put µ(x) = x. Otherwise µ(x) = y, where y is the vertex,
which represents the endpoint of an edge in the subraph H that generates the
matching µ. Informally speaking, in this case µ(x) is the partner of x in the
family, whom x is �partial� to. Evidently, in 3DSM, as distinct from 3DSMI, the
equality µ(x) = x is impossible for a stable matching. Note that µ(µ(x)) is also
a preimage of the vertex x under the map µ; for brevity, we use the denotation
µ−1(x) for it.

Let H ′ be some subgraph of the graph of 3DSM. In what follows, we con-
sider certain (speci�c for this paper) denotations and terms which contain this
subgraph. For any vertex v ∈ V (H ′), we de�ne the following values:

ρH′(v) = max
(v,w)∈E(H′)

r(v, w), ρ
H′(v) = min

(v,w)∈E(H′)
r(v, w).

Let (x, y) ∈ E(H ′). We call the subgraph H ′ an (x, y)-attractor, if for any
stable matching µ, the equality µ(x) = y implies the inclusion µ(y) ∈ V (H ′).
Informally speaking, an (x, y)-attractor �covers� any family in µ, which contains
its edge (x, y).

Let us introduce one more de�nition. Assume, as above, that x ∈ V (H ′).
We call the subgraph H ′ an x-superattractor, if for any stable matching µ, the
inequality Rµ(x) ≥ ρ

H′(x) implies the inclusion {µ(x), µ−1(x)} ⊆ V (H ′). In
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other words, V (H ′) contains a family (x, y, z) from µ if the rank of the edge
(x, y) is not less than the rank of some edge (x, v), (x, v) ∈ E(H ′).

Evidently, an x-superattractor is an (x, y)-attractor for any (x, y) ∈ E(H ′).
The above de�nition also implies that any subgraph H ′′ of the graph of 3DSM
such that H ′′ ⊆ H ′ has the following properties:

1. If H ′′ is an (x, y)-attractor, then H ′ also is an (x, y)-attractor.

2. Let the set of edges that are incident to the vertex x be one and the same
both in H ′ and in H ′′. Then if H ′′ is an x-superattractor, then H ′ also is an
x-superattractor.

We call properties 1 and 2 inheritance properties of the attractor (superattractor)
obtained with the extension of the graph.

In what follows, we use symbolsG,H andH ′ for graphs of 3DSM and 3DSMI,
as well as their subgraphs; we also use, when appropriate, the symbol H ′ with
various subscripts. In certain graphs, we concurrently consider a subgraphH and
subgraphs denoted by the symbol H ′ with various subscripts when considering
them concurrently. In such cases, the symbol H denotes the �central�, in a sense,
subgraph, while the symbol H ′ with some subscript denotes a �peripheral� sub-
graph characterized by its subscript. We use the same subscript in denotations
for vertices of the latter subgraph.

3 The correspondence between unsolvable 3DSMI and
3DSM

In this section, we prove that each 3DSMI of size n with no stable matching
corresponds to 3DSM of size 8n with the same property. As was mentioned
in the Introduction, an analogous result with the multiplier 15 belongs to C.-
K. Lam and C.G. Plaxton [12]. As a corollary, making use of results obtained
by us in the paper [14] (see Lemma 10 in the Appendix), we obtain concrete
instances of 3DSM of size 24 with no stable matching.

Let us consider subgraphs of the weighted graph of 3DSM, which include some
vertices and edges of the initial graph. Let us �rst prove the Key Lemma 1. (We
divide the proof into several separate parts).

Lemma 1 (The Key Lemma for Theorem 1). Let some subgraph H ′ of the
graph of 3DSM take the form shown in Fig. 1, in particular,

r(b, s) = r(d, t) = 3, r(x, c) = r′x, r(x, d) = r′x + 1, (2)

where r′x ∈ {1, . . . , n− 1}. Then H ′ is an x-superattractor.

Lemma 2. Assume that some subgraph H ′′ of the graph of 3DSM takes the form
shown in Fig. 2. Then H ′′ is an (x, c)-attractor.
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Fig. 1. The subgraph H ′ of the preference graph considered in Lemma 1. Vertices of
various colors correspond to various genders. Bold lines represent edges of rank 1, while
dashed ones do those of rank 2. Ranks of edges represented by dotted lines equal r′x,
r′x + 1, or 3 (ranks are indicated near edges).

c

e

a

x

b

Fig. 2. The subgraph H ′′ of the preference graph considered in Lemma 2.

Proof. Let µ be a stable matching in this problem, while µ(x) = c (note that
in this case, Rµ(e) > 1). Assume that Lemma 2 is false, i.e., µ(c) 6∈ {a, b}.
Then Rµ(c) > 2, Rµ(a) > 1, and Rµ(b) > 1. Consider the triple (c, a, e). We
get inequalities r(c, a) < Rµ(c), r(e, c) < Rµ(e), and r(a, e) ≤ Rµ(a). Therefore,
the triple (c, a, e) is not blocking only if µ(a) = e. But then Rµ(b) > 2 and,
consequently, the triple (c, b, e) is blocking. ut

In what follows, we repeatedly apply the technique that is used in the proof
of Lemma 2. Namely, when considering the potentially blocking triple (c, a, e),
with the help of the mentioned technique we conclude that µ(a) = e.

Note also that by the de�nition of a 3D-matching, for any distinct vertices
h and g, equalities µ(h) = g and µ(µ(g)) = h are equivalent. In other words, if
µ(u2) = u1, then the triple (u1, v, u2) does not form families that enter in the
matching, only if µ(u1) 6= v.

Lemma 3. The subgraph H ′ shown in Fig. 1 is an (x, d)-attractor.

Proof. Let µ be a stable matching in 3DSM, while µ(x) = d (note that this means
that Rµ(x) = r′x + 1, µ(e) 6= d, and µ(s) 6= d). Assume that the assumption of
Lemma 3 is violated, i.e., µ(d) 6∈ {a, b, t}.
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Then Rµ(d) > 3. Moreover, µ(a) 6= x, otherwise µ(d) = µ−1(x) = a. There-
fore, Rµ(a) > 1. Analogously, Rµ(b) > 1.

Consequently, µ(c) = a, otherwise the triple (c, a, x) is blocking. Analogously,
µ(b) = s (otherwise the triple (d, b, s) is blocking)

Let µ(a) 6= e. Since µ(c) = a, this assumption is equivalent to the condition
µ(e) 6= c. Then Rµ(a) > 2, Rµ(e) > 2, and the triple (d, a, e) is blocking. Con-
sequently, the assumption stated at the beginning of this paragraph is violated,
and the matching µ contains the family (c, a, e) (see Fig. 3).

c d

e

a

t

x

b

s

3

3

Fig. 3. The part of the preference graph considered in Lemma 3. Bold edges correspond
to pairs that enter in families of the matching µ, provided that µ(d) 6∈ {a, b, t}.

Since µ(t) 6∈ {e, s}, we get the inequality Rµ(t) > 2. But then the triple
(d, t, s) is blocking. ut

Note that the �rst inheritance property and lemmas 2 and 3 imply that the
subgraph H ′ is concurrently an (x, c)-attractor and an (x, d)-attractor.

Lemma 4. Assume that some subgraph of the graph of 3DSM takes the form
shown in Fig. 4. Let µ be a stable matching in this problem and Rµ(x) ≥ r′x.
Then µ(x) ∈ {c, d}.

Proof. Let us prove this lemma ab contrario. In this case, Rµ(x) > r′x + 1.
Let us �rst make sure that µ(c) = a. Assume the contrary. Then Rµ(c) >

1. Consider the triple (c, a, x). It is not blocking, only if µ(a) = x. But then
Rµ(b) > 1. Moreover, according to assumptions µ(x) 6∈ {c, d}, i.e., µ−1(a) 6∈
{c, d}. Therefore Rµ(d) > 1 and Rµ(c) > 1. Consequently, the triple (c, b, x) is
not blocking, only if µ(c) = b (see Fig. 4). Since Rµ(d) > 2, the triple (d, b, x) is
blocking.

Thus, we have proved that µ(c) = a, consequently, Rµ(d) > 1. Moreover,
by assumption, µ(a) 6= x, whence we conclude that Rµ(a) > 1. Then the triple
(d, a, x) is blocking. ut

The assertion of Lemma 1 evidently follows from proved Lemmas 2, 3, and 4.
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a

x

b r′x r′x + 1

Fig. 4. The part of the preference graph considered in Lemma 4. Solid lines represent
edges of rank 1, while dashed ones do those of rank 2. Ranks of edges represented by
dotted lines equal r′x and r

′
x+1 (ranks are indicated near edges). Bold edges correspond

to pairs that enter in families of the matching µ in the case, when Rµ(x) ≥ r′x, µ(c) 6= a.

Remark 1. In all �gures, vertices that characterize genders are colored so as to
make graph edges be directed only from white vertices to black ones, from black
vertices to gray ones, and from the latter to white ones. However, it is evident
that one can �shift these colors modulo 3�. For example, in the graph shown in
Fig. 1 we can recolor all gray vertices to black. Then certainly we should recolor
all vertices that were originally white to gray and color vertices c and d to white;
this does not a�ect the statement of Lemma 1.

Theorem 1. Let H be the graph of 3DSMI of size n with no stable matching.
Let us use it for constructing the graph G of 3DSM in the following way. The
graph H is a subgraph of the graph G (with the same ranks of edges). To each
vertex x of the graph H we �attach� the corresponding copy of the graph H ′x
shown in Fig. 1 with vertices ax, bx, cx, dx, ex, sx, tx 6∈ V (H) (all subgraphs H ′x
are pairwise disjoint). Moreover, let the value r′x in formulas (2) equal ρH(x)+1.
Let us de�ne ranks of the rest edges of the graph G of 3DSM arbitrarily. Then
3DSM with the graph G has no stable matching. Here the size of 3DSM equals 8n.

Proof. Assume the contrary, i.e., assume that for 3DSM with the graph G there
exists a stable matching µG. We intend to construct the matching µH for 3DSMI
de�ned by the graph H from the matching µG. To this end, we will make use
of Lemma 1. Since the matching µH is not stable, we can �nd for it a blocking
triple (v, v′, v′′) composed of vertices of the subgraph H. Let us prove that the
same triple (v, v′, v′′) is blocking for µG.

Let us perform the proof adhering to the above scheme. Let x ∈ V (H).
Denote y = µG(x). The following alternatives are possible:

A) y 6∈ V (H). Then

ρH(x) < RµG
(x). (3)

According to Lemma 1, we get the inclusion {y, µ−1G (x)} ⊆ V (H ′x).
B) y ∈ V (H). Assume that µG(y) 6∈ V (H). Then by Lemma 1 we get the in-

clusion {µG(y), µ−1G (y)} ⊆ V (H ′y). But since µ
−1
G (y) = x, we get a contradiction.

Consequently, in this case, µG(y) ∈ V (H).
Note that the latter property is very important. It means also that ifRµG

(x) <
ρH′

x
(x), then the family (x, µ(x), µ−1(x)) entirely lies in V (H).
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Let us associate the matching µG with the matching µH of 3DSMI with the
graph H. Assume that in the case of alternative A, µH(x) = x (i.e., the agent x
remains single). In the case of alternative B, we put µH(x) = µG(x).

By condition, the matching µH is not stable. Therefore, there exists a block-
ing triple (v, v′, v′′), where v, v′, v′′ ∈ V (H). The blocking property means that
each vertex in this triple satis�es the inequality that connects ranks, for example,
for the vertex v this inequality takes the form r(v, v′) < RµH

(v). If µH(v) 6= v,
then µG(v) = µH(v) and, consequently, r(v, v′) < RµG

(v) (because in the case
under consideration, RµG

(v) = RµH
(v)).

But if µH(v) = v, then RµH
(v) = ∞. However, now we can make use of

inequality (3), which implies that r(v, v′) < RµG
(v).

Analogous alternatives take place for vertices v′ and v′′, namely, r(v′, v′′) <
RµG

(v′) and r(v′′, v) < RµG
(v′′). Therefore, the same triple (v, v′, v′′) is blocking

for the matching µG in 3DSM.
Let us calculate the size of 3DSM. Each triple of vertices of the graph H,

which are associated with di�erent genders, corresponds to three various sub-
graphs in the form shown in Fig. 1; see Remark 1 for the principle of their
coloring. Note that due to the cyclic shift of colors, any such a triple of vertices
in the graph H is supplemented with seven new vertices of each gender of the
graph G; in other words, the number of vertices of the graph G becomes 8 times
greater. ut

Theorem 1, along with the result obtained in the paper [14], allows one to
construct instances of 3DSM of size 24 with no stable matching.

4 The Key Lemma for the further reduction of the
counterexample size

As was mentioned above, Theorem 1, along with the result obtained in the
paper [14], allows one to construct instances of 3DSM of size 24 with no stable
matching. In the next section, we reduce the size of such counterexample to 20.
As a base we use Lemma 5, which is a certain modi�cation of Lemma 1. Recall
that in Lemma 1 we consider an x-superattractor, whose copy is �x-attached�
to each vertex of the graph H that de�nes 3DSMI with no stable matching.
In Lemma 5, we consider the subgraph, which in certain cases can have �two
attachments� (vertices x and z) to two vertices of such a graph H. The �cost� of
this e�ect is the supplement of the subgraph with the vertex f (apart from the
�attached� vertex z). See Fig. 5 for the graph under consideration.

Remark 2. The graph shown in Fig. 1 is a part of the graph shown in Fig. 5, only
ranks of three edges in it are di�erent. Namely, now the rank of edges directed
from vertices a and b to the vertex z equals 2. Correspondingly, ranks of all edges
that go from these vertices, which originally were not less than 2, now are larger
by one, i.e., in the new graph, r(a, e) = r(b, e) = 3 and r(b, s) = 4. Ranks of all
the rest edges in the subgraph of the graph shown in Fig. 5, which contains the
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same vertices x, a, b, c, d, e, s, and t, are the same as in Fig. 1 (and no new edges
appear in this subgraph).

f

x

c d

e

a

t

z

b

s

4

3

33

3

Fig. 5. The subgraph H ′ of the preference graph considered in Lemma 5. Solid lines
represent edges of rank 1, while dashed ones do those of rank 2. Ranks of edges (x, c)
and (x, d) equal r′x and r′x + 1, those of edges (z, c) and (z, d) equal r′z and r′z + 1,
correspondingly, the rank of edges (c, f), (b, e), (a, e), (d, t) equals 3, while r(b, s) = 4.

For brevity of the further reasoning, we introduce one more de�nition (in fact,
we have already used it implicitly when considering alternative B in the proof of
Theorem 1). Let H ′ be some subgraph of the graph of 3DSM, w ∈ V (H ′). We
say that H ′ is w-detachable if for any stable matching µ of 3DSM the inequality
Rµ(w) < ρH′(w) implies that µ−1(w) 6∈ V (H ′). Informally speaking, the latter
assertion means that if the current partner of w in a stable matching is more
preferable to w than other possible partners in the stratum H ′, then the family
under consideration, except w, entirely lies outside the stratum H ′.

Lemma 5 (The Key Lemma for Theorem 2). Assume that some sub-
graph H ′ of the graph of 3DSM takes the form shown in Fig. 5, where ranks
are indicated near the corresponding edges.
A) If H ′ is z-detachable, then H ′ is an x-superattractor.
B) If any stable matching µ of 3DSM satis�es the inequality Rµ(x) < r′x and H ′

is x-detachable (i.e., µ−1(x) 6∈ V (H ′)), then H ′ is a z-superattractor.

At the end part of Section 2, we mention inheritance properties possessed by
an attractor and a superattractor with the extension of the subgraph. In this
section, we need one more technique for constructing attractors and superattrac-
tors.

Proposition 1. Assume that H ′ is a subgraph of the graph of 3SDM, which
contains a certain edge (v, w). Assume also that µ(v) 6= w for any stable match-
ing µ in the considered problem. Let H ′′ be obtained from H ′ by deleting the edge
(v, w) and subtracting one from ranks of all edges outgoing from the vertex v,
which initially exceeded r(v, w). If the resulting graph H ′′ is some (x, y)-attractor
or x-superattractor, then so is the initial graph H ′.
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The validity of Proposition 1 follows from the de�nition of an attractor and
a superattractor, because the order of ranks of edges in the graph H ′ is the same
as that in the graph H ′′.

Let us prove Lemma 5 with the help of Lemma 4. But �rst let us consecutively
prove analogs of Lemmas 2 and 3.

f

c

e

ab

xz

33

3

Fig. 6. The subgraph H ′′ of the preference graph considered in Lemma 6.

Lemma 6. Assume that some subgraph H ′′ of the graph of 3DSM takes the form
shown in Fig. 6, where ranks are indicated near the corresponding edges. Then
H ′′ is an (x, c)-attractor.

Proof. Let µ be a stable matching, and µ(x) = c (note that this implies the
inequality Rµ(e) > 1). Assume that Lemma 6 is false, i.e., µ(c) 6∈ {a, b, f}. Then
Rµ(c) > 3, Rµ(a) > 1, and Rµ(b) > 1. The triple (a, e, c) (the triple (b, e, c)) is
not blocking, only if either µ(a) = z, or µ(a) = e (either µ(b) = z, or µ(b) = e).
Since {µ−1(e), µ−1(z)} = {a, b}, we conclude that µ(f) 6= e and Rµ(f) > 1. But
then the triple (f, e, c) is blocking. ut

Lemma 7. Assume that some subgraph H ′ of the graph of 3DSM takes the form
shown in Fig. 5. If H ′ is z-detachable, then H ′ is an (x, d)-attractor.

Proof. Let µ be a stable matching in 3DSM. In the case when Rµ(z) < r′z,
we can make use of Proposition 1 and the fact that H ′ is z-detachable. Really,
by removing edges, which are incident to the vertex z, from the graph H ′ and
reducing ranks of edges (a, e), (b, e), and (b, s) by one, we get a graph, which by
Lemma 3 is an (x, d)-attractor.

It remains to consider the case, when Rµ(z) ≥ r′z. By condition, Rµ(x) =
r′x + 1 and Rµ(s) > 1. As above, we perform the proof ab contrario, i.e., we
assume that µ(d) 6∈ {a, b, t}.

We get inequalities Rµ(d) > 3, Rµ(b) > 1, and Rµ(a) > 1. The triple (c, a, x)
is not blocking, only if µ(c) = a.

Note that if Rµ(z) > r′z+1 and Rµ(a) > 2, then the triple (d, a, z) is blocking
for the matching µ. Therefore µ contains the family (c, a, z).
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Fig. 7. The subgraph H ′ of the preference graph considered in Lemma 7. Bold lines
represent edges that correspond to pairs that enter in families of a stable matching µ
in the case, when Rµ(z) ≥ r′z and µ(d) 6∈ {a, b, t}.

As a corollary we get inequalities Rµ(e) > 2 and Rµ(b) > 2. Consequently,
µ(b) = e, otherwise the triple (d, b, e) is blocking (see Fig. 7). Hence we get the
inequality Rµ(t) > 1. Recall that by assumption, Rµ(d) > 3. But then the triple
(d, t, e) is blocking. ut

Now we can prove Lemma 5.

Proof. The validity of item A of the lemma follows from lemmas 6, 7, and 4 (cf.
the proof of Lemma 1). It remains to prove item B.

Let us use Proposition 1. Let us remove the vertex x together with all edges
that are incident to it from the graph shown in Fig. 5 and reduce ranks of all
edges that are incident to vertices a and b by one. If now we use the symbol x
instead of z, then the modi�ed in such a way graph in Fig. 5 will contain the
subgraph shown in Fig. 1. It satis�es Lemma 1. Therefore, in this case, according
to the inheritance properties of superattractors (see property 2 at the end part
of Section 2), H ′ is a z-superattractor. ut

5 An example of unsolvable 3DSM of size 20

Let us make use of the concrete example of 3DSMI of size 3 with no stable
matching, which is given in [14, Theorem 2]. See Fig. 8 for the graph H of the
considered problem. See the Appendix for the proof of the fact that 3DSMI that
corresponds to this graph has no stable matching.

Theorem 2. Let the graph G of 3DSM contain the subgraph H shown in Fig. 8.
Assume that for all considered below subgraphs of the graph G, which are copies
of graphs in Fig. 1 and Fig. 5, the value r′y in the corresponding copies coincides
with ρH(y) + 1; here y is a certain vertex (we specify its number later). Thus,
the graph G contains �ve disjoint subgraphs H ′0, H

′
1, H

′
2, H

′
4, and H

′
7, which are

copies of the graph in Fig. 1; the role of the vertex x is played there, correspond-
ingly, by vertices 0, 1, 2, 4, and 7 of the graph H. Subgraphs H ′0, H

′
1, H

′
2, H

′
4,
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Fig. 8. The graph H of 3DSMI of size 3 with no stable matching. For convenience, we
numerate vertices H with numbers v, v = 0, 1, . . . , 8. The value v mod 3 speci�es the
gender that corresponds to the vertex v. The rank of each edge, which is represented
by a solid line, equals 1. Dashed lines represent edges whose rank equals 2. The rank
of the edge (4, 2) equals 3.

and H ′7 have no other common vertices with the graph H. Moreover, the graph
G has two disjoint subgraphs H ′3,6 and H ′5,8; they are copies of subgraphs men-
tioned in Fig. 5, the role of the vertex x is played there by vertices 3 and 5, while
the role of the vertex z is played by vertices 6 and 8, correspondingly. Subgraphs
H ′3,6 and H ′5,8 have no more common points with the graph H. Assume that the
graph G has no vertices except those considered above, i.e.,

V (G) = V (H ′3,6) ∪ V (H ′5,8)
⋃

v∈{0,1,2,4,7}

V (H ′v).

We treat ranks of edges of the graph G, which were not considered above, as
arbitrary values. Then 3DSM de�ned by the graph G has no stable matching.

Lemma 8. Let µ be a stable matching in 3DSM mentioned in assumptions
of Theorem 2. Then {µ(3), µ−1(3)} ∈ V (H), and the subgraph H ′3,6 is a 6-
superattractor.

Proof. Let us �rst note that the edge (6, 4) is the only edge of the graph H in
Fig. 8, which originates from vertex 6. Consequently, if Rµ(6) < r′6, then µ(6) =
4. Since the subgraph H ′4 is a 4-superattractor, in this case, µ−1(6) = µ(4) ∈
V (H ′4)∪{5, 8}. In other words, the subgraph H ′3,6 is 6-detachable. The subgraph
H ′3,6 satis�es conditions stated in item A of Lemma 5, it is a 3-superattractor.

Assume that Rµ(3) > 2, then {µ(3), µ−1(3)} ∈ V (H ′3,6), Rµ(2) > 1. The
triple (1, 2, 3) is not blocking, only if µ(1) = 2. But since H ′2 is a 2-superattractor
and µ−1(2) 6∈ V (H ′2), this implies that Rµ(2) < r′2 = 2, i.e., µ(2) = 3. We get a
contradiction with the assumption made at the beginning of this paragraph.

Consequently, µ(3) ∈ {1, 4}. The subgraph H ′1 is an 1-superattractor, there-
fore, if µ(3) = 1, then Rµ(1) < r′1, i.e., µ(1) = µ−1(3) ∈ V (H). Analo-
gously, in the case, when µ(3) = 4, we get the inclusion µ−1(3) ∈ V (H). Thus,
µ−1(3) 6∈ V (H ′3,6). Consequently, the subgraph H ′3,6 satis�es conditions stated
in item B of Lemma 5, and the subgraph H ′3,6 is a 6-superattractor. ut
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Lemma 9. Let µ be a stable matching in 3DSM mentioned in assumptions
of Theorem 2. Then {µ(5), µ−1(5)} ∈ V (H), and the subgraph H ′5,8 is an 8-
superattractor.

Proof. Assume that Rµ(1) > 3. Since the subgraph H ′1 is an 1-superattractor,
we get the embedding {µ(1), µ−1(1)} ⊆ V (H ′1). Then Rµ(0) > 1. The triple
(0, 1, 5) is not blocking, only if µ(5) = 0. Let us now make use of the fact
that the subgraph H ′0 is a 0-superattractor such that µ−1(0) 6∈ V (H ′0). Then
Rµ(0) < 3 and µ(0) 6= 1, therefore, µ(0) = 7, i.e., the matching µ contains the
family (7, 5, 0). Thus, Rµ(7) > 1, µ(7) 6∈ V (H ′7), which contradicts the fact that
the subgraph H ′7 is a 7-superattractor. Therefore, the assumption made at the
beginning of this paragraph is false, µ(1) ∈ {2, 5}.

Note that if Rµ(8) < r′8, then µ(8) ∈ {6, 0}. In view of Lemma 8 the subgraph
H ′3,6 is a 6-superattractor and by condition of the lemma the subgraph H ′0 is
a 0-superattractor. If µ(8) = 6, then Rµ(6) < r′6, i.e., µ(6) = µ−1(8) ∈ V (H).
Analogously, in the case, when µ(8) = 0, we get the inclusion µ−1(8) ∈ V (H).
Consequently, µ−1(8) 6∈ V (H ′5,8), i.e., the subgraph H ′5,8 is 8-detachable. The
subgraph H ′5,8 satis�es assumptions made in item A of Lemma 5, it is a 5-
superattractor.

Assume that Rµ(5) > 2, then µ−1(5) ∈ V (H ′5,8), consequently, Rµ(4) > 1.
The triple (3, 4, 5) is not blocking, only if µ(3) = 4 (see Fig. 9). But for vertex 1
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3 4 6
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8

Fig. 9. The subgraph H considered in the proof of Lemma 9 in the case when Rµ(5) >
2. We underline vertices x such that (x, µ(x)) ∈ E(H) and overline the rest ones. The
solid line that represents the edge (3, 4) illustrates the fact that µ(3) = 4.

the equality µ(1) = 5 is impossible, because µ−1(5) ∈ V (H ′5,8). Therefore, µ(1) =
2, and the 2-superattractor of H ′2 is such that µ−1(2) 6∈ V (H ′2), consequently,
Rµ(2) < 2. Then the matching µ contains the family (1, 2, 3), which contradicts
the equality µ(3) = 4. Therefore, the assumption made at the beginning of this
paragraph is false, Rµ(5) ≤ 2.

In this case, µ(5) ∈ {3, 0}. If µ(5) = 3, then in view of Lemma 8 we get the
equality µ−1(5) = µ(3) ∈ V (H). If µ(5) = 0, then µ−1(0) 6∈ V (H ′0). Since the
subgraph H ′0 is a 0-superattractor, we conclude that Rµ(0) < r′0, i.e., µ

−1(5) ∈
V (H).
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Therefore, the subgraph H ′5,8 satis�es assumptions of item B of Lemma 5, it
is a 8-superattractor. ut

Now we can prove Theorem 2.

Proof. Assume that in considered 3DSM there exists a stable matching µG.
According to Lemmas 8, 9 each vertex x ∈ V (H) satis�es one of the following two
alternatives: either µG(x) 6∈ V (H) and µ−1G (x) 6∈ V (H), or (x, µG(x)) ∈ E(H)
(in particular, the latter case takes place for vertices x = 3, 5). Evidently, in the
case of the second alternative, (y, µG(y)) ∈ E(H) for y = µG(x) (see the same
correlation in the proof of Theorem 1).

Let us associate the stable matching µG with the matching µH of 3DSMI
with the graph H. Let us do it similarly to the proof of Theorem 1, namely, in
the case, when the �rst alternative takes place for x ∈ V (H), we put µH(x) = x,
while in the case, when the second alternative takes place, we do µH(x) = µG(x).

There exists no stable matching for the graph H, therefore for the matching
µH one can �nd a blocking triple (v, v′, v′′), where v, v′, v′′ ∈ V (H). Similarly to
the proof of Theorem 1, we conclude that the same triple (v, v′, v′′) is blocking
for the matching µG of 3DSM. ut

Let us calculate the size of 3DSM mentioned in Theorem 2. The simplest
way to do this is to calculate the di�erence between the quantity of vertices
that correspond to each gender in Theorem 2 and in Theorem 1 (in the case
when the subgraph H in both theorems is one and the same, namely, when it
coincides with the graph H shown in Fig. 8). The only di�erence is the fact that
in 3DSM mentioned in Theorem 2, instead of subgraphs H ′3, H

′
6, H

′
5, and H

′
8,

one considers subgraphsH ′3,6 andH
′
5,8. We can easily make sure that the number

of vertices that correspond to each gender in the union of the latter subgraphs
is reduced by 4. Therefore, the graph G mentioned in Theorem 2 de�nes 3DSM
of size 20.

6 Concluding remarks and open problems

In this paper, we decrease the size of an instance of 3DSM with no stable match-
ing. The size of the initial example proposed by C.K. Lam and C.G. Plaxton
equals n = 90; the size of the example of the same problem given by us here
equals n = 20. We tried to get as much useful information from the construction
of the superattractor (and from its modi�cations) as possible.

Earlier K. Pashkovich and L. Poirrier ([16]) have proved that in any 3DSM of
size n ≤ 5 there exists a stable matching. Therefore, the minimum size of 3DSM
with no stable matching is not less than 6 and not greater than 20. Its exact
value is not known yet. Possibly, the construction, which would allow us to build
counterexamples of a small size, principally di�ers from that used in this paper
and in [12].

B. Pittel has pointed out that the average number of stable matchings grows
faster than n2 ln2(n) as n → ∞ ([17]). Therefore, it seems natural to suppose
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that the percentage of unsolvable 3DSM tends to zero as n → ∞. The proba-
bilistic technique [1], which is often used for counting the number of solutions to
combinatorial problems, seems to be useful in studying the mentioned problem.

Naturally, it is interesting to obtain a generalization of 2DSM to the case
of three genders without such exceptions. As is well known, stable matchings
always exist in 3GSM with lexicographically acyclic preferences [5]. In this case,
genders are not symmetric; a hierarchy of their �importance� is assumed to be
given a priori. However, we can state a symmetric variant of the problem, whose
solutions also exist (and their quantity is larger than that in the non-symmetric
case).

Let us consider this case in detail. Assume that the following six preference
matrices are given: rMW is the matrix of preferences of women among men,
rMD is the matrix of preferences of dogs among men; the sense of analogous
denotations rWM , rWD, rDM , and rDM is evident. (Following the monograph
by D. Knuth, we use matrix denotations instead of order symbols accepted in
the game theory.) For denoting ranks of agents x in a 3D-matching µ, we need
to modify the denotation Rµ(x) used by us earlier in this paper. Since now the
agent x interacts with two partners, we introduce one more superscript that
denotes the gender of the partner. Thus, if (m,w, d) ∈ µ, then, for example,
Rµ,W (m) = rMW (m,w), analogously, Rµ,D(m) = rMD(m, d), and so on. Let
(m,w, d) 6∈ µ. We say that a triple (m,w, d) is pairwise blocking for a matching µ,
if

rMW (m,w) ≤ Rµ,W (m), rWM (w,m) ≤ Rµ,M (w),

rDM (d,m) ≤ Rµ,M (d), rMD(m, d) ≤ Rµ,D(m),

rWD(w, d) ≤ Rµ,D(w), rDW (d,w) ≤ Rµ,W (d)

(cf. inequalities (1)). Note that here m,w, d do not necessarily belong to three
distinct triples in the matching µ, it su�ces that at least one of three elements of
the blocking triple �is new�. One can easily prove that due to the latter condition,
at least four inequalities among six ones given above are strict. We say that a
matching µ is pairwise stable, if it contains no pairwise blocking triple.

We can easily construct such matchings in the following way. First we solve
2DSM on pairs from M ×W with preference matrices rMW and rWM , and do
2DSM on pairs from M × D with preference matrices rMD and rDM . Then
we �combine� solutions by transforming pairs (m′, w′) in the �rst solution and
pairs (m′, d′) in the second one (i.e., pairs consisting of two solutions with the
same elements from M) to triples (m′, w′, d′) of the matching µ of the three-
dimensional problem. One can easily see that in this case, any triple (m,w, d),
which does not enter in µ, cannot be pairwise blocking, because otherwise one
of the �rst four inequalities stated above is violated (in which case we would
obtain a contradiction to the stability of the 2D matchings in either the 2DSM
instance on M ×W or the 2DSM instance on M ×D).

We can analogously de�ne a new variant of 3DSMI as a problem with incom-
plete preference lists such that one of its solutions can be found in an evident
way.
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In the case of 2DSM, one can introduce a natural partial order on all its
solutions (see [11]). J. Conway and D. Knuth have proved that this order forms
a distributive lattice. Moreover, as was proved later [3,9], the correspondence be-
tween distribution lattices and stable matchings is biunique. The authors of the
mentioned papers have also explicitly described a partially ordered set (POSET),
whose ideals de�ne a lattice of stable matchings. Elements of this POSET repre-
sent the so-called rotations (i.e., cycles that include alternately men and women)
de�ned by preference matrices of 2DSM [10] (see the monograph [8] for more
detail about rotations and their connection with the distributive lattice). The
structure of this lattice allows one to �nd a stable matching with the minimum
regret for this problem in quadratic time (recall [15] that the regret is de�ned
as max(m,w)∈µmax{rMW (m,w), rWM (w,m)}) and to solve other optimization
problems in the class of two-dimensional stable matchings in polynomial time.

We are interested in �nding an analogous structure for the three-dimensional
problem de�ned above. However, this is not so easy, because in this problem
the existence of some two-dimensional projection of a solution to 3DSM, which
solves the corresponding 2DSM, is not guaranteed.

Let us give a concrete problem instance. Let n = 6. Assume that with ` = 1, 2
any pair (x, y) such that r(x, y) = ` satis�es the equality r(y, x) = ` (�love and
strong sympathies are always mutual�). Consider a graph with 18 vertices (all
agents). Let us construct in this graph edges (x, y) such that r(x, y) = 1. Let
the resulted graph represent a union of three cycles of length 6. Moreover, if
we supplement this graph with edges (x, y) such that r(x, y) = 2, then all of
them will lie inside the connectivity component formed by cycles. Evidently,
such construction is possible and (accurate to isomorphism) uniquely de�nes
elements of ranks 1 and 2 in matrices rMW , rMD, rWM , rWD, rDM , and rDW ).
We prove that independently of the rest ranks in these matrices, this problem
has a pairwise stable matching, which consists, evidently, of 6 triples and has
the following property: by deleting representatives of any �xed gender from these
triples one cannot get a solution to the corresponding 2DSM.

Let us explain this property in more detail. For convenience, denote elements
of three cycles mentioned above as (mi,0, wi,0, di,0,mi,1, wi,1, di,1), i = 1, 2, 3.
Then one can easily see that the only solution to 2DSM with matrices rMW , rWM

takes the form (mi,k, wi,k), where i = 1, 2, 3 and k = 0, 1. In other words, the
unique solution to 2DSM consists of �loving couples�. Really, if some pair does
not enter in the solution, then it is blocking. Analogously, the unique solution
to 2DSM with matrices rWD, rDW takes the form (wi,k, di,k), i = 1, 2, 3 and
k = 0, 1; while the unique solution to 2DSM with matrices rDM , rMD takes the
form (di,k,mi,(k+1) mod 2), i = 1, 2, 3 and k = 0, 1.

At the same time, 3DSM under consideration has the following solution:

µ = {(m1,0, w1,0, d1,0), (m1,1, w1,1, d1,1),

(w2,0, d2,0,m2,1), (w2,1, d2,1,m2,0),

(d3,0,m3,1, w3,1), (d3,1, w3,0,m3,0)}.
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Evidently, one cannot obtain all 6 families that enter in this solution by combin-
ing solutions of only two �xed 2DSM problems (on pairs M ×W and W ×D or
on pairs W ×D and D ×M or on pairs D ×M and M ×W ).

The absence of the pairwise blocking triple for it is due to the fact that for
any x in this solution Rµ(x) ≤ 2. Consequently, the blocking triple can belong
only to one connectivity component of the graph de�ned above. The graph of
this connectivity component de�nes the problem of �nding a pairwise stable
matching of size 2 such that the obtained triple is pairwise blocking for the
matching in this problem, which is de�ned by the separate line in the above
formula. Evidently, this condition is not ful�lled for the obtained triple, because
each pair of families that enters in the separate line represents a combination of
solutions of two 2DSM (of size 2) and therefore is pairwise stable.

Therefore, 3DSM considered here always has a solution; however, the struc-
ture of all solutions to this problem is rather complicated. We are going to pro-
ceed studying this issue, including related optimization problems, on the solution
set of considered 3DSM.

Appendix. An instance of 3DSMI of size n = 3 with no
stable matching

Lemma 10 ([14], Theorem 2). 3DSMI with the graph G shown in Fig. 8 has
no stable matching.

Proof. There exist 7 families that form matchings in this problem, namely,
(0, 1, 5), (0, 7, 8), (1, 2, 3), (1, 5, 3), (2, 3, 4), (3, 4, 5), and (4, 8, 6).

Recall that a matching µ in 3DSMI de�ned by the graph G is said to be
complementable, if there exists a triple of vertices (v, v′, v′′) such that µ(v) = v,
µ(v′) = v′, µ(v′′) = v′′, and {(v, v′), (v′, v′′)(v′′, v)} ⊆ E(G).

Evidently, any complementable matching is not stable, the triple (v, v′, v′′)
mentioned in the above paragraph is blocking for it. Therefore, for proving the
absence of a stable matching it su�ces to �nd blocking triples for all noncom-
plementable matchings. For the graph shown in Fig. 8 there exists 8 noncomple-
mentable matchings. Below we give their complete list together with blocking
triples:
1) {(0, 1, 5), (2, 3, 4)}, the blocking triple is (4, 8, 6);
2) {(0, 1, 5), (4, 8, 6)}, the blocking triple is (1, 2, 3);
3) {(0, 7, 8), (1, 2, 3)}, the blocking triple is (3, 4, 5);
4) {(0, 7, 8), (1, 5, 3)}, the blocking triple is (2, 3, 4);
5) {(0, 7, 8), (2, 3, 4)}, the blocking triple is (0, 1, 5);
6) {(0, 7, 8), (3, 4, 5)}, the blocking triple is (0, 1, 5);
7) {(1, 2, 3), (4, 8, 6)}, the blocking triple is (0, 7, 8) or (3, 4, 5);
8) {(1, 5, 3), (4, 8, 6)}, the blocking triple is (0, 7, 8). ut
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