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Анализ данных эксперимента и оптимизация в техниче-

ских задачах. Метод. указания к практическим занятиям / Сост.: 

А.Ю. Барыкин, Р.Р. Басыров, М.М. Мухаметдинов. - Наб. Чел-

ны: НЧИ КФУ, 2018. - 38 с. 

Методические указания посвящены прикладным вопросам 

анализа результатов экспериментальных и теоретических исследо-

ваний в технических дисциплинах. Приведены расчётные методи-

ки и примеры исследований автотранспортных средств.  

Методические указания могут быть использованы в учебном 

процессе при изучении дисциплине “Основы научных исследова-

ний” и в дипломном проектировании для студентов вузов, обу-

чающихся по направлениям подготовки: 23.04.02 «Наземные 

транспортно-технологические комплексы» (квалификация выпу-

скника: магистр), 23.05.01  «Наземные  транспортно-технологичес- 

кие средства» (квалификация выпускника: инженер), 13.04.03 

«Энергетическое машиностроение» (квалификация выпускника: 

магистр). 

Данные методические указания также могут быть использо-

ваны в учебном процессе по аналогичной дисциплине направле-

ний подготовки 23.03.03 «Эксплуатация транспортно-

технологических машин и комплексов» (квалификация выпускни-

ка: бакалавр), 23.03.01 «Технология транспортных процессов» 

(квалификация выпускника: бакалавр). 

 

Табл. 13. 

Рис. 1. 

Библиогр. 15 назв. 
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В соответствии с программой в результате изучения дисцип-

лины “Основы научных исследований” студент, обучающийся по 

направлениям подготовки: 23.04.02 «Наземные транспортно-

технологические комплексы» (квалификация выпускника: ма-

гистр), 23.05.01  «Наземные  транспортно-технологические сред-

ства» (квалификация выпускника: инженер), 13.04.03 «Энергети-

ческое машиностроение» (квалификация выпускника: магистр),  

должен уметь получить, обработать и анализировать результаты 

исследований. 

Отечественными и зарубежными учёными разработаны мно-

гие десятки математических моделей колёсных машин, отличаю-

щиеся различной степенью соответствия реальным физическим 

процессам. Высокая сложность и многообразие явлений, возни-

кающих при движении автомобиля, в большинстве случаев не по-

зволяют провести сугубо теоретическое описание. Прикладной 

характер исследований подразумевает достаточно широкое ис-

пользование экспериментальных данных и эмпирических зависи-

мостей. 

Необходимо также учитывать, что входные возмущения тех 

или иных факторов разнообразны по своим характеристикам и мо-

гут иметь случайный или последовательно изменяющийся харак-

тер. В некоторых случаях известны только предельные значения 

параметров из-за недостаточной исследованности процесса - по 

причине крайней сложности или из-за недостатка информации. 

 

 

1. Анализ результатов эксперимента.  

Обоснование количества опытов. 

 

Методика планирования эксперимента - важнейшая состав-

ная часть плана эксперимента. В ней излагаются: последователь-

ность действий; основные приёмы и правила осуществления каж-

дого этапа, использование приборов и оборудования; порядок из-

мерения, фиксации результатов и методы их обработки; порядок 

анализа результатов эксперимента. 
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При разработке методики важно правильно обосновать ко-

личество опытов, которое гарантирует требуемую точность ре-

зультата, а с другой стороны – не ведёт к неоправданному пере-

расходу средств и времени на избыточные испытания. 

Анализ случайных погрешностей основывается на теории 

случайных ошибок. Эта теория даёт возможность с определённой 

гарантией оценить возможные ошибки и вычислить истинное зна-

чение измеряемой величины. В основе теории случайных ошибок 

лежит предположение о том, что при бесконечно большом числе 

измерений истинное значение измеряемой величины равно сред-

неарифметическому значению всех результатов измерений, а слу-

чайные погрешности одинаковой величины, но разного знака 

встречаются одинаково часто. При этом появление того или иного 

результата измерения как случайного события описывается нор-

мальным законом распределения. 

Для нормального закона распределения общей оценочной 

характеристикой измерений является дисперсия: 

1п

)хх(

D

п

1i

2
i

2
00








 ; 

где 0  - среднее квадратичное отклонение измеренных значений 

iх  от среднеарифметического х ; п  - число измерений. 

Дисперсия характеризует однородность измерения: чем вы-

ше 0D , тем больше разброс измерений. 

Доверительным интервалом называется интервал значений 

iх , в который с заданной вероятностью попадает истинное значе-

ние дх  измеряемой величины. Вероятность того, что истинное 

значение дх  находится в данном доверительном интервале, назы-

вается доверительной вероятностью измерения дР . Наиболее час-

то доверительная вероятность дР  принимается равной 90,0 ; 

95,0 ; 99,0 . Доверительный интервал характеризует точность из-

мерений данной серии, а доверительная  вероятность - достовер-

ность измерений. 
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При небольшом числе измерений ( 20п  ) доверительный 

интервал   рассчитывается из выражения: 

0t   ; 

где t  - значение критерия Стьюдента, выбираемое в зависимости 

от принятой доверительной вероятности дР  и числа измерений 

(табл. 3); 0  - среднеарифметическое значение среднеквадратич-

ного отклонения  , определяется по формуле: 

п0   . 

Истинное значение измеряемой величины имеет вид: 

 ххд . 

Относительная погрешность серии измерений при заданной 

доверительной вероятности определяется по формуле: 

%100
х



 . 

Если расчётная величина доверительного интервала соизме-

рима с погрешностью определения   и   3 , то скорректиро-

ванное значение доверительного интервала определяется из выра-

жения: 

2
2

3

t







 
  

 ; 

где t  - табличное значение критерия Стьюдента при заданной 

доверительной вероятности дР   и бесконечно большом числе из-

мерений п  (табл. 1). 

При количестве испытаний более десяти методика обосно-

вания количества опытов базируется на неравенстве Чебышева: 

2
0

п

)x(D
1]|)x(Mх[|Р





 ;                                                (1) 

“Вероятность того, что разница между среднестатистическим 

х  и математическим ожиданием )x(M  не превысит  , равна 

разности между единицей и отношением 
2

0 п)x(D  ”; 
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где п  - количество проведённых опытов; х - среднее значение 

случайно измеряемой в ходе эксперимента величины x ; )x(M  - 

математическое ожидание величины x  ( хlim)x(M
п 

 ); )x(D0  

- дисперсия величины x , рассчитанная по результатам п  опытов; 

  - требуемая (заданная) точность результата. 

 
Табл. 1. 

Критерий Стьюдента. 

 

п  t  при дР  

0,90 0,95 0,99 

2 6,31 12,71 63,70 

3 2,92 4,30 9,92 

4 2,35 3,18 5,84 

5 2,13 2,77 4,60 

6 2,02 2,57 4,03 

7 1,94 2,45 3,71 

8 1,90 2,36 3,50 

9 1,86 2,31 3,36 

10 1,83 2,26 3,25 

15 1,76 2,14 2,98 

20 1,73 2,09 2,86 

  1,64 1,96 2,58 

 

 

В этой формуле имеется три неизвестных: п  и статистиче-

ские характеристики х  и )x(D0 , зависящие от п . Поэтому про-

цесс расчёта п  является итеративным: вначале задаётся некоторое 

априорное значение п , проводится п -ное количество опытов, вы-

числяется )x(D0  и проверяется неравенство (1). Если оно выпол-

няется, то количество опытов достаточно. В противном случае ко-

личество опытов увеличивается. 
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Пример. Экспериментальные данные испытаний шипа кре-

стовины межколёсного дифференциала на смятие (предельное 

напряжение смятия см , МПа) приведены в табл. 2. 

Статистические характеристики рассчитываются по из-

вестным формулам математической статистики: 
 

Табл. 2. 

Опытные данные. 

 

№  

опыта 

( i ) 

1 2 3 4 5 6 7 8 9 10 

см  12,42 12,69 12,81 12,63 12,56 12,19 12,78 12,45 12,40 12,22 

 

515,12х  ; 

0422,0п)хx()x(D
п

1i

2
i0 



. 

 

По результатам испытаний определяется их требуемое 

число, которое обеспечит с заданной вероятностью 0,95 разницу 

между х  и )x(M  не более 0,1 МПа (т.е. 1,0 ). Из неравенст-

ва Чебышева найдём искомую величину: 

 

22,0п

0422,0
19,0


 ;   

2,42
)9,01(1,0

0422,0
п

2



 . 

 

Требуемое количество испытаний превышает 42 опыта. 

Проведя дополнительные 33 опыта, нужно снова рассчитать х  и 

)x(D0  и проверить требуемый показатель п . Если неравенство 

Чебышева будет соблюдено, то испытания можно прекратить. В 

противном случае проводятся дополнительные испытания, пока 

неравенство (1) не будет выполнено. 



 8 

(Можно при фиксированном числе испытаний определить 

получаемую разницу между х  и )x(M . В данном случае (при 10 

опытах) она составляет 0,205 МПа.) 

2. Исключение грубых ошибок.  

Сглаживание данных эксперимента.  

 

При анализе результатов эксперимента следует исключить 

грубые ошибки (промахи). Однако, прежде чем исключить то или 

иное измерение, необходимо убедиться, что это действительно 

грубая ошибка. Наличие промахов определяется по критериям: 

п)1п(

ххmax
1







 ;   
п)1п(

хх min
2







 ; 

где maxх , minх  - наибольшее и наименьшее значения из п  изме-

рений. 

Максимальное значение критерия max , возникающее 

вследствие статистического разброса, определяется по табл. 3 в 

зависимости от числа измерений п  и заданной доверительной ве-

роятности дР . 

Если max1   , то значение maxх  следует исключить из се-

рии измерений как промах. При max2    исключается значение 

minх . После исключения грубых ошибок определяют новые зна-

чения х  и   из 1п   или 2п   измерений. 

 
Табл. 3. 

Критерий 
max

 . 

 

п  
max

 при дР  

0,90 0,95 0,99 

3 1,41 1,41 1,41 

4 1,64 1,69 1,72 

5 1,79 1,87 1,96 

6 1,89 2,00 2,13 

7 1,97 2,09 2,26 
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8 2,04 2,17 2,37 

9 2,10 2,24 2,46 

п  
max

 при дР  

0,90 0,95 0,99 

10 2,15 2,29 2,54 

15 2,33 2,49 2,80 

20 2,45 2,62 2,96 

 

Пример. Определить истинное значение максимальной ско-

рости автомобиля ВАЗ-2106 и относительную погрешность се-

рии из 10 измерений при доверительной вероятности 0,95 и по-

грешности определения %1,0 . Результаты измерений приведе-

ны в табл. 4. 
Табл. 4. 

Данные измерений. 

 

№  

опыта 

1 2 3 4 5 6 7 8 9 10 

Аv , км/час 148,1 148,3 149,4 147,4 149,0 150,1 148,5 148,2 147,9 149,3 

 

Расчёт исходных величин приведен в табл. 5 и ниже. 

 
Табл. 5. 

Расчётные значения. 

 

№  

определения 
iх  iхх   2

i )хх(   

1 148,1 0,52 0,2704 

2 148,3 0,32 0,1024  

3 149,4 -0,78 0,6084 

4 147,4 1,22 1,4884 

5 149,0 -0,38 0,1444 

6 150,1 -1,48 2,1904 

7 148,5 0,12 0,0144 

8 148,2 0,42 0,1764 

9 147,9 0,72 0,5184 

10 149,3 -0,68 0,4624 
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 1486,2 0,0 5,976 

 

62,148пхх i  ;   8149,0
110

976,5



 . 

Анализируем серию на наличие грубых ошибок: 

1,150хmax  ;   4,147хmin  ; 

914,1
101108149,0

62,1481,150
1 




  

578,1
101108149,0

4,14762,148
2 




  

Для 95,0Рд   и 10п   находим в табл. 3: 29,2max  . 

Исключаем как грубую ошибку 4,147х4  . 

Определяем новые значения х  и   из оставшихся 9 измере-

ний (табл. 6). 

 
Табл. 6. 

Статистические выкладки. 

 

№  

определения 
iх  iхх   2

i )хх(   

1 148,1 0,656 0,4303 

2 148,3 0,456 0,2079 

3 149,4 -0,644 0,4147 

4 149,0 -0,244 0,0595 

5 150,1 -1,344 1,8063 

6 148,5 0,256 0,0655 

7 148,2 0,556 0,3091 

8 147,9 0,856 0,7327 

9 149,3 -0,544 0,2959 

  1338,8 0,004 4,3219 

 

756,148пхх i  ; 
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7350,0
19

3219,4



 . 

Для 95,0Рд   и 9п   находим (табл. 1) 31,2t  . 

Определяем величину доверительного интервала: 

566,09/31,27350,0  . 

Величина доверительного интервала превышает погреш-

ность определения. 

Тогда истинное значение измеряемой величины: 

566,0756,148vА   км/час. 

Относительная погрешность серии измерений: 

%38,0%100
756,148

566,0
 . 

 

Сглаживание данных эксперимента является специальной 

операцией усреднения с помощью интерполяционных полиномов, 

обеспечивающей получение уточнённого значения iy  по заданно-

му значению iy  и ряду близлежащих значений ( ...,  

,y 1i ,yi 1iy  ,...), известных со случайной погрешностью. 

Линейное сглаживание по трём точкам реализуется с помо-

щью следующих формул: 

6/)yy2y5(y 2100  ; 

3/)yyy(y 1ii1ii   ,   1пi1  ; 

6/)yy2y5(y 2п1ппп   ; 

где п  - номер последней точки (ординаты iy ). 

Линейное сглаживание по 5 точкам проводится с использо-

ванием формул: 

5/)yyy2y3(y 42100  ; 

10/)yy2y3y4(y 32101  ; 

5/)yyyyy(y 2i1ii1i2ii   ,  2пi2  ; 

10/)y4y3y2y(y п1п2п3п1п   ; 
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5/)yyy2y3(y 4п2п1ппп   . 

 

Пример. Плотность рабочей жидкости вязкостной муфты 

находится в линейной зависимости от температуры. Результа-

ты сглаживания грубых данных эксперимента ( iy ) по методам 

трёх и пяти точек ( iy ), а также точные значения функции даны 

ниже в табл. 7. 
 

Табл. 7. 

Результаты линейного сглаживания. 

 

i  
iy  iy  для сгла-

живания по 

трём точкам 

iy  для сгла-

живания по 

пяти точкам 

Точное значение 

x861,0977y  , 

 кг/м
3
, для диапазона х  

0…180 
0
С 

0 1023 989,83 997 977,0 

1 902 968,33 965,2 959,78 

2 980 925,33 933,4 942,56 

3 894 914 914 925,34 

4 868 896 906,6 908,12 

5 926 886,33 886,8 890,9 

6 865 890,67 883,4 873,68 

7 881 874,33 876,6 856,46 

8 877 864 859,4 839,24 

9 834 840,5 842,2 822,02 

 ,% 3,619 1,617 1,356 - 

 

 

3. Построение гистограмм. 

 

Одномерный массив из п  некоторых цифровых данных iх  

характеризуется совокупностью статистических характеристик 

(одномерная статистика), перечисленных ниже. 

Начальные моменты k-того порядка: 
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



п

1i

k
ik x

п

1
)x(т . 

Обычно 4,3,2,1k   (точность вычисления kт  при 4k   

низкая). 

Центральные моменты k-того порядка: 





п

1i

k
iik )]х(тх[

п

1
)x(М ; 

Момент 0)х(М1  . 

Связь центральных моментов с начальными устанавливается 

соотношениями (аргумент х  в скобках опускаем): 

2
122 ттМ  ;    

3
12133 т2тт3тМ  ; 

4
12

2
13144 т3тт6тт4тМ  ; 

которые позволяют вычислять kМ  по мере ввода ix  (без запоми-

нания массива ix ). 

Среднее значение: 





п

1i
i1 x

п

1
тх ; 

есть наиболее вероятное значение числа в массиве. 

Дисперсия смещённая: 





п

1i

2
i )хх(

п

1
D ; 

является наиболее вероятной степенью отклонения ix  от среднего 

значения х . 

Стандартное смещённое отклонение D  определяет 

среднеквадратичную погрешность ix , если за точное значение 

принять х . 

Дисперсия несмещённая: 
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









п

1i

2
i

2
0 )хх(

1п

1

1-п

пМ
D ; 

применяется при статистической обработке чисел ix  с нормаль-

ным распределением. 

Стандартное несмещённое отклонение (среднее квадратич-

ное отклонение) 00 D . 

Коэффициент ассимметрии: 








n

1i
23

2

33
i23

0 М

М
)хх(

Dп

1
А ; 

характеризует скошенность графической функции плотности рас-

пределения вероятностей )х(Р . При 0А  она симметрична, при 

0А  вытянут правый, а при 0А  - левый участок спада кривой 

)х(Р . 

Коэффициент эксцесса: 

3
М

М
)хх(

Dп

1
Е

2
2

4
п

1i
i2

0




 


; 

характеризует степень остроты пика кривой )х(Р  в сравнении с 

)х(Р  для нормального распределения. Если 0Е  , )х(Р  имеет 

более острый пик, если 0Е   - пик менее острый. 

Вспомогательные коэффициенты: 

)3п()1п(

)1п(6
U33




 ; 

5)п()3п()1п(

)3п()2п(24
U

244



 ; 

служат для приближённой проверки гипотезы о нормальном рас-

пределении ix . Если: 

)3...2(А 3  и )3...2(Е 4 ;                                               (2) 

то распределение )х(Р  для массива ix  можно считать нормаль-

ным. 
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При программировании вычислений одномерной статистики 

желательно предусмотреть следующие возможности: 

  накопление сумм 
k
iх ; 

  возможность исключения  ошибочно введённого числа ix ; 

  подсчёт п   в ходе ввода ix ; 

 выдачу статистических характеристик в любой момент (до окон-

чания ввода всех ix ). 

Среднее геометрическое для п  чисел ix  определяется как: 

п
п21М х...ххG  . 

Гармоническое среднее: 

)х...хх(пН 1
п

1
2

1
1М

  . 

Гистограмма распределения характеризует количество чисел 

ix , попадающих в интервалы изменения x  с границам 0d , 1d , 

2d , … , пd . Гистограмма распределения графически строится в 

виде столбцов, высота которых соответствует количеству ix , по-

павших в интервал изменения x , на который опирается столбик 

(на горизонтальной оси x ). 

Гистограмма интегрального распределения характеризует 

количество чисел, попадающих в интервалы )d,( 1 , )d,( 2 , 

… , )d,( п . 

Простейший алгоритм подготовки гистограмм заключается в 

сравнении ix  с сеткой границ 0d , 1d , 2d , … , пd  с помощью 

операций условных переходов и подсчёте числа попаданий в каж-

дый интервал. Однако программа при большом числе интервалов 

получается громоздкой, увеличивается время обработки каждого 

ix . В большинстве случаев отрезки ]d,d[ 21 , ]d,d[ 32  и т.д. 

имеют одинаковую ширину: 

п)хх(хС 0М   ; 

где Мх  - максимальное значение ix , 0х  - минимальное значение 

ix , п  - число интервалов. 
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Тогда алгоритм ускоренной подготовки данных для по-

строения гистограмм будет следующий. 

1. Вводим Мх , 0х  и  п . 

2. Определяем массив счётчиков )п(А , вычисляем С по 

формуле и полагаем 1i  . 

3. Организуем ввод ix , вычисление 1ii   (формирование 

текущего номера i  каждого ix ) и вычисление вспомогательной 

переменной: 

))xx(Cint(Y 0 . 

Значение Y  указывает на номер того отрезка, в который по-

падает заданное значение ix . Функция )xint(  вычисляет целую 

часть числа х . 

4. Вычисляем 1)Y(А)Y(А   (т.е. вносим единицу в со-

держимое счётчика )Y(А ) и возвращаемся к п. 3. 

5. Вывод данных для построения гистограмм организуем с 

помощью цикла с управляющей переменной j , меняющейся от 

значения 1  до п  c шагом  1. Числа попаданий ix  в  j -тый отре-

зок получаем выводом значений )j(А . Для получения данных для 

построения гистограммы интегрального распределения вычисляем 

)j(ASS   при начальном 0S  . 

Статистические расчёты на специализированных калькуля-

торах обычно выполняются микропрограммно. 

Поскольку экспериментальные данные, как правило, носят 

вероятностный характер, прежде всего, необходимо определить 

закон распределения исследуемой величины и его характеристики. 

Для определения закона распределения случайной величины ix  

можно воспользоваться широко известными методами статистиче-

ской проверки гипотез с помощью критериев Пирсона (
2 ), Фи-

шера ( F ), Колмогорова ( ). 
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Пример. Дан ряд значений момента трения, Н·м, фрикцион-

ного дифференциала для постоянного значения передаваемого 

момента:  

202, 198, 193, 206, 212, 201, 196, 190, 197, 209, 203, 207, 196, 

213, 203. 

Расчёт статистических характеристик приводит к сле-

дующим результатам: 

73,201тх 1  ;  39,43D  ;  587,6 ; 

49,46D0  ;  819,60  ;  06997,0А ; 

7849,0Е  ;  001,20т3  ;  263,4171т4  ; 

5401,0U3  ;  8921,0U4  . 

Проверка условия (2) показывает соответствие экспери-

ментальных данных нормальному закону распределения. 

 

 

4. Дисперсионный анализ. 
 

В научных исследованиях  часто требуется оценка достовер-

ности влияния на исследуемый процесс фактора, который может 

быть учтён лишь качественно. Решение такой задачи обеспечивает 

применение дисперсионного анализа. 

Метод дисперсионного анализа предусматривает (для случая 

однофакторного эксперимента) сравнение двух серий измерений 

какого-либо параметра одного и того же процесса. Одна из серий 

принимается в качестве базовой, другая получена в условиях дей-

ствия исследуемого фактора. 

По данным сравниваемых серий измерений рассчитывается 

сумма квадратов отклонений от общего среднего между сериями 

1Q  и внутри серии 2Q . 





m

1i

2
i1 )xx(nQ ;   

 


m

1i

2
n

1i
ij2 )xx(Q ; 

где ix  - среднее арифметическое для п  измерений в серии; x  - 

среднее арифметическое для обоих серий (общее среднее значе-

ние); ijx  - отдельное измерение в j -той серии; m  - число сравни-
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ваемых серий. Величина 1Q  характеризует рассеивание исследуе-

мого параметра между сериями, а величина 2Q  - рассеивание это-

го параметра в серии. 

Оценка достоверности влияния фактора на выбранный па-

раметр процесса производится по критерию Фишера: 

2
2

2
1

pF



 ; 

где 

 
1m

Q12
1


  - дисперсия между сериями, обусловленная изучае-

мым фактором;  

)1n(m

Q22
2


  - дисперсия внутри серии, обусловленная слу-

чайными причинами. 

Если изучаемый фактор оказывает существенное влияние на 

изучаемый параметр, то: 
2
2

2
1   . 

Чем больше величина критерия Фишера F , тем больше сте-

пень достоверности этого влияния. Для проверки статистической 

значимости исследуемого влияния расчётное значение критерия 

pF  сравнивают с табличным TF , выбираемым в зависимости от 

числа степеней свободы 1mf1  , )1n(mf2   при данной 

доверительной вероятности 95,0PД  . 

Если TP FF  , то влияние фактора на исследуемый пара-

метр значимо. Табличные значения критерия Фишера приведены в 

табл. 10. 

 

Пример. Оценить значимость влияния замены упругого эле-

мента в подвеске легкового автомобиля на частоту колебаний 

подрессоренной массы автомобиля Ока-1113 при исходных дан-

ных, приведенных в табл. 8. 
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Табл. 8. 

Исходные данные. 

 

№ 

п/п 
Частота колебаний  , Гц 

Базовый упругий 

элемент 

Опытный упругий 

элемент 

1 1,05 1,06 

2 1,08 1,07 

3 0,95 1,04 

4 0,98 1,02 

5 1,01 1,08 

6 0,97 1,03 

 

Промежуточные выкладки приведены в табл. 9. 

 
Табл. 9. 

Данные расчёта. 

 

№ 

п/п 
Ах  Вх  АА хх   2

АА )хх( 

 

ВВ хх 

 

2
ВВ )хх(   

1 1,05 1,06 0,0433 0,00187 0,01 0,0001 

2 1,08 1,07 0,0733 0,00537 0,02 0,0004 

3 0,95 1,04 -0,0567 0,00321 -0,01 0,0001 

4 0,98 1,02 -0,0267 0,000713 -0,03 0,0009 

5 1,01 1,08 0,0033 0,0000109 0,03 0,0009 

6 0,97 1,03 -0,0367 0,00135 -0,02 0,0004 

  6,04 6,3  0,0125239  0,0028 

 

0067,1хА  ; 

05,1хВ  ; 

028,1х  ; 

00563,0))028,105,1()028,10067,1((6Q 22
1  ; 

01532,00028,001252,0Q2  . 

Определяем дисперсии между сериями и внутри серий. 
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00563,0
12

00563,02
1 


 ;   001532,0

)16(2

01532,02
2 


 . 

Расчётное значение критерия Фишера: 

675,3
001532,0

00563,0
FP  . 

По табл. 10 для известных 95,0PД  , 112f1   и 

2f 10)16(2   находим значение 96,4FT  . Так как 

TP FF  , то влияние замены упругого элемента на частоту коле-

баний подрессоренной массы не является значимым. 

 
Табл. 10. 

Критерий Фишера. 

 

2f

 
Значение TF  при 95,0PД  и различных 1f  

1 2 3 4 5 6 7 8 9 

1 161,45 199,50 215,71 224,58 230,16 233,99 236,77 238,88 240,54 

2 18,51 19,00 19,16 19,25 19,30 19,33 19,35 19,37 19,39 

3 10,13 9,55 9,28 9,12 9,01 8,94 8,89 8,85 8,81 

4 7,71 6,94 6,59 6,39 6,26 6,16 6,09 6,04 6,00 

5 6,61 5,79 5,41 5,19 5,05 4,95 4,88 4,82 4,77 

6 5,99 5,14 4,76 4,53 4,39 4,28 4,21 4,15 4,10 

7 5,59 4,74 4,35 4,12 3,97 3,87 3,79 3,73 3,69 

8 5,32 4,46 4,07 3,84 3,69 3,58 3,50 3,44 3,39 

9 5,12 4,26 3,86 3,63 3,48 3,37 3,29 3,23 3,18 

10 4,96 4,10 3,71 3,48 3,33 3,22 3,14 3,07 3,02 

11 4,84 3,98 3,59 3,36 3,20 3,09 3,01 2,95 2,90 

12 4,75 3,89 3,49 3,26 3,11 3,00 2,91 2,85 2,80 

13 4,67 3,81 3,41 3,18 3,03 2,92 2,83 2,77 2,71 

14 4,60 3,74 3,34 3,11 2,96 2,85 2,76 2,70 2,65 

15 4,54 3,68 3,29 3,06 2,90 2,79 2,71 2,64 2,59 

16 4,49 3,63 3,24 3,01 2,85 2,74 2,66 2,59 2,54 

17 4,45 3,59 3,20 2,96 2,81 2,70 2,61 2,55 2,49 

18 4,41 3,55 3,!6 2,93 2,77 2,66 2,58 2,51 2,46 

19 4,38 3,52 3,13 2,89 2,74 2,63 2,54 2,48 2,42 

20 4,35 3,49 3,!0 2,87 2,71 2,60 2,51 2,45 2,39 
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5. Расчёт характеристик парной корреляции.  

Линейный парный регрессионный анализ. 
 

Корреляция является признаком, указывающим на взаимо-

связь ряда численных последовательностей. Парная корреляция 

характеризует взаимосвязь двух последовательностей iх  и iу . 

Постоянные коэффициенты а  и b  в линейном уравнении регрес-

сии типа bxaу   по методу наименьших квадратов рассчиты-

ваются по формулам: 

2
n

1i
i

n

1i

2
i

n

1i
i

n

1i
i

n

1i
ii

)х(хn

ухухn

b













 ;  



n

1i
i

n

1i
i х

n

b
у

n

1
хb-уа ; 

 

где п  - число парных измерений величин х  и у . 

Коэффициент парной корреляции находится по формуле: 

 

n

)у(

у
n

)х(

х

ух
n

1
ух

R

2
n

1i
in

1i

2
i

2
n

1i
in

1i

2
i

n

1i
i

n

1i
i

n

1i
ii























  

 

Он характеризует степень отклонения связи между iх  и iу  

от линейной. Если R  близок к 1, то эта связь линейна, т.е. 

bxaу ii  , причём знак R  определяет знак коэффициента а . 

Если 0R  , то 0а  , и, напротив, при 0R   0а  . Величина 

коэффициента корреляции указывает на тесноту связи между пе-

ременными. Если 0,1R  , то связь является чисто линейной; если 

0R  , то корреляционной связи между iх  и iу  нет или она не-
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линейная. Обычно считают тесноту связи удовлетворительной при 

5,0R  , линейность связи достоверной при 95,0R  . 

При малом числе парных измерений ( 50п  ) оценивается 

достоверность связи путём расчёта дисперсии коэффициента кор-

реляции по уравнению: 

 

1п

R1 2

r



 . 

 

Связь считается достоверной с доверительной вероятностью 

95,0 , если выполняется условие: 

 

3
R

r




. 

 

При нелинейной корреляционной связи обычно используют 

уравнение в виде многочлена: 

 
2хсхbау  .                 

                                                                                                 

Пример. Методом наименьших квадратов определить ко-

эффициенты линейного уравнения, тесноту и достоверность свя-

зи между величиной макронеровностей  дороги дh  и изменением 

максимальной динамической реакции на упругом элементе подвес-

ки maxzR  при следующих данных: 

Табл. 11.  

Исходные данные. 

 

дh  ( х ), мм 16 27 36 43 53 64 

maxzR  ( у ), Н 438 522 629 745 880 1035 

 

Заносим исходные значения х , у  и промежуточные рас-

чётные величины в сводную таблицу. 
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Табл. 12. 

Сводные данные. 

 

№ п/п х  у  ух   2х  
2у  

1 16 438 7008  256 191844 

2 27 522 14094 729 272484 

3 36 629 22644 1296 395641 

4 43 745 32035 1849 555025 

5 53 880 46640 2809 774400 

6 64 1035 66240 4096 1071225 

  239 4249 188661 11035 3260619 

 

Определим значения постоянных коэффициентов в линей-

ном уравнении регрессии: 

813,12
9089

116455

239110356

42492391886616
b

2





  

783,197385,510167,708
6

239
813,12

6

4249
а  . 

Таким образом, уравнение линейной связи имеет вид: 

дmaxz h813,12783,197R  . 

Определим коэффициент корреляции: 







)424932606196()239110356(

42492391886616
R

22
 

9942,0
117140

116455

15097139089

116455



 . 

Полученное значение R , близкое к 1 , свидетельствует о 

чисто линейном характере связи. В связи с малым числом измере-

ний проверяем достоверность связи расчётом дисперсии коэффи-

циента корреляции: 

00517,0
236,2

01157,0

16

9942,01 2

r 



 ; 
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3302,192
00517,0

9942,0R

r




. 

Связь достоверна. 

 

Линейный парный регрессионный анализ заключается в оп-

ределении параметров эмпирической линейной зависимости: 

01 bхb)х(у  ;                                                                           (3) 

описывающей связь между некоторым числом n  пар значений iх  

и iу , обеспечивая при этом наименьшую среднеквадратичную по-

грешность. Графически эту задачу можно представить следующим 

образом - в облаке точек  ii у;х  плоскости XOY  требуется про-

вести прямую так, чтобы величина всех отклонений отвечала ус-

ловию: 





n

1i

2
ii min)]х(уy[U , 

где )х(у i  - зависимость (3). Для этого нужно приравнять нулю 

частные производные: 





n

1i
i10i

0

)]хbb(y[
дb

дU
;  




n

1i
ii10i

1

]х)хbb(y[
дb

дU
; 

что даёт для определения неизвестных коэффициентов 0b  и 1b  

систему линейных уравнений: 





n

1i
i

n

1i
i10 ухbnb ;     




n

1i
ii

n

1i

2
i1

n

1i
i0 уххbхb . 

Решение этой системы: 























n

1i

2
i

2
n

1i
i

i

n

1i
i

n

1i
i

n

1i
i

1

хnх

ухnух

b ;   









 


n

1i
i1

n

1i
i0 хbу

n

1
b . 
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При необходимости можно произвести дополнительно вы-

числение коэффициента парной корреляции R  или среднеквадра-

тичной погрешности: 









 



n

1i
ii0

n

1i
i1

n

1i

2
i

2 ухbуbу
n

1
 , 

что позволит количественно оценивать степень приближения то-

чек  ii у;х  к прямой. 

Нелинейная парная регрессия сводится к получению задан-

ной нелинейной зависимости )х(у  (нелинейной по независимой 

переменной х , но линейной по параметрам этой зависимости!), 

приближающей совокупность чисел iх  и iу  с наименьшей сред-

неквадратичной погрешностью. 

Сведение нелинейной регрессии к линейной выполняется с 

помощью линеаризующих преобразований в ходе ввода iх , iу  и 

при выводе 0b  и 1b . Такое сведение целесообразно, если в распо-

ряжении имеется только программа вычисления параметров ли-

нейной регрессии. 

 

 

6. Нелинейный регрессионный анализ. 

 

В общем случае для нелинейной регрессии более удобно ис-

пользовать методики и программы, не требующие специальных 

преобразований при вводе iх , iу  и при выводе результатов вы-

числений. 

Гиперболическая регрессия заключается в нахождении па-

раметров функции: 

хbb)х(у 10  ; 

из решения системы уравнений 





n

1i
i

n

1i
i10 ух1bnb ; 




n

1i
ii

n

1i

2
i1

n

1i
i0 хух1bх1b . 

Степенная регрессия обеспечивает нахождение параметров 

функции: 



 26 

1b
0 хbу  ; 

по формулам 























n

1i

2
i

2
n

1i
i

n

1i
ii

n

1i
i

n

1i
i

1

)x(lnnxln

уlnxlnnуlnxln

b ;    























 


n

1i
i1

n

1i
i0 хlnbуln

n

1
expb . 

Показательная регрессия обеспечивает получение парамет-

ров а  и  b  показательной функции: 

xbа)х(у  ; 

из решения системы уравнений 





n

1i
i

n

1i
i уlgхblgalgn ;   





n

1i
ii

n

1i

2
i

n

1i
i )уlgх(хblgхalg . 

Экспоненциальная регрессия обеспечивает получение пара-

метров функции: 

х)bexp(bу 10  ; 

по формулам 























n

1i

2
i

2
n

1i
i

i

n

1i
i

n

1i
i

n

1i
i

1

хnх

ylnхnylnх

b ;   























 


n

1i
i1

n

1i
i0 хbyln

n

1
expb . 

Логарифмическая регрессия даёт параметры a  и b  функ-

ции: 
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xlgbау  ; 

из решения системы уравнений 





n

1i
i

n

1i
i yхlgbnа ;   

 
 


n

1i

n

1i
ii

2
i

n

1i
i )хlgy()х(lgbхlgа . 

Параболическая регрессия обеспечивает получение трёх па-

раметров 0b , 1b  и 2b  приближения параболической функцией: 

2
210 хbхbbу  ; 

из решения системы уравнений 





n

1i
i

n

1i

2
i2

n

1i
i10 yхbхbnb ; 

  
  


n

1i

n

1i

n

1i
ii

3
i2

2
i1

n

1i
i0 уххbхbхb ; 

 

  
  


n

1i

n

1i

n

1i
i

2
I

4
i2

3
i1

n

1i

2
i0 уххbхbхb . 

 

Полиномиальная регрессия (аппроксимация) обеспечивает 

нахождение коэффициентов полинома: 
т

т
2

210 ха...хахаа)х(у  ; 

из решения системы уравнений 























ттт222т11т0т

1т1т231201

0тт221100

dас...асасас

...

dас...асасас

dас...асасас

;                 (4) 

где 





n

1i

j
ij хс , m2,...,2,1,0j  ;   




n

1i
i

k
ik ухd , m,...,2,1,0k  . 
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Полученная система линейных уравнений решается методом 

Гаусса. Полином степени nт  , где n  - число пар iх , iу , обес-

печивает аппроксимацию (и интерполяцию) таблично заданной 

функции )х(у ii  с минимальной среднеквадратичной погрешно-

стью: 


 


n

1i

2
i

1n
E


.                                                                                  (5)                                                                          

Если nт  , то имеет место обычная интерполяция, т.е. зна-

чения )х(у  при iхх   точно совпадают с заданными iу . При 

nт  такого совпадения в общем случае нет. Таким образом, ап-

проксимация )х(у ii  по методу наименьших квадратов имеет бо-

лее универсальный характер, чем обычная интерполяция. 

Полиномиальная регрессия (аппроксимация) с автоматиче-

ским выбором степени полинома выполняется по следующему ал-

горитму. Вначале задаётся степень 1m   (линейная регрессия). 

Отсчёты iх , iу  вводятся и запоминаются. После нахождения вна-

чале всех 0а  и  1а , затем 2а , вычисляется среднеквадратичная 

погрешность по формуле (5) и сравнивается с заданной 0Е . Если 

0ЕЕ  , степень полинома увеличивается на 1, и т.д. Счёт пре-

кращается, как только достигается 0ЕЕ  . 

При оценке достоверности приближения функции методом 

регрессионного анализа следует определить среднее значение от-

носительной погрешности, %: 

100у/)уу(
n

1 n

1i
рiрiэi  



 ;                                                (6) 

где эiу  - экспериментальные значения функции, рiу  - значения 

функции, полученные с помощью регрессионной зависимости; n - 

число опытов (пар значений). Расхождение данных %15  свиде-

тельствует о неточности применяемого метода. В таком случае 

необходимо сменить метод регрессии или увеличить степень по-

линома (для полиномиальной регрессии). Расхождение в пределах 
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%15...5  указывает на удовлетворительную точность метода, в 

пределах %5 - на высокую точность метода. 

 

Пример. Определить регрессионные зависимости для пар 

значений )у,х( , приведенных в табл. 7, и соответствующие по-

грешности.  

Применяется полиномиальная регрессия первого порядка 

( 1m  ). Решение системы уравнений (4) даёт следующие форму-

лы аппроксимации: 

Для iу : 

x727,045,970y  . 

Для iy  (сглаживание по трём точкам): 

х730,063,970у  . 

Для iy  (сглаживание по пяти точкам): 

х766,044,975у  . 

Значения у , полученные по регрессионным зависимостям, и 

соответствующие относительные погрешности приведены в 

табл. 13. 

 
Табл. 13. 

Результаты аппроксимации. 

 

i  Значения регрессионных функций Точное  

значение у  
iy  iy   

(сглажена по 

трём точкам) 

iy   

(сглажена по 

пяти точкам) 

0 970,45 970,63 975,44 977,0 

1 955,91 956,03 960,11 959,78 

2 941,36 941,43 944,78 942,56 

3 926,82 926,83 929,45 925,34 

4 912,27 912,23 914,12 908,12 

i  Значения регрессионных функций Точное  
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iy  iy   

(сглажена по 

трём точкам) 

iy   

(сглажена по 

пяти точкам) 

значение у  

5 897,73 897,63 898,79 890,9 

6 883,18 883,03 883,47 873,68 

7 868,63 868,43 868,14 856,46 

8 854,09 853,83 852,81 839,24 

9 839,55 839,23 837,48 822,02 

 ,% 0,889 0,873 0,829 - 

 

Можно сделать вывод о высокой точности применяемого 

метода и достаточной эффективности проведенного ранее 

сглаживания данных эксперимента. 

 

 

7. Аппроксимация и интерполяция  

с помощью сплайн-функций. 

 

Полиномиальная интерполяция и аппроксимация не обеспе-

чивает непрерывность производных функции (x)y  и может давать 

значительные погрешности в промежутках между узлами (расчёт-

ными точками). Кроме того, она плохо приспособлена для экстра-

поляции и, как правило, не обеспечивает правильное асимптотиче-

ское поведение (x)y  при изменении аргумента x  за пределами 

интервала интерполяции. Нередко с увеличением числа узлов по-

грешность такой интерполяции не только не уменьшается, но и 

начинает расти. 

От этих недостатков свободна аппроксимация и интерполя-

ция с помощью сплайн-функций. Сплайн-функцию (англ. Splain - 

гибкая линейка) можно наглядно трактовать как линию, которую 

образует гибкая линейка, будучи закреплённой в ряде точек - уз-

лах интерполяции. Математически сплайн - специальный много-

член, принимающий в узлах функции значения )x(yy(x)y ii   

и обеспечивающий непрерывность в них производных. Обычно 

достаточно обеспечить непрерывность первой и второй производ-
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ных, для чего достаточно использовать сплайн-многочлены 

третьего порядка (кубические сплайны). 

Для каждого отрезка ]x ,x[ 1ii   изменения х  кубическая 

сплайн-функция записывается в виде: 




 
i

3
i1i

3
1ii

i
i

h

1
])хх(m)хх(m[

h6

1
)х(f

)]хх()
6

hm
y()хх()

6

hm
y[( i

2
i1i

1i1i

2
ii

i 





 
 ;                                                                              

i1ii xxh   ; )x(y)х(fi  ; )х(fm ii  ; n,...,2,1i  ;  

где п  - число узлов. При известных ix , iy  и iт  эта формула за-

даёт сплайн-аппроксимацию. 

Если потребовать выполнения условия ii y)x(f  , то при-

ведённое выше выражение для кубических сплайн-полиномов 

приводит к системе линейных уравнений, из которых находится 

iт : 

  2i1i1i1iiii тhт)hh(2тh  








 



 





i

i1i

1i

1i2i

h

yy

h

yy
6 . 

Однако эта система не полностью определяет iт . Чтобы 

полностью определить все iт , нужно задать дополнительные гра-

ничные условия. Если они заданы в виде 0т1   и 0тп  , полу-

чаем нормальные сплайн-функции; при 1п тт   и 21п тт   

имеем периодические сплайн-функции и т.д. 

По данному алгоритму необходимо вычислить коэффициен-

ты )x(fт ii   нормального кубического сплайна, что при  

]х,х[х п1  обеспечит интерполяцию с помощью описанной вы-

ше сплайн-функции. Если 1xх  , то выполняется линейная экст-

раполяция по формуле: 

)хх())хx/()уy(6/т)хх((y)x(f 112122121  ;  
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а при пxх   - экстраполяция по формуле: 

  ))хx/()уy(6/т)хх((y)x(f 1пп1пп1п1ппп

)хх( п . 

При экстраполяции предполагается, что наклон линейного 

участка )x(f  равен первой производной сплайн-функции в точке 

)у,х( 11  при экстраполяции для 1xх  , и в точке )у,х( пп  при 

пxх  . 

Сложные колебательные процессы аппроксимируются пе-

риодическими сплайн-функциями. Устранение осцилляций при 

обработке экспериментальных данных, обусловленных наличием 

случайных ошибок и промахов испытаний, может быть получено с 

помощью сглаживающих сплайнов. Оценку достоверности влия-

ния фактора следует производить по критерию Фишера. В случае 

взаимного влияния двух параметров и сложной выходной характе-

ристики возможно применение бикубических сплайнов для реше-

ния задачи аппроксимации функции двух переменных. Погреш-

ность сплайн-аппроксимации может быть также определена по 

формуле (6). 

 

8. Оптимизация в инженерных задачах. 

 

     Для использования  методов  теории  оптимизации  при 

решении конкретной инженерной задачи необходимо установить 

границы подлежащей оптимизации  инженерной системы,  опре-

делить количественный критерий, на основе которого можно про-

извести  анализ  вариантов, и, наконец,  построить модель, отра-

жающую взаимосвязи между переменными. Эта последователь-

ность  действий  составляет  содержание процесса постановки за-

дачи инженерной оптимизации. 

Показатель, которым оценивается принимаемое решение, 

является критерий оптимальности данной задачи,  а  функция,  вы-

ражающая значение критерия через управляемые параметры, есть 

целевая  функция Y. 
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Пример. Рассмотрим задачу оптимизации конструктивных 

параметров на примере вала ведущей цилиндрической шестерни 

главной передачи автомобиля КамАЗ. 

 

 
 

Рис. 1. Схема нагружения системой пространственных сил 

(а) и конструкция (б) вала ведущей цилиндрической шестерни 

главной передачи автомобиля КамАЗ: 1 - подшипник 27310, 2 - 

подшипник 27911, 3 – подшипник 102409. 

 

В предложенной для рассмотрения задаче управляемыми 

(искомыми) параметрами подшипникового узла главной передачи 

автомобиля, определяющими его конструктивный вариант, на 

основании приведенных выше результатов исследований можно 

принять: 
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  - углы контакта 1x  и 2x конических роликоподшипников  подшип-

никового узла; 

  - расстояние между элементами подшипникового узла 3x ; 

  - усилие преднатяга 4x подшипникового узла при сборке; 

  - динамическая вязкость масла 5x . 

Учет большего числа управляемых параметров приведет к 

сильному усложнению и удорожанию процесса  проектирования, 

поэтому можно ограничиться вышеприведенными. 

Считая неуправляемые переменные постоянными для дан-

ной  задачи, примем в качестве целевой функции функцию Y(X), 

которая каждому фиксированному значению набора искомых па-

раметров ставит в соответствие некоторое определенное зна-

чение набора технических  показателей.   

Эта задача является задачей оптимизации, ее решение 

классическими методами затруднено, и поэтому требуется при-

менение методов математического программирования и совре-

менных вычислительных средств. 

Для достижения  поставленной  задачи  большое значение 

имеет правильный выбор критерия оптимальности. Для этого 

необходимо определить частные  критерии подшипникового узла 

главной передачи, причем при этом необходимо также учиты-

вать влияние параметров узла на работоспособность зубчатых 

передач. На основании исследования данных дефектов главных 

передач автомобилей  КамАЗ можно сформулировать следующие 

частные критерии оптимальности конструкции: 

  - нормальные силы 1rF и 2rF     на роликах подшипников 1 и 2; 

  - зазор  в в подшипниковом узле в конце эксплуатации (или  в 

определенный ее момент); 

  - осевые fa  и радиальные fr  перемещения зубчатых колес  главной 

передачи. 

Теперь необходимо определить составляющие целевой 

функции. Как отмечалось выше: оптимальный  выбор конструк-

тивных  параметров главной передачи автомобиля  представля-

ется  возможным  при наличии количественных оценок работо-

способности этого узла. 
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Для проведения рационального выбора конструктивных  па-

раметров необходимо разработать целевую функцию Y. Целевая  

функция образуется по аддитивному принципу и представляет 

собой сумму произведений нормированных частных критериев на 

их весовые коэффициенты: 

 

 



n

i

oiii XXY
1

/ , 

 

при 



n

i

i

1

1  

 

  где    iX - численное значение i-го критерии; 

           oiX - норма i-го критерия; 

              - весовой коэффициент; 

              n - число критериев. 

В качестве нормы используется  значение  i-го  критерия  

для базовой главной передачи или его нормативная величина.    

Подиновский В.В. в работе [14] указывает, что количест-

венная форма представления информации о важности критериев  

является сложной и потому зачастую ненадежной. Более дос-

тупной и достоверной, чем количественная,  является качествен-

ная  информация,  состоящая из сведений типа «критерии равно-

ценны», «один критерий важнее другого» и т.п. В таких случаях 

для  учета  различной значимости критериев проводят ранжиро-

вание их по важности.  

В результате ранжирования критериев по  важности к 

первому рангу можно отнести максимальный в зазор в конце экс-

плуатации  в  конических роликоподшипниках: ко второму -  осе-

вые а и радиальные а перемещения зубчатых колес конической па-

ры: к третьему - нормальные силы А и А на роликах подшипников 

1 и 2. Ранги  переводятся в весовые коэффициенты по формулам 

без участия экспертов: 

 

n/)1(1`  ii , 
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При этом считается, что критерию присвоен номер  назна-

ченного ему ранга. Нормирование 
`

i   для перехода к i , удовле-

творяющих условию 



n

i

i

1

1 , не представляет труда. 




`

`

i

i
i




 . 

В качестве задания необходимо определить весовые коэф-

фициенты и записать целевую функцию в общем виде. 
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